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Abstract—Consider an intermittently-connected mobile network
consisting of n relay nodes, a single source node, and m destination
nodes exhibiting a stochastic model for mobility. Each mobile relay
node is also equipped with finite storage. We seek to analyze
the performance of Multicast enabled by Network Coding in
such a network under the store, carry, and forward paradigm,
and compare its performance to a simple custodial-multicast
scheme. Though accurate analysis of network-coded multicast
is very complicated, we derive a provable way to obtain tight
bounds on the performance. We then develop a queuing-theoretic
framework to analyze the steady-state throughput performance of
the network-coded scheme under this setup, which is then solved
iteratively. The framework developed thus enables speedy evalu-
ation of the communication protocols described. Our analytical
results, supported by simulation studies, show that the network-
coding-based scheme offers considerable improvement for the case
when the storage size of the relay nodes is small and when the
number of destination nodes is large.

I. INTRODUCTION

Intermittently-Connected Mobile Networks (henceforth re-

ferred to as ICMANETs) constitute a new class of ad-hoc net-

working architecture that has drawn much attention in the field

of wireless networks recently. Often, communication devices

are deployed with very little backbone support and exchange

information in a collaborative fashion. Such infrastructure-less

networks often occur in applications such as wildlife and habitat

management [1], defense networks, vehicular networks, and in

networks providing cheap, basic internet connectivity to rural

areas in developing nations. Depending upon the application

context, they may also be known as Delay Tolerant Networks

(DTNs). Typically, ICMANETs are characterized by the lack

of end-to-end communication paths, lack of acknowledgement

messages, opportunistic communication over intermittent links,

and hence large communication delays.

Conventional Mobile Ad-hoc Networks (MANETs) rely on

the existence of end-to-end paths between the source and desti-

nation nodes in spite of node mobility. However in ICMANETs,

multi-hop paths through which information is sent evolve in

space and time. Such special constraints posed by the latter
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make traditional communication protocols inefficient, and new

ones are required in their place. For example, while certain

routing schemes designed for general ad-hoc networks such

as Dynamic Source Routing [2] fail in such networks, several

efficient schemes tailored to these networks have been devised

in the past [3]–[5]. These schemes use the “store, carry, and

forward” paradigm (also known as “mobility-assisted routing”)

for message delivery, wherein the source node opportunistically

transmits packets (intended for a specific destination) to any

other node that it comes in contact with, and relies on the

mobility of these “relay” nodes to transmit them to the intended

destination. In these schemes, end-to-end paths are created

by node mobility in a continuous space-time evolution of the

connectivity graph.

In order to enhance the information-transmission capacity of

ICMANETs limited by the lack of connectivity, network-coding

techniques such as random linear coding (RLC) have been

proposed [6]. The motivation behind these schemes comes from

the coupon collector effect [6] by which the average latency

of information transmission can be considerably reduced. In

this work, we seek to quantify the benefits of such a network-

coded scheme for multicast communication under an analytic

ICMANET model. In particular, our quantity of interest is the

average steady-state rate at which packets can be sent from a

single source to m different destination node, by employing the

aforementioned store, carry, and forward paradigm in a network

of n mobile relay nodes. We seek to understand the effects of

various parameters such as buffer-size at relay nodes, communi-

cation range, and phenomena such as interference. In addition,

we are interested in obtaining regimes under which network

coding performs significantly better than a simple custodial

scheme which implicitly replicates packets from the source m

times (i.e., as many times as the number of destinations served).

We find that network coding has the dual benefit as a result of

better buffer management and as a result of coupon-collector

effect. However, we observe that significant improvements are

achievable only when the number of destinations served (m) is

large and when the relay-node buffer sizes are not very large.

The problem of accurately modeling the performance of

ICMANETs is of natural interest since the performance models

of conventional MANETs are not applicable due to the afore-

mentioned reasons. Further, simulation techniques to obtain
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the steady-state performance of such a network under network

network coding is infeasible due to (1) the rather large settling

time involved and (2) the complexity of continuous decoding

of the packets at the destination. In this paper, we seek to

show that in such cases wherein exact analysis or simulation

is infeasible, it is possible to obtain rigorous upper and lower

bounds by iteratively solving for the steady-state distribution of

a low-complexity Markov Chain. We demonstrate this for the

communication scenario we address in this paper, viz., network-

coded multicast. Also, we show that that this task is possible

while taking into consideration practical constraints such as

limited node storage, random contact times, and contention

between nodes. We also show that the proposed framework

is applicable the general class of mobility models that exhibit

stochastic stationarity. We achieve this task using queuing

theory and Embedded-Markov-chain techniques. Finally, we

validate the analysis using simulations for the random-waypoint

mobility model.

