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Abstract—Traces derived from the real-world mobile network
traffic show significant inter-client redundancy among packets.
This has inspired new solutions to reduce the amount of re-
dundancy present in the data in order to manage the explosive
traffic. In this paper, we propose a novel approach to leverage
this redundancy by employing a novel network compression
technique using wireless helper nodes. A Helper node provides
the side information, that it obtained via overhearing, to mobile
clients and assists the wireless gateway to more effectively
compress each new packet when serving every new client. We
investigate the potential benefits of wireless network compression
from an information-theoretic point of view. We also describe a
coding mechanism which adapts the two-part coding scheme to
wireless network compression. We optimize this coding scheme
to achieve minimum cost communication in the network. We also
characterize the trade-off between the number of bits sent by the
wireless gateway and the number of bits sent by the helper to a
client.

Index Terms—Memory-Assisted Compression, Redundancy
Elimination, Wireless Networks, Overhearing.

I. INTRODUCTION

Mobile data efficiency is an important feature of wireless

communication. It increasingly draws attention as providers

face the difficulty of handling the explosive increase in the

demand and look for solutions to reduce the cost of data

delivery in wireless networks. One potential solution is to find

ways to eliminate the redundant data that is being transmitted

to clients through the bottle-neck of the network, the most

important being the last hop: the wireless link from the

wireless gateway to the mobile client. As suggested in the

following, there are two main dimensions that contribute to

the redundancy within a network, first redundancy in the con-

tent and second redundancy across different clients. IP-layer

redundancy elimination, in the form of repetition suppression

for a single client, has been able to save up to 60% bandwidth

on the last hop links [1]. These saving are obtained in the first

dimension of redundancy. Further, recent studies show in [2]

that traces derived from real-world wireless traffic collected

in a noise-free environment contain around 50% inter-client

repetition within packets, i.e., duplicate strings across packets.

All these signify the importance of redundancy elimination

in the flows. However, all the existing works [1], [2] confine

themselves to deduplication of repeated patterns for redun-

dancy elimination. It is expected to reduce the redundancies
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even more significantly by information-theoretic compression

methods such as dictionary-based and statistical approaches.

The proposed wireless network compression in this paper is

focused on these information-theoretic methods that explore

network memory.

In our previous work [3]–[5], we have taken the first steps

towards characterizing the achievable benefits of exploiting

the packet redundancies beyond simple repetition suppression.

Data compression and source coding are natural candidates

for this task. In [3], [4], we have formulated the redundancy

elimination as network compression via network memory and

introduced a new framework for compression of network data

called memory-assisted compression. This approach signifi-

cantly departs from the traditional source coding techniques

in that it relies on the network memory for compression.

We have already explored the network-wide gain of memory-

assisted compression in wired networks. However, the gain

of memorization and memory-assisted compression is more

spelled out in the bandwidth-constrained wireless networks.

On the other hand, it is more challenging to establish the mem-

orization scheme in such networks and our solution for wired

networks is not applicable to wireless networks. This is mainly

because the objective of the compression scheme in wireless

environment should be to off-load the wireless gateway so as

to enable it to serve more clients while guaranteeing that all

packets are recoverable in a strictly lossless manner at the

clients. Further, the effect of error-prone wireless links should

be studied on memory-assisted compression.

In this paper, we study wireless network compression.

In particular, we explore the benefits of memory-assisted

compression in the last hop wireless links from the wireless

gateway to the mobile clients by deploying memory-enabled

helpers. We focus on total throughput enhancement and gate-

way off-loading. This would be of particular interest for WiFi

and cellular networks. We stress that our scheme is universal

in the sense that we do not assume to know the distribution

of the source traffic a priori.

We propose to position data redundancy elimination via

network compression by deploying some nodes as helpers

to overhear previously transmitted packets from the wireless

gateway to mobile clients. These overhearing packets provide

statistical information about the traffic. Then, in the compres-

sion of a new packet, this information is sent from overhearing

(helper) node to a mobile client to supplement (as a side



information) the compressed data from the wireless gateway

to the mobile client; enabling the client to decompress the

codeword and recover the packet. Since the communication in

the link between the overhearing memory-enabled helper and

the client is by far less costly than that of the wireless gateway

and the client, the network compression via overhearing nodes

is proposed, by design, to reduce traffic on the link from the

wireless gateway to the mobile client. In this paper, we aim

to study both analytically and experimentally the fundamental

limits of the wireless network compression via overhearing

(memory-enabled) nodes.

