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Abstract—The existence of significant amount of correlation
in the network traffic has stimulated the development of in-
network traffic reduction techniques since end-to-end universal
compression solutions would not perform well over Internet
packets due to the finite-length nature of data. Recently, we
proposed a memory-assisted universal compression technique
that holds a significant promise for reducing the amount of
traffic in the networks. The idea is based on the observation
that if a finite-length sequence from a server (source) is to be
compressed and transmitted over the network, the associated
universal code entails a substantial overhead. On the other hand,
intermediate nodes can reduce the transmission overhead by
memorizing the source statistics when forwarding the sequences
from the previous communications with the server. In this paper,
we extend this idea to the scenario where multiple servers
are present in the network by proposing distributed network
compression via memory. We consider two spatially separated
sources with correlated unknown source parameters. We wish
to study the universal compression of a sequence of length
n from one of the sources provided that the decoder has
access to (i.e., memorized) a sequence of length m from the
other source. In this setup, the correlation does not arise from
symbol-by-symbol dependency of two outputs from the two
sources (as in Slepian-Wolf setup). Instead, the two sequences
are correlated because they are originated from the two sources
with unknown correlated parameters. The finite-length nature
of the compression problem at hand requires considering a
notion of almost lossless source coding, where coding incurs
an error probability pe(n) that vanishes as sequence length
n grows to infinity. We obtain bounds on the redundancy of
almost lossless codes when the decoder has access to a random
memory of length m as a function of the sequence length
n and the permissible error probability pe(n). Our results
demonstrate that distributed network compression via memory
has the potential to significantly improve over conventional
end-to-end compression when sufficiently large memory from
previous communications is available to the decoder.

I. INTRODUCTION

Several networking applications involve acquiring data

from multiple distributed (i.e., spatially separated) sources

that cannot communicate with each other. These applications

include acquiring digital/analog data from sensors [1]–[5],

the CEO problem [6], [7], delivery of network packets in a

content-centric network [8], acquiring data from femtocell

wireless networks [9], [10], acquiring data chunks from

the cloud [11], [12], etc. What is perhaps common in all

of the above problems is the bandwidth limitation, i.e.,

there is a fundamental capacity for the information that can

be transmitted in the network infrastructure. Hence, data

compression can significantly improve the performance in

any of such applications.

The premise of data compression broadly relies on the

data being correlated. As one example, when data is gathered

from multiple sensors that measure the same phenomenon

(e.g., temperature), the readings from the sensors are clearly

correlated. As another example, when chunks of the same

file/content are acquired by a client in a content-centric

network, the data chunks are correlated as they are originated

from the same data server. Further, data that is originated

from a mirror server is correlated with data that comes

from the original server. The focus of this work is on the

reduction of the wireless/wired data traffic from multiple

sources by utilizing such correlations. The scope of this work

is significant as high correlation levels as much as 90% have

been reported in the wired/wireless Internet traffic data [13]–

[15], which has motivated a lot of research so as to reduce

the traffic by utilizing such correlations.

Existing solutions that utilize such correlations in order

to reduce the data transmission in the Internet are lim-

ited in scope. Application-level content caching [16] cannot

utilize the packet-level redundancy and statistical correla-

tions across the contents. Packet-level redundancy elimi-

nation techniques [17] are ad-hoc in nature and can only

remove duplicates of a big chunk of the data packet while

they ignore the statistical correlations in the packet-level.

Application-level universal compression [18]–[20] techniques

do not utilize packet-level redundancies and more importantly

cannot utilize the correlations in data that are originated from

spatially separated sources. Packet-level memory-assisted

compression techniques [14], [21], [22] utilize the statistical

correlation among the packets while its extension to multiple

sources is not readily available.