II. RELATED WORK

Performance modeling of mobile ad-hoc wireless networks,

in particular, delay and throughput effects, has attracted con-

siderable attention in the recent past [7]–[9]. Pioneering work

in the study of the capacity of mobile ad-hoc wireless networks

was due to [7]. Due to the differences in the communica-

tion paradigm mentioned in the previous section, we expect

significant differences in the performance characteristics of

ICMANETs compared to those of general MANETs which rely

upon end-to-end connectivity. Additionally, asymptotic results

almost never hold for ICMANETs since they are typically

characterized by sparseness.

In the context of intermittently-connected networks, the lack

of an end-to-end path from a given source to the destination

has been considered in similar DTN-related work such as

disconnected mobile networks [1], [10], [11] and other forms of

DTNs [3], [12]. Mathematical modeling of the performance of

ICMANETs has drawn considerable attention recently. Though

performance modeling of DTNs and other cases of ICMANETs

has been visited in the past, they very often tend to use

Poisson-process-based models for contact times [13], [14]. We

have shown in the past how such an assumption can give

misleading results in certain scenarios [15]. In [15] we thus

provide a generalized framework for the analysis of two-hop

single unicast routing that is valid for any mobility scenario that

is statistically stationarity, and proceed to show how the frame-

work captures various commonly-used mobility models such

as random waypoint, random-walk-on-grid, etc. In this paper,

we seek to extend this past work to multicast communication

scenarios and arrive at performance bounds for the steady-state

throughput.

Though network coding has previously been suggested in

the context of ICMANETs in works such as [6], [16], its

impact on multicast has hardly been studied. Again, the analysis

presented in [16] does not involve performance at steady-

state but involves the latency performance of an isolated burst

of packets. It is noted that Karande et al have shown in

[17], [18] that Network Coding does not change the order of

throughput in a stationary ad-hoc network, since the same can

be achieved by simple store and forward methods employing

multipoint transmission and reception. Hence, we have aimed

at understanding the performance benefits of multicast with

network coding (specifically RLC i.e., Random Linear Coding)

in an ICMANET setting. Since multicasting without network

coding has not been delved deeply in the context of ICMANETs

and involve several issues to be settled [19], we use a simple

custodial transfer scheme for comparison.

III. NETWORK MODELS

A. Definitions

Whenever two nodes are within communication range of

each other, we say that a “contact” has occurred between

them. However, they may only communicate when a “link”

exists between them. The rules for establishing a link such that

contention can be resolved between nodes is described later in

this section.

Throughout the paper, we assume the following communi-

cation scenario: Several relay nodes are deployed in a confined

region, which then move independently according to a certain

mobility model. We assume that the nodes are identical i.e.,

they have the same storage buffer size and communication

range. These nodes are designated as “relay” nodes and are n

in number with a buffer space of B packets each. The network

also includes m mobile destination nodes served by a single

mobile source which have unlimited storage capacity. Further,

nodes may have a certain finite communication range within

which it is able to send or receive packets from another node.

We perform analysis in discrete time i.e., time is sliced up into

several epochs. This assumption is made for clarity and ease

of notations, and does not cause any loss of generality. Further,

a small buffer size is justified since devices use less memory

space for communication, though they might have larger storage

capacity.

B. Mobility Model

We assume that the n relay nodes, the source node, and

the m destination nodes move independent of each other, but

the statistical model for mobility is the same. The underlying

mobility model exhibits “statistical stationarity”. This means

that the probability distribution of the “state” of a node’s motion

converges over time to a fixed distribution. Though this is

critical to our analysis, it is not an unreasonable assumption. It

is well-known that a mobility model is meaningful for network

evaluation only if it exhibits stationarity [20]. In particular, it

is obvious that the random-walk, the random-waypoint model,

and their variants are known to be stationary under proper

choice of parameters. The mobility of any node v is denoted

by a random process χv(t), which at each instant t follows a

probability distribution on the state-space Smob of the given

mobility model. For clarity, it is assumed that the state-space

Smob is discrete. Each state may include information such as

position, velocity, and waypoint location, etc. Typically, one

can describe the state transitions as a linear relationship by
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means of a transition function Ψmob(·) (given by the model)

as follows. Let p(t) be the probability distribution of the node’s

mobility state at time t. Also, let the mobility model have

a memory of m′ time-steps, where m′ is a positive integer.

Then, p(t + 1) = Ψmob [p(t),p(t − 1), · · · ,p(t−m′)] for

t > m′. For example, in case of the random-walk mobility

model, Ψmob(·) simply involves the multiplication of p(t)
by a constant state-transition matrix to obtain p(t + 1). Since

the mobility model is assumed to be stationary, it has a

unique steady-state probability distribution, πmob which sat-

isfies πmob = Ψmob [πmob, · · · ,πmob].