To motivate the need for memory-enabled helpers, we

first demonstrate using an experiment that conventional com-

pression techniques (which do not use the side information

obtained from memory) perform poorly on the Internet traf-

fic data. We gathered some packets from CNN web server

and chose two different types of universal compression al-

gorithms for the experiment: 1) The statistical compression

method (e.g., Context Tree Weighting (CTW) [6]), and 2) The

dictionary-based compression method (e.g., LZ algorithm [7]).

As shown in Fig. 1, a modest compression performance can be

achieved by compression of a packet when the packet length

n is small to moderate size. For example, for a data packet

of length n = 1kB, the compression rate is about 5 bits per

byte. Note that the uncompressed packet requires 8 bits per

byte for representation. We also note that as the packet length

n increases, the compression performance improves. For very

long packets, the compression rate is about 0.5 bits per byte. In

other words, comparing the compression performance between

n = 1kB and n = 16MB, there is a penalty of factor 10
on the compression performance (i.e., 5 as opposed to 0.5).

Since an IP packet is approximately 1500 bytes in practice,

there is a huge penalty paid by the naive compression of a

packet. The compression performance loss attributed to the

finiteness of packet length can be removed using the memory-

assisted compression framework described in [5]. In other

words, memory can be used to compensate for the finiteness of

the packet length and improve the compression as quantified

below as the memorization gain. We denote a packet of

length n as xn = (x1, . . . , xn) where each xi is a byte. Let

Eln(X
n) be the expected compressed length of packet xn

when compressed by itself and let Eln|m(Xn) be the expected

code length for xn when compressed using a memorized

sequence of length m as a side information about the packet

xn.1 The gain of memory-assisted compression g (n,m) is

defined as

g (n,m) � Eln(X
n)

Eln|m(Xn)
.

The gain g for the example above is depicted in Fig. 2

for both schemes. We see an average gain of 2.5 can be

expected on compressing an IP packets with a modest 4MB

memory length using memory-assisted CTW algorithm. Note

that this memorization gain is measured with respect to the

1In this paper, Xn denotes a random sequence of length n and xn denotes
a packet which is the realization of Xn.

Fig. 1. The compression rate of a sample web trace (obtained from CNN
web server) as a function of the sequence length, obtained using LZ77 and
CTW compression algorithms.
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Fig. 2. The gain g of memory-assisted compression, for memory size of
4MB, for CTW and LZ77 compression algorithms.

conventional compression schemes.

The rest of the paper is organized as follows. In Sec. II,

we present application of memory-assisted compression for a

sample wireless network scenario. We describe an abstraction

of the compression problem and present a practical code

design, and analyze the performance of the code in Sec. III.

Simulation results, performed in NS-2 simulator, are provided

in Sec. IV. Discussion on the complexity of the proposed code

design is given in Sec. V. Finally, Sec. VI concludes the paper.

A. Related Work

The redundancy elimination techniques are mostly based on

application-layer caching mechanisms. However, application-

layer caching is designed to remove redundancy based on the

popularity of the entire contents. Therefore, it cannot be effec-

tive as most of the traffic redundancy is present at the packet

and sub-packet levels [8]–[11]. Hence, a new line of research

advocating network layer redundancy elimination (RE) has

attracted a lot of attention. Recently developed RE algorithms

reduce traffic volume on bandwidth-constrained network paths

by avoiding the transmission of repeated byte sequences in

the network layer. In other words, whenever a segment of

the packet’s content already exists at the mobile node, the



RE algorithms residing in the backbone (or the access-point)

would replace that segment with a pointer, and hence, reducing

the data transmission. As opposed to the network compression
technique used in this work, RE algorithms [1], [2] are

focused on eliminating the repeated data segments and do not

fully leverage the statistical properties of the data stream.