In this paper, we introduce and study distributed network

compression via memory, where we assume that the un-

known parameter vectors of the distributed sources follow

a correlated statistical model. By distributed we mean that

the sources are spatially separated and the encoders do not

communicate with each other. We stress that the nature of

our problems in network compression involving multiple
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Fig. 1. The basic scenario of two-source memory-assisted compression.

sources is fundamentally different from those addressed by

the Slepian-Wolf (SW) coding and multi-terminal source

coding in [1], [3], [6], [7]. Here, instead of symbol-by-

symbol correlation between the sequences as in SW setup or

the correlated Gaussian model among several observations

of a phenomenon, the correlation is due to the the source

parameters being a priori unknown [23], [24]. To clarify,

considering the example in Fig. 1 with sources S1 and S2,

ym and xn would be independent given that the source

models are known. However, when the source parameter

is unknown, ym and xn are correlated with each other

through the information they contain about the unknown

but correlated source parameters. The question, which incurs

in distributed network compression via memory, is whether

or not this correlation can be potentially leveraged by the

encoder of S2 and the decoder at M in the decoding of xn

using ym (from S1) to reduce the codelength of xn.

The rest of this paper is organized as follows. In Section II,

we present the problem setup and the related work. In

Section III, we briefly review the necessary background and

definitions. In Section IV, we present our main results on

the redundancy. In Section V, we provide discussion on the

results. Finally Section VI concludes the paper.

II. PROBLEM SETUP AND RELATED WORK

We present the memory-assisted network compression

problem in the most basic scenario, shown in Fig. 1, con-

sisting of two correlated sources located in nodes S1 and

S2, the intermediate relay node M , and two client nodes C1

and C2. Let ym and xn denote two sequences with lengths

m and n that are generated by S1 and S2, respectively.

We assume that S1 has transmitted the sequence ym to

C1 through the intermediate node M . We further assume

that M is a memory unit, i.e., capable of memorizing the

sequence ym. Next, at some later time, S2 wishes to send

xn to C2 through the intermediate node M . At this time,

ym is available to the decoder at M . Thus, the encoder at

S2 can encode the sequence xn with the knowledge that ym

is available to the decoder at M , potentially improving the

universal compression of xn on the path from S2 to M . Such

a code is decoded by M before being forwarded to the final

destination C2. A trivial lower bound on the expected number

of bits necessary for transmitting xn on the S2-M path will

be H(Xn|Y m). Our goal is to analyze the lower bound and

its achievability in various settings.

Slepian and Wolf already demonstrated that if the data

streams from two sources S1 and S2 have symbol-by-symbol

correlation, the sequences can be compressed to their joint

entropy when decoded at M [1]. The idea is based on com-

pressing the jointly typical sequences (xn, yn). As the length

n of the sequences increases to infinity, the decoding of the

sequence xn at M can be performed using an almost lossless

code with the average length that asymptotically approaches

the conditional entropy, i.e., H(Xn|Y n), with asymptotically

zero error probability, i.e., limn→∞ pe(n) = 0. On the other

hand, if the decoder at M chooses not to utilize the side

information provided by the sequence yn or the coding is

performed strictly lossless,1 the encoder at S2 would have to

encode the sequence xn irrespective to what has already been

communicated between S1 and M , which would in turn result

in an average code length of H(Xn). After relatively recent

development of practical Slepian-Wolf (SW) coding schemes

by Pradhan and Ramchandran [2], SW coding has drawn a

great deal of attention as a promising compression technique

in many applications such as sensor networks (cf. [4] and the

references therein) and distributed video coding [5].

The Slepian-Wolf theorem naturally suits applications

where the (new) sequence xn from S2 (in Fig. 1) can be

viewed as a noisy version of the (previously seen) sequence

ym, such as data gathering from neighboring sensors that

measure the same phenomenon. However, in many other

scenarios, the compression of spatially separated sources

cannot be modeled by the SW framework. Examples include

the universal compression of data from multiple mirrors

of a data server and acquiring data chunks in a content-

centric network. In such applications, it is plausible to

assume that the sources (S1 and S2 in Fig. 1) follow a

correlated (sometimes even identical) statistical model that is

a priori unknown (to the encoder and the decoder) requiring

universal compression [23], [26], [27]. We assume that the

servers at S1 and S2 are stationary and ergodic parametric

information sources that are unknown to the coding scheme.