C. Link Model and Contention Resolution

We assume a loss-free channel on which a single packet

can be transmitted at each epoch. This assumption keeps the

discussion simple and focused on issues relevant to this work,

though a further extension to relax this can be made easily, as

it will be clear from the analysis. We assume that collision is

avoided by debarring the nodes within the transmission range

of any node sending/receiving packets, from sending/receiving

packets on another link.

In addition to the source node transmitting packets over links

established with relay nodes and the relay nodes doing the same

to the destination, we allow for relay-to-relay communication

in our schemes. However, whenever a source node is within

the communication range of one or more destination nodes, it

establishes a link with one of them with equal probability, if

possible. Otherwise, the source/destination node establishes a

link with one of the relay nodes within its range (if possible).

Last in the order of priority is relay-to-relay communication,

wherein all relay nodes that are not within the transmission

range of a sender/receiver tries to establish a link with one of

the relays in its range randomly with equal probability.

IV. MULTICAST ROUTING PROTOCOLS

We now describe the routing protocols for multicast that we

compare in this paper. It is noted that under both schemes, we

need to allow for relay-to-relay communication so that we are

not comparing two schemes with poor performance. In the first

case, multihop routing makes efficient use of source-to-relay

contacts so that replication of packets happens internally and

hence the source itself requires each packet to be transmitted

only once. In the second case, multihop routing helps to

decrease the chance of having redundant packets by increasing

diversity.

A. Network-Coded Multicast

We employ RLC coding identical to [6] in order to improve

steady-state throughput under multicast. Under this scheme,

packets are considered to be vectors in a finite field of desirably

large size, say GF (2nc). A relay node, on receiving a packet

from the source (or a relay node) makes B scaled versions

of the same with coefficients chosen from GF (2nc) and aggre-

gates them onto the contents of its buffer. Whenever a packet is

to be sent by the relay to one of the m destinations (or another

relay) the former creates a random linear combination of the B

entries in its buffer and sends the resulting packet. Again, the

coefficients are chosen from GF (2nc). When a relay-to-relay

link occurs, one of them is randomly chosen as the sender

and a linear combination of its contents are sent to the other.

Here, relay-to-relay transmissions is only possible with a blind

strategy since it is impossible to keep track of the relay nodes’

measure of innovativeness with respect to all the other relays

and destinations. Throughout this paper, we assume that the

relay nodes never need to delete the contents in its buffer. Also,

the destinations do not need to recover the original packets, but

are satisfied if they receive a packet that is linearly independent

from all the packets received in the past.

B. Simple Custodial Multicast

The comparison scheme used in the paper is a version

of custodial transfer modified to suit multicast [19]. In this

scenario, each packet is assumed to be uniquely identifiable.

On linking with the source, a relay node, if it has an empty

buffer space, will accept a packet and assign a counter to it,

initialized as m. It is also assumed that when a relay node links

with one of the destinations, the latter identifies those packets

from the former’s buffer that it has not yet received, so that

the former sends one of them at random if available. Before

the beginning of the next epoch, the relay node decreases the

counter associated with the transmitted packet by 1. Packets

which have a counter value of zero are discarded before the

beginning of next epoch, making room for more incoming

packets.

Whenever a link occurs between two relay nodes, they make

each other’s counter totals known to the other in addition to

the IDs of the packets in their buffers. Now, a back-pressure

policy is employed to determine which node will send packets.

Whichever node has a total counter value higher than the other

by at least two will be the sender, and the other one will be

the receiver. Then, a packet is sent if the receiver has an empty

space in its buffer. Let us say that the packet sent had a counter

value of k in the sender’s buffer. At the end of the transfer,

the sender will update this counter to ⌈k2 ⌉ and the receiver

will accept the packet with ⌊k2⌋ as the counter for its copy of

the same packet. Additionally, if a copy of the same packet is

present already in the receiver’s buffer, the latter combines both

and adds on the value ⌊k2⌋ to the index in the copy. Hence, this

protocol aims at redistributing the transmission load among the

relay nodes.

V. ANALYSIS OF NETWORK-CODED MULTICAST

From the description of the network-coded scheme, it is

clear that obtaining the steady-state performance of this scheme

for the ICMANET network model is a cumbersome task.

This is because in order to find whether a received packet

is innovative, the destination node needs to keep track of all

the packets received in the past and has to perform Gaussian

elimination on an ever-increasing rank matrix. Hence, only

an approximate solution can be obtained by decoding a burst

of p packets such that p is sufficiently large. However, this

does not help us determine whether the performance obtained
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thus is an upper bound or a lower bound. Addressing these

challenges, we provide the following analysis methodology

making use of Markov Chain techniques. The analysis provided

thus gives two Markov chains whose steady-state distribution

is then solved for iteratively, which in turn determines the

throughput performance. In addition, we will show that one

of the chains obtained actually provides an upper bound and

the other provides a lower bound. In addition, the solution for

steady-state distributions can be computed in negligible time

for a range of design parameters as the complexity of these

chains is manageable and scalable.