The proposed network compression principle is inspired

by the content-centric design [12] and attempts to reduce

redundancy using the content of the previous packets. How-

ever, a naive application of off-the-shelf universal compression

algorithms on the packets (i.e., end-to-end compression) does

not alleviate the problem for two main reasons: 1) simple

end-to-end approaches overlook the redundancy present across
different clients in the networks, hence not very effective for

wireless schemes, and 2) end-to-end universal compression of

packets results in poor compression performance due to the

finiteness of the packet length, as explained in the previous

section. The network compression (via helpers) proposed in

this work overcomes these shortcomings of traditional univer-

sal compression.

II. REDUNDANCY ELIMINATION IN WIRELESS NETWORKS

VIA MEMORY-ASSISTED COMPRESSION

In this work, we will focus on non-mobile overhearing

memory-enabled helpers. As shown in Fig. 3, for an example

scenario involving a single wireless gateway S, a mobile

client C and a helper M , the idea is to deploy memory-

enabled helpers that are capable of overhearing communication

from the wireless gateway to all the mobile clients inside

the coverage area of the wireless gateway. The overhearing

comes at no extra cost due to the broadcast nature of the

wireless communication. Although this can be applied to every

cellular or WiFi access networks, one realization of such

memory-enabled helpers can be in femto-cell network designs

combined with traditional macro-cell networks, as in [13]. The

proposed network compression via memory at the overhearing

nodes works as following. First, recall that the traffic (i.e., the

packets) destined to different mobile clients from the gateway

S are highly correlated. Therefore, the overhearing memory-

enabled helpers can overhear the past communication between

the cell tower (or the WiFi access-point) and mobile nodes

and hence, learn the statistical properties of the packets in the

traffic. These extracted statistical properties can then be used

as a side information (if provided to the client) improving

the compression performance on the future traffic from the

gateway S to any mobile client. In other words, the memory-

enabled helpers can possibly help to reduce the transmission

load of the cell tower by transmitting the side-information

about the data traffic to the clients using a less costly memory-

client M -C link.

Since the objective of network compression is to minimize

the load of wireless gateway to support more clients, we can

define a virtual cost for S-C and M -C links in Fig. 3. Let

κ denote the ratio of the cost of communicating one bit in

the S-C link to that of the M -C link. In practical settings, it

is rational to assume that the S-C link is much more costly

Helper 
(M) 

Mobile Client 
(C) 

Gateway 
(S) 

Fig. 3. An illustrative example of a wireless network with a single helper
(deployed memory-enabled helper). A short-lived connection to the source
by a mobile client is shown by a solid arrow. Overhearing is shown by a
dashed arrow. The link supplementing side-information is shown by a thick
solid arrow.

than the M -C link. Hence, κ is much greater than unity.

We use this κ in our analytical development to minimize the

aggregate cost of communication. This departs from the ob-

jective of only minimizing the total number of bits transmitted

from a source to a destination in a traditional setup. It is

imperative to note that the memory-assisted compression via

overhearing memory-enabled helpers would provide additional

compression benefits over and beyond those already gained by

simple end-to-end compression, i.e., compressing the packet

from S to C while there is no memory deployed. Further,

the proposed network compression only entails negligible

extra computational overhead at the wireless gateway and

the overhearing memory-enabled helper while reducing the

aggregate cost.

A. Setup

The abstract model of the network compression via over-

hearing memory-enabled helper is shown in Fig. 4, for a

single helper and a client. We consider the traffic reduction

(compression) over the down-link. The data are delivered

from the wireless gateway S, which is the source in our

abstraction, to the mobile client C. We only consider schemes

where the sequence xn, i.e. the packet, is exactly recoverable

at the destination. Therefore, all the compression schemes

considered are strictly lossless.

Definition 1 Let An be the set of all sequences of length
n over alphabet A. The code cn(·) : An → {0, 1}∗ is
called strictly lossless if there exists a reverse mapping dn(·) :
{0, 1}∗ → An such that

∀xn ∈ An : dn(cn(x
n)) = xn.

All of the practical data compression schemes are examples

of strictly lossless codes, namely, the arithmetic coding, Huff-



man coding, LZ algorithm, and the Context-Tree-Weighting

(CTW).