The following example clarifies this model of correlation.

As an example, assume that source S1 is a server that

generates Bernoulli random variables (RVs) with unknown

source parameter θ. Further, assume that source S2 is a

mirror server in a different location with very similar content.

Thus, source S2 is a Bernoulli RV generator with parameter

φ, where we assume that φ follows a Gaussian distribution

around θ. (If the mirror servers contain the exact same content

we may even assume that φ = θ, i.e., the variance of φ can

be assumed to be equal to zero). Let the sequences ym and

xn be generated independently by the two servers S1 and

S2, respectively. In this setup, the sequence ym is correlated

with xn through the information that they carry about the

unknown source parameters. For example, if most of the bits

in ym are 1’s, it is very likely that most of the bits in xn

are also 1’s. The question is, assuming two sources S1 and

S2 with correlated unknown parameters and having ym from

1Please see [25] for the formal definition of strictly lossless and almost
lossless codes. In short, the strictly lossless coding is more restrictive than
almost lossless coding since it requires ∀n; pe(n) = 0 as apposed to
limn→∞ pe(n) = 0.
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S1 memorized at the decoder at M , what is the achievable

universal compression performance on xn at S2-M path and

whether the correlation between xn and ym can be potentially

leveraged by the encoder of S2 and the decoder at M in the

decoding of xn using ym to reduce the codelength of xn.

This problem can also be viewed as universal compres-

sion [18]–[20] with training data that is only available to the

decoder. In [21], [22], we theoretically derived the gain that

is obtained in the universal compression of the new sequence

xn from S2 by memorizing (i.e., having access to) ym from

S1 at both the decoder (at M ) and the encoder (at S2). This

corresponds to the reduced case of our problem where the

sources S1 and S2 are either co-located (a single source)

or allowed to communicate. For the reduced problem case,

in [14], [28], we further extended the setup to a network

with a single source and derived bounds on the network-

wide gain where a small fraction of the intermediate nodes

in the network are capable of memorization. However, the

extension to the multiple spatially separated sources, where

the training data is only available to the decoder, is non-trivial

and raises a new set of challenges that we aim to address.

In [25], we extended the network compression to dis-

tributed identical sources in the special case where the

sources were identical. We derived an upper bound on the

achievable average minimax redundancy, where S1 and S2

share an indexical parameter vector. In this paper, we let

the information sources at S1 and S2 be parametric with d-

dimensional parameter vectors θ and φ, respectively. These

parameter vectors are unknown a priori to the encoder and

the decoder. Throughout the paper, we refer to this problem

setup as Distributed Network Compression with Correlated

Parameters (DNC-CP). We stress that the nature of DNC-

CP is fundamentally different from those addressed by the

Slepian-Wolf (SW) theorem in [1]. Here, instead of symbol-

by-symbol correlation between the sequences as in SW setup,

we target to remove the redundancy incurred by the universal

compression of finite-length sequences, whose dependency

is due to the correlation of their unknown source parameters

that are a priori unknown [21], [23], [24]. Note that as the

length of the sequence xn grows to infinity, the redundancy

rate in the compression of xn vanishes since 1
n
H(Xn)

converges to the entropy rate as n → ∞, and hence, the

potential benefits of DNC-CP vanish as the sequence length

grows, which contrasts the Slepian-Wolf framework where

the benefits are studied in the asymptotic regime.

III. NOTATIONS AND DEFINITIONS

Thus far, we described the basic problem setup. In this

section, we provide further details involving notations and

definitions. Following the notation in [25], let A be a finite

alphabet. Let d be the number of the source parameters. Let

Θd denote the space of d-dimensional parameter vectors. Let

λ ∈ Θd denote a d-dimensional parameter vector. Let Pd

denote the family of sources that can be described with a

d-dimensional unknown parameter vector λ. We denote µλ

as the probability measure that is defined by the parameter

vector λ under the parametric source model. Let I(λ) denote

the Fisher information matrix for parameter vector λ.

