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Abstract—In this paper, the problem of universal lossless
one-to-one compression (without prefix constraint) is studied.
A converse bound is obtained on the average minimax (and
maximin) redundancy that shows the redundancy is at least
(d—2)/2logn+O(1) for the universal compression of a sequence
of length n from a d-dimensional parametric source. Further,
the type-size coding strategy is shown to be minimax optimal
up to o(logn) for the class of memoryless sources, achieving
the converse leading to characterization of the fundamental
performance limit of universal compression for memoryless
sources. Finally, through a numerical example, our results imply
that the reduction on the codeword length due to relaxing the
prefix constraint is negligible when compared to the cost of
universality.

I. INTRODUCTION

Staggering amount of data is churned daily around the
world. This massive amount of data results in very high trans-
mission costs, which accounts for a large fraction of the costs
associated with dealing with this data. Ever since entropy rate
was shown to be the lower bound on the average compression
rate of any stationary source using prefix-free codes, many
researchers have contributed toward the development of prefix-
free codes with average codeword length approaching the
entropy of the sequence. When the statistics of the information
source are known, Huffman block coding achieves the entropy
of a sequence with a negligible redundancy smaller than
1 bit on top of the entropy, which is due to the integer
length constraint on the codewords [1]. In many applications,
however, the sequence to be compressed does not follow
a fixed known distribution requiring the compression to be
universal [2]-[8].

Thus far, most of the literature on the universal compression
has considered prefix-free codes (uniquely decodable codes)
where the length function is required to satisfy Kraft’s inequal-
ity. The prefix constraint (also known as unique decodability
constraint) ensures that several blocks of data are encoded
into a stream bit stream which can be uniquely decoded.
For the fairly general class of parametric sources the average
redundancy of prefix-free codes has been exactly characterized
to be d/2logn + O(1) [9]-[13]. In [13], we further showed
that the redundancy is a significant overhead on top of the
entropy when the prefix-free universal compression of small
sequences is concerned.
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On the other hand, there are several applications that do
not require the unique decodability of the concatenated blocks
since the beginning and the end of each block is already
determined via an external mechanism. For example, in the
compression of network packets, the end of each IP packet is
already determined by the header. In these cases, the unique
decodability condition can be relaxed to the mapping (the
code) to be injective so as to ensure that one block of length
n can be uniquely decoded. These codes are known as one-
to-one codes. While the average codeword length of prefix-
free codes can never be smaller than the entropy, the average
codeword length of one-to-one codes can go below the entropy
(cf. [14]-[18] and the references therein).

The performance of one-to-one codes has been investigated
for the case of known source parameter vectors, however, for
the aforementioned reasons, our interest lies in the perfor-
mance of universal one-to-one codes which is relatively un-
explored. Universal one-to-one codes are only developed very
recently for memoryless sources by Kosut and Sankar [19]
as type-size codes, where it was shown that the average
redundancy of type-size code scales as 452logn + O(1).
Although this result beats the fundamental limit of universal
prefix-free codes, which is d/2logn + O(1), the redundancy
is still bounded away from the entropy-rate rising to the
question whether or not better universal one-to-one codes can
be constructed. In [20], Kosut and Sankar proved that the type-
size code is minimax optimal up to o(logn).

In this paper, we define the minimax and maximin games
in the universal compression of parametric sources. We prove
a converse bound on the average minimax redundancy for
parametric sources, which gives back Kosut and Sankar’s
converse for memoryless sources as a special case. We also
show that the reduction in the compression cost when prefix
constraint is dropped is negligible when compared with the
cost of universality in compression. Finally, we further show
that the type-size code is minimax optimal up to o(logn) for
the compression of memoryless sources.

The rest of this paper is organized as follows. In Section II,
we review the related background on universal prefix-free
codes. In Section III, one-to-one codes are introduced. In
Section IV, we provide our main results on universal one-
to-one codes. In Section V, we demonstrate the significance
of the results through a numerical example. Finally, Section VI
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concludes this paper.