The source is assumed to generate and send different

packets to mobile nodes one at a time (unicast). The gateway

covers the entire area, hence, the overhearing memory-enabled

helpers are also capable of overhearing the communication

from S to client C. Each overhearing memory-enabled helper

is also assumed to be capable of sending information to those

mobile nodes in its vicinity.

The link between S and C is lossy due to the wireless chan-

nel but we assume a proper feedback for packet retransmission

would take care of packet losses on the S-C link. Note that

in practice, we consider a stable situation which is when the

transitional memorization phase is over. In other words, we

assume that every overhearing node has been in the network

for a long time and has accumulated sufficient knowledge

about the source model from all the past communication (the

memorization phase). To proceed with our formulation of the

problem, let assume that the concatenation of all delivered

packets from S to several mobile clients, during transition

phase, is a memorized sequence of length m denoted as ym.

In practice, it is rational to assume that the memory-enabled

helper has observed a sufficient number of packets (when S
was serving several other clients), and hence, the total size

m of memorized packets is assumed to be sufficiently large.

This assumption is not necessary for network compression but

it would simplify our presentation.

An Example Scenario: The basic principle in network

compression in Fig. 4 can be described as following. For the

moment, assume that both M and S share exactly the same

memory ym after the memorization phase. Further, assume we

use a dictionary-based compression method such as LZ77 as in

DEFLATE [7]. The LZ77 algorithm would form a dictionary

of codewords that are able to describe the packets from S
using the memory ym. Then, in the compression of a new

packet xn, the server S would only send (to the client C)

the address of the codeword in the dictionary which would be

complemented by the memory-enabled helper M who would

forward (to the mobile client C) the corresponding codeword

upon overhearing the address. Hence, the mobile client would

be able to decode and recover xn although the client did

not have memory (i.e., the dictionary). In this scenario, the

cost of sending a short address (on the link S-C) would be

very low relative to the cost of sending the long codeword on

the link from the memory-enabled helper to the client. This

would achieve the principle objective of network compression

which is saving the cost on the link from the wireless gateway

S to the mobile client. In the above example, we simplify

the description of LZ77. In reality, we clarify that several

addresses and codewords are transferred during delivery of

xn, however, the main benefit of network compression remains

intact. The above example via LZ77 can be generalized to the

other compression schemes as we will discuss later in the

paper.

As mentioned before, since we wish to reduce the load of

the gateway, we have an asymmetric situation where we assign

S

ym

M

ym

C

Fig. 4. The abstract illustration of the traffic reduction problem via network
compression. The memorized sequence ym represents the total past data
overheard by M from S to the clients.

a higher cost to the channel from the source to the client

than from the helper to the client. This asymmetry between

the channel costs is motivated by real-world cellular networks

where a single base-station serves a large number of clients.

Hence, if the load of the base-station by each client is reduced,

it can potentially serve a larger number of clients. For example,

the S-C link from the base-station to the client (and hence the

overhearing link S-M ) can operate in a frequency different

from the M -C link. Whenever the base-station hands-off the

connection to the mobile client (and the overhearing memory-

enabled helper), its frequency slot frees up and a new client

can be served. Further, due to lower communication radius,

the frequency slot allocated to the M -C link can be reused

within a cell for the link between some other memory-enabled

helper with another client. This architecture together with the

proposed network compression offers a significant opportunity

for traffic reduction so as to deliver xn by exploiting the side-

information ym shared between S and M .

Let xn be a packet of length n that is delivered from the

source to C. To proceed the network compression problem in

wireless networks, we present the problem as in Fig. 4. That

is, the memorized sequence ym is available at both S and M .

The problem of interest is as to how the encoder of S would

encode xn such that the aggregate communication cost on the

link S-C together with the cost of supplemented bits on the

link M -C would be minimized, provided that xn would be

recovered at the client.