We assume that the parameter vector θ ∈ Θd (corre-

sponding to source S1) follows the worst-case prior in the

sense that it maximizes the expected redundancy (i.e., the

capacity achieving prior in the maximin sense). This prior

distribution is particularly interesting because it corresponds

to the worst-case compression performance for the best

compression scheme. We further assume that given θ, the

parameter vector φ ∈ Θd (i.e., the parameter vector of

source S2) follows a Gaussian distribution with mean θ

and covariance matrix Γ(θ). This models the nature of the

correlation of the sources S1 and S2 in our setup. Let J (θ)
be a d×d matrix associated with the parameter vectors φ and

θ, defined as J (θ) , Γ(θ)I(θ). We assume that J (θ) is a

positive definite matrix. This assumption is necessary for the

conditional distribution to be well defined. Let Id be the d×d

identity matrix. We use the notation xn = (x1, ..., xn) ∈ An

to present a sequence of length n from the alphabet A
generated by S2. We further denote Xn as a random sequence

of length n that follows the probability distribution µφ. Let

Hn(φ) be the entropy of the source S2 given the parameter

vector φ, i.e., Hn(φ) = H(Xn|φ) = E log
(

1
µφ(Xn)

)

.2

Let cn : An → {0, 1}∗ be an injective mapping from

the set An of the sequences of length n over A to the set

{0, 1}∗ of binary sequences. Further, let lpe
n (xn) denote the

almost lossless length function of the codeword associated

with the sequence xn with permissible error pe. In the study

of coding strategies for DNC-CP, we compare the following

relevant cases for the compression of the sequence xn from

S2 provided that the sequence ym from S1 has already been

memorized by the node M (in Fig. 1).

• UComp (Universal compression without memorization),

which only applies lossless universal compression to xn

at S2 without using the side information ym at M .

• DUCompMD (Distributed universal compression with

memory at decoder), which assumes that decoder (at

M ) has access to context memory sequence ym while

the encoder (at S2) only knows m but does not know the

exact sequence ym. The encoder then applies a universal

code to xn that is decoded at M by utilizing ym.

• DUCompME (Distributed universal compression with

common memory at both the decoder and the encoder),

which assumes that the two encoders at S1 and S2 can

communicate, and thus, the decoder (at M ) and the

encoder (at S2) have access to a shared sequence ym,

which is utilized in the compression of xn at S2.

In this paper, we use the average minimax redundancy as

the performance metric for the different coding strategies.

Let Lpe
n denote the space of universal almost lossless length

functions on a sequence of length n, with permissible decod-

ing error pe. Denote Rn(l
pe
n , φ) as the expected redundancy

of the almost lossless code on a sequence of length n for the

2Throughout this paper, all expectations are taken with respect to the
probability measure µφ , and log(·) denotes the logarithm in base 2.
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parameter vector φ, i.e., Rn(l
pe
n , φ) = Elpe

n (Xn) − Hn(φ).
Accordingly, the average minimax redundancy, which corre-

sponds to the performance of the best code over the worst

parameter vector is defined as follows.

R̄
pe

UComp(n) , inf
l
pe
n ∈L

pe
n

sup
θ∈Θd

Rn(l
pe

n , θ). (1)

We denote R̄0
UComp(n) as the average minimax redundancy

when the compression scheme is restricted to be strictly

lossless instead of almost lossless, i.e., pe = 0.

In DUCompMD, let l̂
pe

n,m,Γ : An × N × R
d×d → R.