A. Overview of the Concept

We first identify an embedded Markov-Chain which de-

scribes the dynamics of communication and compute the

throughput from its steady-state distribution, by identifying

certain “desirable” states of the network. The analysis is further

facilitated by a novel technique called “chain collapsing” [15],

[21], drastically reducing the complexity of the underlying

chain at the cost of a few additional computations. It can be

shown that the analysis can be conducted from the standpoint

of a single relay v and a particular destination node d.

B. Notations

Relay nodes in the network is identified by a unique integer,

v ∈ {1, 2, · · · , n}. For a Markov Chain X(t) with state-space

Ω, the steady-state probability of any state x ∈ Ω is denoted

by π(x). The vector π denotes the steady-state distribution for

the entire state-space S.

C. State-space Description and Throughput

The state of any node v at time t in the network is an ordered

pair consisting of mobility-state and its buffer occupancy,

as (χv(t), bv(t)). Unlike in our past work [15], the buffer

occupancy here refers to the number of innovative packets

(i.e., the “virtual” occupancy) w.r.t. the particular destination

node picked for the analysis, and hence does not represent

the physical state of the buffer, which is always full. We

define the state of the entire network as the 2(n + 1)-tuple

Y(t) , (χ1(t), · · · , χn(t), b1(t), · · · , bn(t), χs, χd). Here, χs

and χd are the mobility states of the source and the destination.

We then define the achievable throughput as the expected rate at

which packets are transferred from s to d when the network is in

steady-state. In other words if Ns,d(τ) packets are transmitted

from s to d in time τ , the throughput capacity is given by the

relation Cs,d =
Ns,d(τ)

τ
.

D. Construction of the Occupancy Matrix and the Complemen-

tary Occupancy Vector

Let [n] , {1, 2, · · · , n}. Let P (i, j) be the packet con-

tained in memory-location j of relay i, and let P (i, j) =
∑l

k=1 akMk, i ∈ [n] , j ∈ [B], form some vectors

M1, · · · ,Mk, where ak are coefficients in the chosen finite

field GF (2nc).
Let V(S) , span {P (i, j)|i ∈ S, j ∈ [B]} for all S ⊆ [n].

Definition 1: For any two subsets of relay nodes U,W ⊆ [n],
we define the occupancy of U w.r.t. W as:

Φ(U,W ) , dim(V(U))− dim(V(U) ∩ V(W )).

We define the occupancy matrix for the entire network to be

the map Φ : 2[n] × 2[n] → N , where N is the set of natural

numbers and Φ is defined as above.

Definition 2: The complementary occupancy vector for our

network model is defined as the map Ψ : 2[n] → N, where

Ψ(S) , Φ(S, Sc) for any S ⊆ [n], and Sc , [n] \S.

We now need to discuss how the occupancy states are

updated in the above setup. This would complete the description

of the entire chain for the network. We first define the following

operation on the complementary occupancy vector:

Definition 3 (Augmentation): “Augmenting the S-entry w.r.t.

i” of the complementary occupancy vector for any given S ⊆
[n] and i ∈ S consists of the following recursive operation:

a. If bS = B |S|, stop.

b. Add 1 to bS , and (c.)

c. If |S| = 1, stop. Otherwise, for every j ∈ S such that the

augmentation results in bS−bS\{j} > B, augment S\ {j}
w.r.t. i.

The vector bS for all S ⊆ [n] is said to be “S-augmentable”

if the situation (a.) never occurs during the course of the

augmentation.

We can now determine how the occupancy vectors are

updated for each of the following cases:

• Packet arrival: If node i establishes a link with the source,

then augment each {i}∪S-entry in the order of cardinality

of the S’s.

• Packet delivery: If node i establishes a link with the

destination, then decrease each non-zero bS such that

i ∈ S by 1.

• Relay-to-relay interaction: If node i establishes a link with

node j and i transfers a packet to j, then decrease every

bS′ such that i ∈ S′ and j 6∈ S′ by 1 if b{j}c− b{i,j}c was

non-zero to begin with.

It can be shown that the above set of operations always result

in a feasible set of bS . Moreover, it traces the exact occupancy

situation of the RLC-encoded relaying scenario. Thus, we can

update the states in the chain consistently.