II. BACKGROUND ON UNIVERSAL LOSSLESS
COMPRESSION

In the following, we describe our source model together
with necessary notations and related work. Let .4 denote a
finite alphabet of size |.A|. Let the parametric source be defined
using a d-dimensional parameter vector § = (61, ..., 0,), where
d denotes the number of the source parameters. Denote i,
as the probability measure defined by the parameter vector
0 on sequences of length n. We also use the notation p, to
refer to the parametric source itself. We assume that the d
parameters are unknown and lie in the d-dimensional space
A C R<. Denote PX as the family of parametric sources with
d-dimensional unknown parameter vector 6 such that 6 € A.
The family P§ contains all source models that have a minimal
representation with a d-dimensional parameter vector 6. We
use the notation z" = (z1,..,z,) € A" to represent a
sequence of length n (which is assumed to be a realization
of the random vector X" that follows p, unless otherwise
stated).

In this paper, we consider the class of lossless fixed-to-
variable codes. A lossless (also called zero-error) code is
defined by an injective mapping ¢, : A" — {0,1}*, ie.,
there exists a reverse mapping d,, : {0,1}* — A™ such
that V2" € A", we have d,(c,(2™)) = 2". Further, let
l, : A* — Z% denote the universal lossless length function
associated with the for the codeword ¢, (z™) associated with
the sequence z". The goal of compression is to minimize the
expected codeword length, which is El,, (z™)

Let H,(0) be the source entropy given parameter vector 6,

ie.,

Hn(a)éElog<1> :Zﬂe(l‘n) log( ! )-1 (D
pg(X™) frg (™)

In this paper log(-) always denotes the logarithm in base 2.

If a code is prefix-free, then the corresponding length
function must satisfy the well-known Kraft’s inequality, i.e.,

Z 2~ tn(=") <1, )

xne A'n.

Kraft’s inequality ensures that when several blocks of length n
are encoded using c,, there exists a uniquely decodable code
such that all the blocks can be decoded. For the prefix-free
codes, when the source parameter vector is known, the optimal
code length is equal to the log-likelihood as given by

Io(z™) = log (@) 2 3)

and the associated average codeword length is equal to the
entropy, and hence, we conclude that the entropy is a lower
limit on the average codeword length, i.e.,

El,(X") > Hy(9). S

IThroughout this paper all expectations are taken with respect to the
distribution py induced by the true unknown parameter vector 6.

2Please note that the integer constraint on the codeword length is ignored,
which results in a negligible redundancy upper bounded by 1 bit analyzed
exactly in [1], [21].

On the other hand, when the parameter vector € is unknown
(and hence py(z™) is also unknown), the universal length
function can no longer be a function of . Denote R, (l,, ) as
the expected redundancy of the code c¢,, with length function [,,
on a sequence of length n for the parameter vector 6, defined
as

R, (l,,0) = EL,(X") — H,(0). (5)

Note that the expected (average) redundancy is non-negative.
Further, a code is called universal if its average codeword
length normalized to the sequence length uniformly converges
to the source entropy rate, i.e., lim, o %Rn(ln,é) = 0 for
all 6 € A.

Let Z(#) be the Fisher information matrix associated with
the parameter vector 0, i.e.,

Z(6)= lim L E 4 log L . (6)
n—oonloge | 00;00; Ho(X™)

Please note that we assume that the source is ergodic such that
the above limit converges. Let Jeffreys’ prior on the parameter
vector § be denoted by

1

s _ |Z(0)]>

JIZO)zax
Jeffreys’ prior is optimal in the sense that the average minimax
redundancy is asymptotically achieved when the parameter
vector 6 is assumed to follow Jeffreys’ prior [22]-[24]. Jef-
freys’ prior is particularly interesting because it also corre-
sponds to the worst-case prior for the best compression scheme
(called the capacity achieving prior), which is the average
maximin redundancy [24]. Define R,, as the average minimax
redundancy, i.e.,

ps(0) (7)

R, = Hllin sup Ry, (1, 0). (8)

n 0
Gallager proved that the average minimax redundancy is equal
to the average maximin redundancy [24], which is defined as

En = Sup HllIl/ Rn(ln, 9)w(0)d9 9)
0eA

w ln
The average maximin redundancy is associated with the best
code under the worst prior on the space of parameter vectors
(i.e., the capacity achieving Jeffreys’ prior).
The average minimax (maximin) redundancy is well studied
for parametric sources given by the following theorem.