Note that in this case, the sequence ym is not known to

the encoder while the length m is still available to the

encoder. Denote the lossless universal length function with

a memorized sequence of length m that is only available to

the decoder with permissible error probability pe. Further,

denote L̂
pe

n,m,Γ as the space of such lossless universal length

functions. Denote Rn(l̂
pe

n,m,Γ, θ) as the expected redundancy

of encoding a sequence xn of length n using the length

function l̂
pe

n,m,Γ . Further, let R̄
pe

DUCompMD(n,m,Γ) denote the

expected minimax redundancy, i.e.,

R̄
pe

DUCompMD(n,m,Γ) , inf
l̂
pe
n,m,Γ

∈L̂
pe
n,m,Γ

sup
θ∈Θd

Rn(l̂
pe

n,m,Γ, θ).

(2)

Likewise, let l
pe

n,m,Γ : An×Am×R
d×d → R be the lossless

universal length function with a shared memory of length m

and permissible error probability pe and covariance matrixΓ.

Denote L
pe

n,m,Γ as the space of lossless universal length

functions on a sequence of length n with a shared memory of

length m. Denote Rn(l
pe

n,m,Γ, θ) as the expected redundancy

of encoding a sequence of length n form the source using

the length function l
pe

n,m,Γ. Let R̄
pe

DUCompME(n,m,Γ) denote

the expected minimax redundancy for the lossless universal

length function with a memory size of length m shared

between the encoder and the decoder, i.e.,

R̄
pe

DUCompME(n,m,Γ) , inf
l
pe
n,m,Γ

∈L
pe
n,m,Γ

sup
θ∈Θd

Rn(l
pe

n,m,Γ, θ).

(3)

Again, when we set pe = 0 we refer to the strictly lossless

case. The following is a trivial statement comparing the

performance of almost lossless coding versus strictly lossless

coding.

Fact 1 For all of of the described coding strategies, the

strictly lossless redundancy is an upper bound on the the

redundancy of the almost lossless coding for any pe.

The following trivial inequalities demonstrate that the

redundancy decreases when side information is available

to the decoder. Moreover, if the side information is also

available to the decoder, the redundancy is further decreased.

Fact 2 Let pe ≥ 0. Then, we have

R̄
pe

DUCompME(n,m,Γ) ≤ R̄
pe

DUCompMD(n,m,Γ) ≤ R̄
pe

UComp(n).

IV. MAIN RESULTS

In this section, we evaluate the performance of each of

the different coding schemes introduced in the previous

section for the DNC-CP problem using their corresponding

average minimax redundancy for both almost lossless and

strictly lossless codes. We treat the strictly lossless codes

(i.e., pe = 0) separately since they are interesting on their

own. Some of the proofs are omitted due to the lack of space.

All these results are valid for finite-length n (as long as n is

large enough to satisfy the central limit theorem criteria).

A. Strictly Lossless DNC-CP

1) UComp: In this case, the side information sequence is

not utilized at the decoder for the compression of xn, and

hence, the minimum number of bits required to represent

xn is H(Xn) = H(Xn|φ) + I(Xn;φ). Thus, R̄0
UComp(n) =

supω(φ) I(X
n;φ). Thus, it is straightforward to show the

following [24], [29]

Theorem 1 The average minimax redundancy for strictly

lossless UComp coding strategy is

R̄0
UComp(n) =

d

2
log

( n

2πe

)

+log

∫

φ∈Θd

|I(φ)|
1

2 dφ+O

(

1

n

)

.

2) DUCompMD: Next, we confine ourselves to strictly

lossless codes in the DUCompMD strategy. In [25], we

established a result that the memorization of ym at the

decoder does not provide any benefit on the strictly lossless

universal compression of the sequence xn from S2 when

the parameter vectors are identical. It is straightforward to

generalize that result as the following.

Theorem 2 The average minimax redundancy for strictly

lossless DUCompMD coding strategy is

R̄0
DUCompMD(n,m,Γ) = R̄0

UComp(n).

3) DUCompME: Next, we present the main result on the

strictly lossless codes for DUCompME coding strategy. In

this case, since a random sequence Y m is also known to

the encoder, the achievable codelength for representing xn is

given by H(Xn|Y m). Then, the redundancy is given by the

following theorem.