E. The “Stream Separation” Argument

As described previously, throughput is defined from the

standpoint of the rate at which linearly-independent packets

are received at the destination. In other words, if a received

packet is a linear combination of the past history, it does not

contribute to the throughput. In other words, for i 6= j if a

packet is delivered by a relay vk to destination Di, it does

not affect the number of innovative packets in v′ks from the

standpoint of Dj . Hence, there is no interaction among the

m different streams that the node vk is serving. To explain

further, it is as if the relay vk has m different buffers of size

B each dedicated to each of the destinations. Additionally, the

throughput contributed by any relay node, on the average, will
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be equally distributed among all the m destinations. Hence, we

can conduct our analysis from the standpoint of a particular

destination node served.

F. Upper Bound and Lower Bound Chains

From the Markov-Chain setup described before, we construct

two simpler processes (or “chains”) YU (t) and YL(t) that can

be accurately described with low complexity and solved. In

addition, we show that YU (t) leads to an upper bound on the

throughput performance and that YL(t) leads to a lower bound.

We observe that if two relay nodes have virtual occupancies

of b1 and b2 corresponding to a particular destination, they

do not necessarily have a total of b1 + b2 innovative packets

for the destination served, since they may have exchanged

packets before. In the above setup, we would need additional

indices that capture such inter-dependencies between the buffer

occupancies to describe the process Y(t) accurately. Since

this is cumbersome, we construct two simpler processes (or

“chains”) YU (t) and YL(t) that can be accurately described.

In addition, we will show that YU (t) leads to an upper bound

on the throughput performance and that YL(t) leads to a lower

bound. In the new processes, the buffer-occupancy indices in

the state variable are constructed to be completely independent

of each other, thus avoiding correlations. Thus, if relay A has

occupancy of b1 and relay B has occupancy of b2, then both

relays can together contribute exactly b1+b2 innovative packets

for the destination.

Upper Bound Chain: The new process YU (t) is constructed

thus: whenever relay A sends a packet to relay B, we retain

the virtual occupancy of A to be the same and increase that

of B by 1. Clearly, this overestimates the total innovativeness

with respect to all destinations in the network, and hence leads

to an upper bound on the throughput.

Lower Bound Chain: The new process YL(t) is constructed

thus: whenever relay A sends a packet to relay B, we reduce

the virtual occupancy of A by 1 and increase that of B by 1.

Clearly, the network-coded schemes performs better than this,

as the innovativeness is always underestimated for the sending

node.

Having constructed the new processes YU (t) and YL(t) thus,

we now proceed to obtain an embedded Markov Chain of low-

complexity in lines similar to [15].

VI. OBTAINING EMBEDDED MARKOV CHAINS

The raw processes YL(t) and YU (t) have Θ
(

Bn|Smob|n+2
)

states each. From these large processes, we obtain the cor-

responding low-complexity embedded Markov chains in the

following manner:

As in [15], we can again view the state of the processes

from a single relay-node’s perspective, compute the throughput

due to that node, and scale it up by n to obtain the total

throughput. We now group the following subsets of states for

both processes:

Let us consider one particular relay node v for this discus-

sion:

• S-group and D-group subsets: Sl, with 1 ≤ l ≤ B is the

set of possible network states wherein the most recent link

that node v was involved in was with the source, resulting

in l packets in the buffer after communicating with the

latter. Similarly, define Dl′ , for all B − 1 ≥ l′ ≥ 0 to

account for communication with the destination.

• E-group and F-group states: F is the set of possible

network states wherein the most recent link that node v

was involved in was with the source, but v was unable to

communicate with the latter due to lack of enough buffer

space (i.e., Full/saturated buffer condition). Similarly, de-

fine E to account for the case when a link is established

with the destination when the buffer-occupancy of v is

zero.

• R-group states: Rl1,l2 is the set of states such that the

last contact that node v had was with a relay node v′.

Moreover, v′ and v had l1 and l2 packets respectively in

their buffers before they exchanged any packets.

We can now define two embedded Markov chains corre-

sponding to YL(t) and YU (t) from the perspective of node

v based on these subsets. In the above enumeration, note that

there are B subsets each in the S- and D- groups, and (B+1)2

subsets in the R-group. Additionally, we have two other sub-

sets: E and F . Hence, there is a total of (B + 1)2 + 2(B + 1)
subsets. By using Theorem 2 in [15], we can obtain equivalent

“collapsed chains” that has just as many states. Let us call these

two new processes the Γv;L- and Γv;U - chains. Our aim is to

find an efficient way to compute the steady-state probability

distribution of the states in Γv chains (which we denote by the

vector π) so that one can avoid the cumbersome simulations

involving several nodes.

We note that both the Γv-chains consists (B+1)2 extra states

corresponding to relay-to-relay packet exchanges in addition to

the states in the embedded chain corresponding to the two-hop

relay protocol discussed in [15]. Both chains have a similar

structure after the inclusion of R-states is shown in Fig. 1,

where the states that are common with the corresponding two-

hop chain are shown in solid bubbles. In this figure, all the

possible transitions from various states (or groups of states) is

shown. The internal structure of the R-chains vary according

to their definitions. The key differences in structure between

Γv;L and Γv;U are shown in Figs. 2(a) and 2(b) respectively.