III. CODE DESIGN FOR NETWORK COMPRESSION VIA

OVERHEARING HELPER

Due to superiority of statistical codes with respect to the

dictionary-based compression schemes (e.g., LZ77), in the rest

of this paper, we focus on the former. The main feature of our

approach is that the source can rely on the memory-enabled

helper to send side-information to clients. In the statistical

universal compression technique, this side information is in

fact the source model formed at the overhearing memory-

enabled helper using the sequence ym. Now, the question is

as to how this side information can be used for improving the

efficiency of compression at the source. We propose a two–part

coding scheme which is an adaptation of two–part universal

codes in the source coding literature (c.f. [14], [15] and the

references therein) to the network compression via overhearing



memory-enabled helpers. Next, we study the efficiency of the

two–part code, introduce the necessary notations and describe

its adaptation.

A. Two–Part Code

For the analysis, we assume that S is a parametric source.

Let μθ be the probability density function of the source

depending on a d-dimensional parametric vector θ which

takes values in Θ ⊂ �d. Consider a parametric source with

probability density function μθ. By this setup, for example,

for a binary Bernoulli (memoryless) source with parameter

γ, the probability that the source would output xn, with k
ones and n− k zeroes, is given by μγ(x

n) = γk(1− γ)n−k.

If the parameter vector θ ∈ Θ was known, the ideal code

length of a packet xn, obtained from the Shannon code, would

be log 1/μθ(x
n). Since in practice we do not have any prior

knowledge of θ, we have to encode the packet with a universal

distribution P (xn). Hence, we have to use more number of bits

to encode the packet. This overhead is called code redundancy
and is defined as

R(P, μθ) = E[l(Xn)]−Hn(θ) = E

[
log

μθ(X
n)

P (Xn)

]
, (1)

where l(xn) is the length of the codeword assigned to xn by

the universal encoder. Further,

Hn(θ) = E

[
log

1

μθ(X
n)

]

denotes the source entropy which is the fundamental limit of

compression for the source.

Code redundancy stands at the root of all methods of

measuring the performance of universal codes; redundancy

compares the code length assigned by universal procedures

to the best code length log 1/μθ(x
n). It is important to note

that for short length packets, there is a large gap between the

code length of the best universal code and the source entropy,

i.e., the average code redundancy is considerable. We are after

practical designs for P (·) which has close to optimal universal

code lengths and is easy to implement in our wireless network

problem. One good candidate is the two–part code. It can be

shown that the redundancy of the two–part codes approaches

the main term of d
2 log n with a negligible O(1) overhead [15]–

[17].

The two–part code is a source coding scheme composed

of two parts that can be crudely described as follows: the

first part tries to obtain the best estimation, i.e. θ̂ ∈ Θ, along

with a code for the parameter vector θ of the source from an

observed packet. This estimate θ̂ is then used in the second

part for compression of the packet. The closer the estimate θ̂
gets to the Maximum Likelihood (ML) estimate θML of the

source parameter θ, the smaller the description length of the

packet to be compressed becomes (i.e., better compression).

However, a better estimate of θ would need more bits for the

description of θ̂. To achieve the best code length, one should

use an estimate of θ that minimizes the total code length of

TABLE I
SUMMARY OF WIRELESS NETWORK COMPRESSION VIA TWO–PART CODES.

Initialization (S and M )
The helper node M overhears the communication of S with past clients
and accumulates knowledge about the source model and its statistics.
Node S also performs the same operations to construct the model. The
total sequence size observed by M is ym.

Operation (S)
For every new packet (sequence) xn, S uses the statistical model to
estimate the probability of the symbols in xn. Then, these probabilities
estimates along with xn are sent to an encoder (e.g., an arithmetic
encoder). The output of the encoder (NOT the probability estimates) is
then sent to C.

Operation (M )
Once the helper M finds out that the compressed packet c(xn) is sent
to a client within its coverage, then M sends the probability estimates
necessary for decompression to C.

Operation (C)
The client C receives the output of the (arithmetic) encoder from S and
the probability estimates from M and feeds them to a decoder (e.g.,
arithmetic decoder) to reconstruct xn.

the two–part code. Hence, the two–part code length is given

by

l(xn) = min
θ̂∈Θ

{l(θ̂)− logPθ̂(x
n)}, (2)

where l(θ̂) is the universal length of the codeword describing

the estimate θ̂ and − logPθ̂(x
n) is the description length of a

packet xn given the estimate θ̂.