Theorem 1 ( [12], [22], [23]) The average minimax redun-
dancy is given by

= d n 1 1 3
Rn = 210g<27re) +10g/96A IZ,.(0)|3d0 + O (\/ﬁ>
(10)

Remark. According to Theorem 1, the average minimax
redundancy scales as %logn + O(1). This redundancy may
indeed be a significant overhead on top of the entropy for small
sequences, as the constant term in (10) could be relatively large
for small n (cf. [13]).

f(n)
g(n)

< oo.

3f(n) = O(g(n)) if and only if limsup,,_, o, ’
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III. ONE-TO-ONE CODES

Next, we introduce one-to-one codes. Let [%(-) denote a
strictly lossless one-to-one length function. Further, denote L},
as the collection of all one-to-one codes (bijective mappings
to binary sequences) on sequences of length n. The following
result due to Alon and Orlitsky sets a lower limit on the one-
to-one average codeword length.

Theorem 2 [14]: Let the entropy of the random sequence
X™ be equal to H(X™). Then,

EX(X") > HX") —log(H(X") 4+ 1) —loge.  (11)

Remark. Theorem 2 is indeed a significant result stating
that the reduction in the average codeword length associated
with a random sequence X™ is bounded from above by
log(H(X™) + 1) + log e. Further, Alon and Orlitsky showed
that if X" follows the geometric distribution, the lower limit
is attained.

When the source statistics are known, we can order all
probabilities of the 2" sequences in a decreasing fashion
and then assign a codeword length |logj + 1] to the j-th
message sequence. It is straightforward to see that this coding
strategy is the optimal one-to-one code but what is perhaps
not straightforward is to analyze the average codeword length
resulting from this coding strategy. In [15], Szpankowski
derived the average codeword length of the non-universal
one-to-one codes for binary memoryless sources, recently
generalized by Kontoyiannis and Verdu [16] for finite-alphabet
memoryless sources as the following.

Theorem 3 [15], [16]: In the non-universal one-to-one com-
pression of finite-alphabet memoryless sources, the average
codeword length is given by

ElX(X™) = H,(0) — %logn +O(1). (12)
Szpankowski refers to the second-order term the anti-
redundancy [15], which is the average codeword length re-
duction below the entropy. Therefore, the anti-redundancy in
the non-universal one-to-one compression of finite-alphabet
memoryless sources is % logn+ O(1) when Kraft’s inequality
is relaxed.

IV. UNIVERSAL ONE-TO-ONE CODES

Thus far, it was shown that the optimal average codeword
length is below the entropy for non-universal one-to-one codes.
On the other hand, several challenges arise when universal
one-to-one codes are concerned. First, the optimal codeword
length assignment is no longer obvious. Further, the perfor-
mance analysis of a given codeword length assignment is not
straightforward.

Let RX(I%,0) denote the average redundancy of the one-to-
one code, which is defined in the usual way as

R (15,0) £ Bl (X™) — Hy,(6). (13)

Further, define the one-to-one average maximin redundancy
R as

E*

n

(14)

= sup min
p LLeLr

| m.opow.
0N

where the supremum is taken over all distributions over the
space A. Let the one-to-one average minimax redundancy R}
be defined as

R = min sup R} (1%, 0). (15)

IheL} e

Theorem 4 The one-to-one average minimax redundancy is
no smaller than the one-to-one average maximin redundancy.
That is

R: > R}.

n —

(16)

Sketch of the proof: The proof is straightforward by
following the lines of proof of the same result for prefix-free
codes in [24]. |
Remark. According to Theorem 4, the average minimax
redundancy is always at least equal to the average maximin
redundancy. Please note that for the case of prefix-free codes
it can be shown that they are equivalent [24], while the
equivalence would not readily extend to the one-to-one codes.