Theorem 3 The average minimax redundancy for strictly

lossless DUCompME coding strategy is

R̄0
DUCompME(n,m,Γ) = R̂(n,m,Γ) +O

(

1

n
+

1

m

)

,

where the main redundancy term is given by

R̂(n,m,Γ) = sup
φ

1

2
log

∣

∣

∣

(

1 +
n

m

)

Id + nJ (φ)
∣

∣

∣
. (4)
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B. Almost Lossless DNC-CP

In this case, we investigate the reduction in the average

codelength associated with a sequence xn as a result of the

permissible error probability pe.

1) UComp: We demonstrate the following lower bound

on the redundancy.

Theorem 4 The average minimax redundancy for almost

lossless UComp coding strategy is lower bounded by

R̄
pe

UComp(n) ≥ (1− pe)R̄
0
UComp(n)− h(pe)− peHn(φ).

Proof: Please refer to the Appendix for the proof.

2) DUCompMD: In this case, we proved in [25] that the

permissible error probability pe potentially results in further

reduction in the average codelength. The generalization of

that result for the sources with correlated parameters is given

by the following theorem.

Theorem 5 The average minimax redundancy for almost

lossless DUCompMD coding strategy is upper bounded by

R̄
pe

DUCompMD(n,m,Γ) ≤ R̂(n,m,Γ)+F(d, pe)+O

(

1

m
+

1

n

)

,

where R̂(n,m,Γ) is the main redundancy term defined

in (4) and F(d, pe) is the penalty due to the encoders not

communicating given by

F(d, pe) =
d

2
log

(

1 +
2

d log e
log

1

pe

)

. (5)

3) DUCompME: We have the following lower bound.

Theorem 6 The average minimax redundancy for almost

lossless DUCompME coding strategy is upper bounded by

R̄
pe

DUCompME(n,m,Γ) ≥ (1− pe)R̄
0
DUCompME(n,m,Γ)

−h(pe)− peHn(φ).

V. DISCUSSION ON THE RESULTS

In this section, we provide some discussion on the sig-

nificance of the results for different DNC-CP coding strate-

gies. We discuss the strictly lossless case followed by two

examples that illustrate the impact of the source parameter

correlation on the results of the almost lossless and strictly

lossless schemes.

A. Strictly Lossless

In the case of UComp, Theorem 1 determines the achiev-

able average minimax redundancy for the compression of

a sequence of length n encoded regardless of the previous

sequence ym. In other words, UComp is an end-to-end

universal compression scheme which does not use memo-

rization. Hence, UComp is used as the benchmark for the

performance of DUCompMD and DUCompME, which are

memory-assisted network compression techniques.

According to Theorem 2, in DNC-CP, if strictly lossless

codes are to be used for the compression of xn from S2,

the memorization of the previous sequences from S1 by

the decoder does not provide any benefit, assuming that

the two encoders at S1 and S2 do not communicate (i.e.,

DUCompMD). In other words, the best that S2 can do for

the strictly lossless compression of xn is to simply apply a

traditional universal compression.

Theorem 3 determines the main redundancy term in the

strictly lossless DUCompME coding strategy. It can be de-

duced from Fact 2 thatthat if the two encoders communicate

(i.e., DUCompME), the performance of strictly lossless com-

pression of xn would improve with respect to UComp. It is

straightforward to see that as m grows, the main redundancy

term in (4) decreases. However, the main redundancy term

for very large memory (i.e., m → ∞) is given by

R̂(n,∞,Γ) = sup
λ

1

2
log |Id + nJ (λ)| , (6)

which remains non-zero in general. Therefore, increasing m

beyond a certain limit does not provide further performance

improvement. In summary, for the strictly lossless case,

only DUCompME is interesting as it offers benefit over

UComp but it is not practical as it requires the encoders

to communicate.

B. Example 1: Identical Source Parameters

In this special case, we assume that the source parameters

θ and φ are identical, and hence, J (θ) = Γ(θ) = 0d.