Using previous results in the literature, we can obtain the

best code length and redundancy for the simple two–part

codes. Our objective is to use those results in the context of the

proposed memory-assisted compression to off-load the source

via overhearing memory-enabled helpers. As such, to proceed

we need to consider the asymmetric cost of transmission in our

setup. From (2), E[l(Xn)] is the expected length of sequence

sent by source when the source compresses the packet xn

without regard to the memory-enabled helper. On the other

hand, by exploiting the memory-enabled helper, the source

can send a codeword of size close to Hn(θ), the entropy of

the packet. Both the client and the memory-enabled helper

receive this codeword. However, the client cannot decode the

codeword as it does not know the source parameter. On the

other hand, the memory-enabled helper M knows the source

parameter. To guarantee decodability, the memory-enabled

helper then sends the codeword corresponding to the estimate

of the source parameter to the client, extracted from ym, with

length l(θ̂|ym). Therefore, the total cost of transmission would

be close to κHn + l(θ̂|ym).
More precisely, the cost of delivering xn given the memo-

rized sequence ym with length m� n at the memory-enabled

helper, is given by

C = min
θ̂∈Θ

{l(θ̂|ym)− κ logPθ̂(x
n|ym)}. (3)

The expected cost, i.e., E[C], would then determine the

effective cost of communication. In the next section, we

investigate the trade-offs of the code design and characterize

the achievable communication cost.
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Fig. 5. Ratio of the size of the output of the helper LM to the size of
the source output LS vs. the size of packet n for a memoryless source with
alphabet size 256.

B. Performance Evaluation of Two–Part Memory-Assisted
Compression

In order to characterize the performance of two–part coding,

we consider a two–part coding scheme that attributes b bits to

identify an estimate for the unknown source parameters, i.e.,

we set l(θ̂|ym) to be b bits. Therefore, there would be 2b

possible estimate points in the truncated parameter space Φ =
{θ1, . . . , θ2b} for the identification of the source parameter.

We obtain the following theorem regarding the communication

cost when we use a two–stage coding scheme. Let Γ(·) be the

Euler’s gamma function, and |I(·)| be the determinant of the

Fisher information matrix [14].

Theorem 1 Let φ ∈ Φ be the estimate of the d-dimensional
source parameter vector θ. Then, with probability equal to
one, the total cost of communication is obtained as

C = b+ κ
[
Hn(θ) +

nω

21+2b/d

]
. (4)

where the constant ω is equal to

ω =

(∫ |I(θ)| 12 dθ
Cd

)2/d
log e.

Here, Cd is given by Cd =
Γ( d2 )

d

Γ( d2+1)
.

Proof: Proof is provided in the extended version [18].

To illustrate the trade-offs in Thm. 1, we make the following

observations by studying different terms in C. As mentioned

previously, the most important parameter of the design is the

number of bits b allocated for estimation of the parameter.

Using b bits, let φ̂ ∈ Φ be the estimate of the source parameter

that minimizes the code length. If the cost of communication

is the same for all the links, that is κ = 1, we have

E[C]|κ=1 = Hn(θ) +R(Pφ̂, μθ) + b

= Hn(θ) +E

[
log

μθ(X
n)

Pφ̂(X
n)

]
+ b. (5)

TABLE II
SIMULATION PARAMETERS AND VALUES

Parameter Value
Number of helpers (M) 0− 10
Comm. Radius of S 250m
Comm. Radius of helper 20m
Memory-Assisted gain g for one client 1.5–4
CBR over UDP rate 64 kbps
UDP baseline packet size 8000 bits
Packet Drop Rate Threshold 10%

From (5), we see that E
[
log μθ(X

n)
Pφ̂(X

n)

]
+ b is the code redun-

dancy of two–stage compression scheme. As b increases, the

code redundancy of the second stage of the two–stage code,

i.e. E
[
log μθ(X

n)
Pφ̂(X

n)

]
, decreases. The interplay between these

two terms determines the total number of transmitted bits from

the source and the memory-enabled helper. Let LS be the total

number of bits sent by S and LM be the total number of bits

sent by M to the client. From (5), we have{
LS = Hn(θ) +E

[
log μθ(X

n)
Pφ̂(X

n)

]
LM = b

.