To the best of our knowledge, the only existing work on
universal one-to-one codes is by Kosut and Sankar [19], who
proposed a so-called type-size coding scheme based on the
type of the sequences [25]. The type of sequence x™ is given
by

li:x; =al

tyn(a) = for a € A. a7
For a type t, let the type class 7; be defined as
Tt = {l‘n S ./4” : twn = t} (18)

Therefore, |T;| denotes the size of the type class of the type
t, i.e., the total number of sequences with type ¢. Here, we
will present a slightly modified version of the type-size code
for the purpose of clarity of discussion, which has essentially
the same performance. The type-size code essentially sorts the
sequences based on the size of the corresponding type classes
in a descending order. Therefore, the sequence ™ may appear
before y™ only if [T}, | < |T},.|. Then, the rest is performed
by assigning a codeword length |log j+1] to the j-th message
sequence. Let [%¢ denote the length function associated with
the type-size code. The performance of the type-size code was
analyzed in [19].

Theorem 5 [19]: In the universal one-to-one compression of
the class of memoryless sources over a finite alphabet A, for
any € > 0, we have

RL(15,0) < (1+¢€)

logn + O(1).

Al =3
> 19)

Remark. According to Theorem 5, the one-to-one average
redundancy for memoryless sources of alphabet size |A| is
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asymptotically bounded from above by WT*B logn+o(logn),
which is smaller than |A‘271 logn + O(1) attributed to prefix-
free universal codes. However, it remains open to see whether
this bound can be further improved and to asses how signifi-
cant the improvement is.

Next, our main results on the universal one-to-one compres-

sion performance are presented.

Theorem 6 Assume that the unknown parameter vector 0
Sollows Jeffreys’ prior py(-) given in (7), where 0 lies in
the |A| — 1 dimensional simplex of memoryless parameter
vectors. Then, type-size code is asymptotically optimal for
the universal one-to-one compression of the family of finite-
alphabet memoryless sources. That is

[ = arg min Ry (Ix,0)ps(0)do. (20)
l,’,‘lEL; LEIN
Sketch of the proof: We have
PIX" =o" = [ plamps0)d. @D
JoOeA

On the other hand, since Jeffreys’ prior is asymptotically
capacity achieving, i.e., maximizes I(6; X™) [12], [24], it
asymptotically results in equiprobable types. In other words,

1 4
(n+\A|—1) : 22)

n

where ("H“:l*l) denotes the total number of type classes,
which is a constant with respect to ™. Hence,

1 1

(23)
Therefore, by definition, the type-size coding orders the se-
quences in a descending fashion based on their probabilities,
which completes the proof. [ |
Remark. According to Theorem 6, the type-size coding is
optimal for the universal one-to-one compression of finite-
alphabet memoryless sources when the unknown parameter
vector follows Jeffreys’ prior. Furthermore, it is easily seen
that the average redundancy of type-size coding serves as a
lower limit on the average maximin redundancy. However, our
goal is to deduce a meaningful converse for d-dimensional
parametric sources, which is carried out in the next theorem.

Theorem 7 The one-to-one average maximin redundancy for
the family Pf\l of d-dimensional parametric sources is bounded
from below by

-2 1 1
d log L—log 27T€2+/ |Z(8)|2dO+0 () .
4)

Ry >
T 2me N \/?