The performance of strictly lossless DUCompME coding

strategy and the almost lossless DUCompMD coding strategy

is quantified by R̂(n,m,0d), which is given in the following

proposition, giving back what was proved in [25].

Proposition 7 The main redundancy term of (4) for the

identical source parameters is given by

R̂(n,m,0d) =
d

2
log

(

1 +
n

m

)

.

We further consider the redundancy for large m. It can be

shown that we have limm→∞ R̄0
DUCompME(n,m,0d) = 0. In

other words, since the parameter vector will be known to both

the encoder and the decoder, the code’s redundancy vanishes

similar to the Shannon code.3 In this case, the fundamental

3Note that we have ignored the integer constraint on the length functions
in this paper, which will result in a negligible O(1) redundancy that is
exactly analyzed in [30], [31].
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limits are those of known source parameters and universality

no longer imposes a compression overhead.

C. Example 2: Correlation Covariance Matrix Inversely Pro-

portional to Fisher Information Matrix

Next, we consider the case where the covariance matrix

Γ(θ) is inversely proportional to the Fisher information

matrix, i.e., Γ−1(θ) = αI(θ). In this case, the two parameter

vectors can be viewed as estimates of each other.

Proposition 8 The main redundancy term of (4) for the case

where Γ−1(θ) = αI(θ) is given by

R̂(n,m,
1

α
I−1) =

d

2
log

(

1 +
n

m
+

n

α

)

.

Hence, as the correlation between the two parameters in-

creases, the redundancy decreases and eventually converges

to that of the identical source parameters.

VI. CONCLUSION

In this paper, we introduced and studied the problem of

Universal Compression of Distributed Sources with Corre-

lated Parameters (DNC-CP). In DNC-CP, the correlation of

the two source parameters becomes relevant due to the finite-

length universal compression constraint. This model departs

from the nature of the correlation in the SW framework.

For DNC-CP, involving two correlated sources, we inves-

tigated the average minimax redundancy. We demonstrated

that memorization at the intermediate nodes in the network

can help to noticeably improve the performance of the

universal compression on multiple sources whose parameters

are correlated. On the other hand, we did not provide a coding

strategy that achieves the performance limits derived in this

paper.
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APPENDIX

PROOF OF THEOREM 4

In order to prove this theorem, we consider

H(Xn, X̂n,1e(X
n)). Note that both X̂n and 1e(X

n)
are deterministic functions of Xn and hence

H(Xn, X̂n,1e(X
n)) = H(Xn). (7)

On the other hand, we can also use the chain rule in a

different order to arrive at the following.

H(Xn, X̂n,1e(X
n)) = H(X̂n) +H(1e(X

n)|X̂n)

+H(Xn|1(Xn), X̂n). (8)

Hence,

H(X̂n) = H(Xn)−H(1e(X
n)|X̂n)−H(Xn|1(Xn), X̂n)

≥ H(Xn)− h(pe)−H(Xn|1(Xn), X̂n) (9)

≥ H(Xn)− h(pe)− peH(Xn), (10)

where the inequality in (9) is due to the fact that

H(1e(X
n)|X̂n) ≤ H(1e(X

n)) = h(pe) and the inequality

in (10) is due to Lemma 1.

Lemma 1 H(Xn|1e(X
n), X̂n) ≤ peH(Xn).

Proof:

H(Xn|1e(X
n), X̂n) = (1− pe)H(Xn|1e(X

n, ) = 0, X̂n)

+ peH(Xn|1e(X
n) = 1, X̂n) (11)

≤ peH(Xn). (12)

The first term in (11) is zero since if 1e(X
n) = 0, we

have Xn = X̂n and hence H(Xn|1e(X
n, ) = 0, X̂n) =

0. The inequality in (12) then follows from the fact that

H(Xn|1e(X
n) = 1, X̂n) ≤ H(Xn) completing the proof.

The proof of the theorem is completed by noting that

H(Xn) = Hn(θ) + R̄0
UComp(n).
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