In the first case, transition from R2,4 to D2 is possible, as this

corresponds to the scenario where relay node v has occupancy

of four initially, delivers one packet to the other relay node with

initial occupancy of two, and sees a reduction in its occupancy,

and hence has an occupancy of 3 during the next transition

before linking with the destination node. However, since we

do not reduce the occupancy under the same link scenario in

the upper-bound case, the next link with the destination leads

to the state D3 and not to D2.

A. Computation of Transition Probabilities and Steady-State

Distributions for the Γv-Chains

We will compute the individual transition probabilities be-

tween various states in the chain in terms of a single quantity
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E

S1 S2 S3

D0 D1
D2

b = 0 b = 1 b = 2

R-statesR-statesR-states

Fig. 1. General structure of the upper-bound- and lower-bound- embedded
chains.

S4 S5 S6

D2 D3 D4

R6,4 R2,4

(a) Possible Transitions for the lower bound chain

S4 S5 S6

D3 D4

R6,4 R2,4

(b) Possible Transitions for the upper bound chain

Fig. 2. Differences in the structures of the upper-bound and lower-bound
chains

α(n). Again, we note that only one of the m destination

nodes is in consideration for this discussion. We define α(n)
in the following manner: given that a particular relay node u

is currently has a link with the source/destination node or a

relay-node, 1 − α(n) is the probability that u will establish

a link with the same again before establishing one with any

other node in the network. Next we note that since the node

mobilities are not correlated, the probability that the node u

will link again with a some other node u′ different from the

node which shared the last link, is exactly given by
α(n)
n

for

each u′. In other words, since there are n+2 nodes, including

the source and the destination, there are n nodes other than u

and u′ themselves and each one of them is equally likely to win

the next link for node u. We will later proceed to find that α(n)
itself is a function of (i) Mobility parameters, (ii) Networking

parameters, and (iii) Contention protocol, and its computation

of the same in terms of these parameters will follow.

Next, we define the following probabilities for the Γv-chains:

• Given that v currently has a link with the source, the

probability that its next link will be with the source again

is given by pss, and the probability that its next link will

be with the destination node is given by psd. Similarly,

one can define pdd and pds in the same manner.

• Given that v currently has a link with some relay node, the

probability that the next link will be with the same/another

relay node is given by prr. Similarly, we can define psr,

pdr, prs, and prd.

We now proceed to examine individual transition probabil-

ities in the Γv-chains. Let us define Ω as the entire set of

2(B + 1) S, D, E, and F -states. For any two states X and

X ′ such that X ∈ Γv and X ′ ∈ Ω such that it is possible to

reach the latter directly from the former, the probability of such

a transition does not depend on the current buffer-occupancy of

the relay node v.1 Hence, these probabilities will be the same

as pss, psd, pdd, pds, prd, or prs, as the case may be.

Due to the symmetry of our network model and due to inde-

pendent mobility, one can easily verify that these probabilities

are given in terms of α(n) by the following equations:

pss = pdd = 1− α(n)

prr = pss +
n− 2

n
(1− pss)

psd = pds = prd = prs =
α(n)

n

psr = pdr =
n− 1

n
(1− pss)

The transitions into the R-states are slightly more compli-

cated. We discuss these transitions in the proof of the following

theorem, summarizing the construction of the entire embedded

Markov Chain for both cases. Here, we only describe the result

for YL(t). The procedure is similar for the YU (t)-chain with a

obvious minor changes.

Theorem 1: The steady-state distribution of the states in the

collapsed embedded Chain Γv;L is given by the following

system of equations. For the sake of convenience, we define

π (Rl1,l2) to be zero if either l1 or l2 lies outside the interval

1This is due to the fact that neither mobility nor the contention protocol
depends on B. The case in which the contention protocol takes into considera-
tion buffer occupancies of the relay nodes is avoided for clarity, but is similarly
possible with minor modifications to the analysis.
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[0, B] in these equations:

π (E) = pdd {π (E) + π (D0)}+ prdπ (R0,0)

+ prd

{

1

2

B−1
∑

i=0

π (Ri,1) +
1

2

B
∑

i=1

π (Ri,0)

}

(1)

π (F ) = pss {π (F ) + π (SB)}+ prsπ (RB,B)

+ prs

{

1

2

B−1
∑

i=0

π (Ri,B) +
1

2

B
∑

i=1

π (Ri,B−1)

}

(2)

π (Dk) =







































































































pddπ (Dk+1) + psdπ (Sk+1)