Sketch of the proof: We have

H(X™) = H(X"|0) + I(X";6) 25)
4f(n) ~ g(n) if and only if limy—co J;EZ; =1

Assuming that 8 follows Jeffreys’ prior, we can get

H(X™) = H, + R, (26)

where R,, is the average minimax redundancy for prefix-free
codes given in (10) and H,, is given by

Hn = Hn(e)pJ(e)da

0eA

27)

Hence, we can now use Theorem 2 to provide a lower
bound on E(X™). The proof is completed by seeing that
log H,, < logn and noting that the average redundancy for
the case where 6 follows Jeffreys’ prior provides a lower limit
on the average maximin redundancy. [ ]
Remark. Theorem 7 basically states that the one-to-one
average maximin redundancy is bounded from below by
R} > “2logn+ O(1). By using Theorem 4, we can deduce
that the bound also holds for the average minimax redundancy,
ie., R: > “2logn+ O(1).

Finally, let us consider the performance of universal one-
to-one codes for the case of memoryless sources. We have the
following.

Corollary 8 In the universal compression of memoryless
sources with finite alphabet A, for any € > 0, we have
= Al -3
R >R > ||Tlogn—|—0(1)7

R< R <(1+ 6)7‘“4'2* 3 1ogn +0(1).

(28)

(29)

Remark. According to Corollary 8, for memoryless sources
the average minimax and average maximin redundancy scale
as WT_?’ logn+O(1) Theorem 8 implies that type-size coding
is minimax (and maximin) optimal up to o(logn) for the uni-
versal one-to-one compression of memoryless sources. Please
note that the lower bound on the average minimax redundancy
was already known as it readily results from [20]. Our result
further implies that the same bound also holds for the average
maximin redundancy.

V. NUMERICAL EXAMPLE

It is desirable to see how much reduction is offered by
universal one-to-one compression compared with the prefix-
free universal compression. We compare the performance of
universal one-to-one codes with that of the universal prefix-
free codes through a numerical example from [13]. We con-
sider a first-order Markov source with alphabet size |.A4| = 256,
where the number of source parameters is d = 256 x 255 =
62580. Please note that our results did not provide an actual
code for the compression of a parametric source. Hence, we
compare the converse bound of Theorem 7 on the average
minimax (maximin) redundancy of universal one-to-one codes
with the performance of the minimax optimal universal prefix-
free code.

Fig. 1 compares the minimum average number of bits
per symbol required to compress the class of the first-order
Markov sources normalized to the entropy of the sequence
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Fig. 1. The Lower bound on the average minimax redundancy as a function
of sequence length n for prefix-free and one-to-one codes for different values
of entropy rate Hy, (6)/n.

for different values of entropy rates in bits per source symbol
(per byte). As can be seen, relaxing the prefix constraint at its
best does not offer meaningful performance improvement on
the compression performance as the curves for the prefix-free
codes and one-to-one codes almost coincide. This leads to the
conclusion that the universal one-to-one codes are not of much
practical interest.

On the other hand, if the source entropy rate is 1 bit per
byte (H,(0)/n = 1), the compression rate on sequences of
length 32kB (for both prefix-free and one-to-one codes) is
around 2.25 times the entropy-rate, which results in more than
100% overhead on top of the entropy-rate for both prefix-
free and one-to-one universal codes. Hence, we conclude that
average redundancy poses significant overhead in the universal
compression of finite-length low-entropy sequences, such as
the Internet traffic, which cannot be compensated by dropping
the prefix constraint. Hence, the side information provided
in memory-assisted universal compression to overcome the
redundancy is essential even if the prefix constraint is dropped
(cf. [26], [27] for details about universal memory-assisted
compression.)

VI. CONCLUSION

In this paper, the fundamental limits of universal one-to-
one codes (without prefix constraint) were investigated. It
was proved that the type-size code proposed earlier in the
literature is optimal up to o(logn) for universal one-to-one
compression of memoryless sources. Further, a lower bound
on the average minimax redundancy of universal one-to-one
codes was derived. Finally, it was also demonstrated that the
reduction on the average redundancy by relaxing the prefix
constraint is negligible compared with the cost of universality
in universal compression of low-entropy small sequences (e.g.,
network packets).
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