Fig. 5 shows the ratio LM

LS
for a memoryless source model

with alphabet size 256. Note that since the packet length is

short, a memoryless source model is adequate for modeling

of the underlying source in practice. The graph in Fig. 5

is generated using a uniform discretization of the parameter

space. Further, the packets are compressed using a standard

arithmetic coder using the estimate of the parameter as a side

information.

We have used the result of Fig. 5 later in the simulation

section to determine the output rate of source and helpers to

clients. For example, for a packet length of 1kB, the size of the

parameter estimate is roughly the same size as the compressed

packet, i.e., LM

LS
≈ 1.

IV. SIMULATION

A. Simulaton Setup

To evaluate the performance of the proposed memory-

assisted compression via helpers, we used NS-2 simulator [19].

We employed a flat grid topography with a wireless base-

station (S) at the origin. Further, multiple memory-enabled

helpers (M ) are deployed within the coverage of S. The

helpers are uniformly distributed in the coverage of S, which

is assumed to be a circle of radius 250m. The communication

range of the helpers is 20m and they are placed such that they

are outside of the communication range of each other. All the

mobile clients are within the communication range of S, but

only some of them are covered by helpers at any time.

We simulate constant bit rate (CBR) traffic generator over

user datagram protocol (UDP). We have considered the case

where S shares a common memory with each of the helpers

and that memory is used for compression of packets sent to

mobile nodes within the coverage of the corresponding helper.

Further, each mobile client (if covered by the helper) only
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Fig. 6. Maximum number of mobile nodes supported by S vs. the number
of helpers in the network. The packet drop rate threshold is fixed at 10% and
the traffic generator is CBR over UDP, as in Table II.

helped by a unique overhearing node. Obviously, the memory

is not used for compression of packets sent to nodes that are

not in the range of any helper and receive the packet directly

from S. For the baseline simulation scenario, we consider the

case where no helper is deployed and all the communication

is conducted by S and packets are compressed individually

(end-to-end compression).

Unless otherwise specified, the memory-assisted gain is

chosen to be g = 2. As evident from Fig. 2, this is expected

for packets of sizes around 1kB. The details of simulation

parameters are given in Table II.

B. Simulation Results

To examine the effectiveness of the memory-assisted com-

pression, with respect to baseline scheme, we have considered

three quantities and evaluated them for UDP scenario. The

first quantity is the maximum number of nodes that can be

supported, for the traffic described in Sec. IV-A, in a network

given a packet drop rate threshold, which is the maximum

acceptable drop rate. We observe that using memory-assisted

compression the maximum number of nodes increases from 15

to almost 50, as shown in Fig. 6. Since the bottleneck of the

network is the output bandwidth of S, adding helpers beyond

a certain number does not increase the maximum number of

nodes supported.

In Fig. 7, we have depicted the maximum total throughput

versus the fraction of the nodes covered by helpers. As

expected, as helpers cover more mobile nodes in the network,

higher total throughput is achieved.

The third quantity of interest is the Quality of Service

(QoS). To demonstrate the benefit of memory-assisted com-

pression on QoS, we have considered a simulation scenario

with fixed number of clients and measured the average delay

of packets for each client. Fig. 8 depicts the fraction of satisfied

clients for a given maximum allowable average delay. As we

see, users experience less amount of delay as the fraction of

nodes covered by helpers increase.
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Fig. 7. Maximum total throughput in the network vs. the fraction of mobile
nodes covered by helpers for UDP.
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Fig. 8. Fraction of satisfied users in the network vs. maximum allowed
average delay of packets for UDP traffic for different helper coverage
percentages.

V. DISCUSSION

In this section we want to briefly discuss the complexity

of the proposed two–part coding strategy described here. As

described earlier, the first stage (i.e., forming the model)

involves finding the best description of the information source

using the memorized sequence of length m. This stage has a

complexity linear in size of m. The second stage which is the

actual compression of a new packet involves entropy coding of

a packet of size n which has linear complexity in the packet

size (i.e., n). With regard to the cost of communication, in

this paper we assumed that the cost of transmitting one bit

in the M -C channel is unity and S-C channel is κ times

more costly. In a practical setting these costs can be assigned

through examination of power and bandwidth constraints and

our framework can be employed accordingly.