+prd







1

2

B−1
∑

j=0

π (Rj,k+2)

+
B
∑

j′=1

π (Rj′,k)







, 0 ≤ k ≤ B − 2

psd {π (F ) + π (SB)}

+prd

{

1

2

B−1
∑

i=0

π (Ri,B) + π (RB,B)

+
1

2

B
∑

i=1

π (Ri.B−1)

}

, k = B − 1

. (3)

π (Sk) =







































































































pds {π (E) + π (D0)}

+prs

{

1

2

B
∑

i=1

π (Ri,0) + π (R0,0)

+
1

2

B−1
∑

i=0

π (Ri,1)

}

, k = 1

pssπ (Sk−1) + pdsπ (Dk−1)

+prs







1

2

B
∑

j=1

π (Rj,k−2)

+
1

2

k
∑

j′=k−0

π (Rj′,k)







, 1 < k ≤ B

. (4)

For any 0 ≤ l1 ≤ B,ϕ−1
l1,l2

π (Rl1,l2)

=























































































































































pdr {π (E) + π (D0)}

+prr

{

π (R0,0) +
1

2

B−1
∑

i=0

π (Ri,1)

+
1

2

B
∑

i=1

π (Ri,0)

}

, l2 = 0

psr {π (F ) + π (SB)}

+prr

{

π (RB,B) +
1

2

B−1
∑

i=0

π (Ri,B)

+
1

2

B
∑

i=1

π (Ri,B−1)

}

, l2 = B

psrπ (Sl2) + pdrπ (Dl2) + prr

{

1

2

B−1
∑

i=0

π (Ri,l2+1)

+
1

2

B
∑

i=1

π (Ri,l2−1) + π (RB,l2)

}

, 0 < l2 < B

(5)

where ϕl1,l2 ,
π (Rl2,l1)

∑B

j=0 π (Rj,l1)
for any 0 ≤ l1, l2 ≤ B.

Proof: The proof for the steady state equations (1)-(4)

follow from the previous discussion in this section. We only

need to analyze the transitions into the R-states. Given that the

current link for node v is with a source, destination, or some

relay, the probability that the next link is with any of the n− 1
other relays is given exactly by the quantity prr. Now in order

to determine the probability that the relay node corresponding

to the new link has exactly l1 packets in its buffer, we can use

the chain collapsing principle. Equivalently, we only need to

determine the “subset-averaged” probability distribution of the

buffer occupancy of the any relay node every time v comes

into contact with the same. By symmetry, we can say that this

distribution, denoted as ϕ above is exactly the same as the

distribution of node v every time it comes into contact with

a relay node that has occupancy l1. We call ϕ as the “joint

buffer-occupancy” distributions for the chain Γv. Hence, the

expression for ϕ is exactly as given in (5). Knowing this, we

can then compute the steady-state probability of each R-state

by carefully examining the possible previous states for v in Γv.

The analysis of steady-state for the Γv chain would be

complete once we determine the unknown parameter α(n) in

terms of networking and mobility parameters. Doing so would

enable us to study scaling laws with respect to network size (n),

node-density, mobility characteristics, etc. The relevant analysis

follows in the next subsection.
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B. Contention Analysis and Mobility Parameters

The computation of α(n) in closed form necessitates us to

look into the effect of node-to-node contention (which has

not been considered previously). We derive the same in the

following manner: establish the dependence on the contention

protocol first, and finally establish the dependence on the

mobility characteristics. The first step is accomplished with the

aid of yet another embedded chain, defined on the following

sub-sets of states, defined with respect to the particular relay-

node v. Let U be any node in the network other than v (source,

destination, or another relay node):

• UW : Most recent contact occurred with U , and contention

was won

• UL: Most recent contact occurred with U , and contention

was lost

• XW : Most recent contact occurred with some other node

than U , and contention was won

• XL: Most recent contact occurred with some other node

than U , and contention was lost

Once again, this is a variation on the contention chain described

in [15]. The analysis of this chain is similar, and the final result

is given below:

α(n) =
α0(n)

n+1
n

α0(n)βc + (1− βc)
.

where α0(n) is defined in a similar manner as α(n) with

the exception that only a contact has to occur. Hence, α0(n)
depends primarily on the mobility characteristics and has no

dependence on the contention model. Here, βc is the average

probability of v losing the contention phase, and an expression

for the same is provided in [15]:

1− βc =

(

1−
1

E [T0]

) n−1
∑

k=0

∑

x

πspt(x)

k + 1

(

n− 1

k

)

πk
spt(x

′)

× {1− πspt(x
′)}

n−1−k
. (6)

where E [T0] is the average inter-contact interval and πspt is

the steady-state spatial distribution of the underlying mobility

model.

Finally, for most mobility model, we can obtain α0(n) in

terms of a good approximation (from [15]):

α0(n) ≈
E [T0]

E [T∞]

n

n+ 1
. (7)

where E [T∞] is the average waiting time for a particular

contact to occur, starting from steady-state.

In order to complete the analysis, one needs to determine the

steady-state probabilities of all the states in this chain. This is

done by solving the equations (1)-(5). However, we note that

the steady-state equations for the R-states (5) are non-linear.

Hence, it is impossible to obtain closed-form solutions for the

throughput. Nevertheless, (1)-(5) can be solved by iterative

methods. Having obtained the steady-state distribution of Γv;L

chain thus, we can compute the throughput (in packets per

epoch), for the YL(t) process, as a contribution of all the n

relay nodes as follows:

CL;s,d =
1

E [T0]

n(1− βc)

E [T0]

∑B−1
j=0 πL (Dj)

πL (E) +
∑B−1

j=0 πL (Dj)
.(8)

Subscript L in the steady-state distribution indicates that the

solution is from the corresponding Γv;L chain. The above

expression follows from the fact that the throughput is given by

the ratio of the total steady-state probability of the “desirable”

states (in the Γv chains, these are the D-states) to the total

steady-state probability of all states where the destination node

is linked with (i.e., E- and D-states), times the frequency of

establishing a link with the destination which can be computed

as
(1−βc)
E[T0]

. The first term in the throughput indicates the

contribution of direct source-to-destination contacts.

Similarly, we obtain the throughput estimated by the process

YL(t). Finally, the actual throughput of multicast with RLC

network coding is given by CL;s,d ≤ Cs,d ≤ CU ;s,d.

To summarize, we have obtained a scalable iterative tech-

nique for bounding the throughput performance of network-

coded unicast. In general, this queuing-theoretic model con-

verges within 10-20 iterations. In contrast, simulating the exact

network for a given n takes a few million epochs for the system

to reach steady-state. In addition, simulations are not quite

scalable for certain parametric choices.

VII. SIMULATION RESULTS

In order to verify our analysis, we simulated the above IC-

MANET network model under the random-waypoint mobility

model. Relay nodes, 50 in number, were deployed on a square

region of size 5km by 5km. Each node was assumed to have

a radio range consisting of a circular disc of radius 250m. The

velocities of nodes were chosen randomly according to uniform

distribution, between 4kmph and 9kmph. Waypoints were

randomly chosen from a uniform spatial distribution across the

entire deployment region. The throughput performance of such

a network at steady-state was obtained for different choices of

buffer sizes (B) and for different numbers of destination nodes

served (m). We simulated both the network-coded scheme as

well as the simple custodial-multicast scheme, and compared

the results with the bounds obtained by iteratively solving the

two Markov Chains described in the previous section. For the

network-coded scheme, we used a Galois field of size 397. A

prime number was chosen rather than a power of two, since

operations are easier in the former case. For both schemes,

we simulated 100000 epochs, and repeated the same for 50

different initial conditions.

In the first plot shown in Fig. 3, the per-node buffer size

in the network was varied from 8 to 40 packets, while 10

destinations were served. Under this regime, it is seen that

the network-coded scheme offers considerable improvement

on the throughput. However, it was observed that the percent

improvement in throughput goes down as we increase the buffer

sizes further, and they both tend to saturate near the same level.
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This is due to the fact that the benefits of network coding are

contributed primarily by its buffer-management strategy.

In the second plot shown in Fig. 4, the buffer sizes were

kept constant at 16 packets per node while m was varied from

5 through 20. Clearly, the higher the number of destinations

served, the simple custodial scheme degrades drastically in

terms of per-destination-node throughput. However, it was

observed that the network-coded scheme hardly diminished in

performance.
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Fig. 3. Simulation results for varying buffer sizes
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Fig. 4. Simulation results for varying number of destinations

VIII. CONCLUSIONS

In this work, we developed a novel methodology to bound

the performance of network-coded multicast in ICMANETs.

We presented a generalized, scalable iterative framework based

on Markov-chain analysis that incorporates several consider-

ations such as finite buffers, generalized mobility, and node-

to-node contention. Our results show that Network Coding

offers significant benefits for multicast especially in the finite-

buffer regime vis-a-vis simpler custodial-multicast schemes.

The Markov-chain-based methodology we developed provided

good upper and lower bounds for performance under network

coding. Future extensions that will be considered include an

analysis framework for replication-based multicast schemes, of

which the custodial multicast scheme presented here is a special

case. In addition, there is a need to study the performance

of network-coding schemes wherein packets are processed in

blocks, rather than on the entire stream. Though block-based

network coding is more desirable in practice, it remains to be

seen whether the benefits offered by network coding apply to

this scenario.
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