VI. CONCLUSION

In this paper, we introduced wireless network compression,

a new method for decreasing the output flow of the wireless

gateway in a wireless network by eliminating redundancy from



the traffic. The key idea is to deploy a number of memory-

enabled helpers in the coverage area of the wireless gateway

that are capable of overhearing and memorizing previous

communications on the down-link from the wireless gateway

to mobile nodes. These helpers provide side-information to

mobile clients that enables the wireless gateway to send fewer

bits to the client by a proposed memory-assisted compres-

sion technique just above layer 3. We adapted the proposed

memory-assisted compression with the asymmetric cost of

communication from the wireless gateway to the client (S-

C) versus the memory-enabled helper to the client (M -C)

and arrived at optimal two–part codes for the compression.

The NS-2 simulation results show that network compression

holds a great promise for improving the data transmission

efficiency in wireless networks. We observe that network

compression increases the maximum throughput significantly

while reducing the average delay of packets (hence better QoS)

for UDP traffic.

REFERENCES

[1] C. Lumezanu, K. Guo, N. Spring, and B. Bhattacharjee, “The effect of
packet loss on redundancy elimination in cellular wireless networks,” in
Internet Measurement Conference, 2010.

[2] S. Hsiang-Shen, A. Gember, A. Anand, and A. Akella., “Refactoring
content overhearing to improve wireless performance,” in MobiCom,
Las Vegas, NV, 2011.

[3] M. Sardari, A. Beirami, and F. Fekri, “Memory-assisted universal
compression of network flows,” in IEEE INFOCOM, Orlando, FL,
March 2012, pp. 91–99.

[4] ——, “On the network-wide gain of memory-assisted source coding,”
in 2011 IEEE Information Theory Workshop (ITW), October 2011, pp.
476–480.

[5] A. Beirami, M. Sardari, and F. Fekri, “Results on the fundamental gain of
memory-assisted universal source coding,” in 2012 IEEE International
Symposium on Information Theory (ISIT ’2012), July 2012, pp. 1092–
1096.

[6] F. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting
method: basic properties,” IEEE Trans. Info. Theory, vol. 41, no. 3, pp.
653–664, May 1995.

[7] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Info. Theory, vol. 23, no. 3, pp. 337–343,
May 1977.

[8] Z. Zhuang, C.-L. Tsao, and R. Sivakumar, “Curing the amnesia:
Network memory for the internet,” Tech Report, 2009. [Online].
Available: http://www.ece.gatech.edu/research/GNAN/archive/tr-nm.pdf

[9] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” SIGCOMM, vol. 30, no. 4, pp.
87–95, 2000.

[10] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for
coordinated network-wide redundancy elimination,” SIGCOMM, vol. 39,
no. 4, pp. 87–98, 2009.

[11] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic elimi-
nation,” SIGCOMM, vol. 38, pp. 219–230, 2008.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs,
and R. Braynard, “Networking named content,” in Proceedings of the
5th ACM CoNEXT, 2009, pp. 1–12.

[13] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks:
a survey,” IEEE Comm. Magazine, vol. 46, no. 9, pp. 59–67, 2008.

[14] P. D. Grunwald, The minimum description length principle. The MIT
Press, 2007.

[15] A. Beirami and F. Fekri, “Results on the redundancy of universal
compression for finite-length sequences,” in IEEE Intl. Symp. Info.
Theory (ISIT), Jul 31-Aug 5 2011, pp. 1504–1508.

[16] A. R. Barron and T. M. Cover, “Minimum complexity density estima-
tion,” IEEE Trans. Info. Theory, vol. 37, no. 4, pp. 1034–1054, 1991.

[17] J. Rissanen, “Strong optimality of the normalized ML models as
universal codes and information in data,” IEEE Trans. Info. Theory,
vol. 47, no. 5, pp. 1712 –1717, July 2001.

[18] http://users.ece.gatech.edu/msardari3/ITA13extended.pdf.
[19] “The Network Simulator NS-2,” http://www.isi.edu/nsnam/ns/.


