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Abstract—In this paper, we consider k parametric sources

with unknown source parameter vectors. In this setup, we pro-

pose a novel correlation model where the degree of correlation

of each parameter vector is governed by a single variable. We

derive the properties of the parameter vectors. In particular, we

derive bounds on the correlation between the parameter vectors

and show show that this will include independence all the way to

convergence in mean square sense. Then, we set up the minimax

and maximin games in universal compression and characterize

the compression risk under the proposed correlation model

when side information from one other source is available at

both the encoder and the decoder.

Index Terms—Universal Compression; Distributed Source

Coding; Parametric Sources; Side Information.

I. INTRODUCTION

The premise of data compression broadly relies on the
correlation in the data. For instance, data that are gathered
from multiple sensors measuring the same phenomenon (e.g.,
temperature) are clearly correlated. As another example,
when chunks of the same file/content are acquired by a client
in a content-centric network, the data chunks are correlated
because they are originated from the same file/content. There
are several works in the literature that consider the universal
compression problem [1]–[11] and more recently in the
context of of one-to-one codes without prefix constraint [12]–
[16].

In this paper, we study universal compression of para-

metric sources with correlated parameter vectors. We as-
sume k parametric sources with unknown parameter vectors
✓(1), . . . , ✓(k), respectively. Each of the parameter vectors
is assumed to live in a d-dimensional space ⇤ such that
⇤ ⇢ Rd. We further assume that ✓(1), . . . , ✓(k) are correlated
according to the correlation model in Fig. 1. In this setup,
we assume that nature pick � according to some prior q.
Then, let Zt1 , . . . , Ztk be independent samples of length
t1, . . . , tk from a parametric source with parameter vector
�, respectively. Finally, ✓(1), . . . , ✓(k) are samples from a
posteriori distribution of � from observation Zt1 , . . . , Ztk ,
respectively. We establish some key properties about this
correlation model as a function of t1, . . . , tk

1This research was carried out when A. Beirami was affiliated with
Georgia Institute of Technology.

Next, we consider an application of such correlation model
where Xn is a sample of length n from the parametric
source with parameter ✓(1) and Y m is a sample of length
m from the parametric source with source parameter vector
✓(2). We would like to characterize the average minimax and
maximin redundancy in the compression of Y n when the side
information sequence Xn is available to the encoder and/or
the decoder. The problem in which the side information
is only available at the decoder coincides with Wyner-Ziv
problem [17]. The special case of such problem where Y m

and Xn were samples from the same parametric source was
studied in [18]. This corresponds to the reduced case of our
problem where the correlation between the source parameter
vectors is in the form of exact equality, i.e., ✓(2)

= ✓(1).
In the present paper, the extension to the spatially separated
sources with correlated parameter vectors.

The rest of this paper is organized as follows. In Section II,
we provide the notations and definitions. In Section III, we
present our correlation model for sources with correlated
parameter vectors. In Section IV, we present the formal
problem setup. In Section V, we provide the coding strategies
using two correlated parameter vectors for the universal
compression of sources with correlated parameter vectors.
Sections VI gives the main results on the average redundancy
of strictly lossless codes. Finally, Section VII concludes the
paper.

II. NOTATIONS AND DEFINITIONS

Let X be a finite alphabet with alphabet size |X |. We define
a parametric source by using a d-dimensional parameter
vector ✓ = (✓1, ..., ✓d

) 2 ⇤, where d denotes the number
of the source parameters and ⇤ ⇢ Rd is the space of
d-dimensional parameter vectors of interest. Denote µ

✓

as
the probability measure defined by a parameter vector ✓ on
sequences of length n from the source.

Let xn

= (x1, ..., xn

) 2 X n be a sequence of length n
from the alphabet X . Further, let Xn be a random sequence
of length n that follows probability distribution function µ

✓

.
Let H

n

(✓) be the source entropy given the source parameter
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Fig. 1: The correlation model for source coding with correlated parameter vectors.

vector ✓, i.e.,

H
n

(✓),E log

✓
1

µ
✓

(Xn

)

◆
=

X

x

n

µ
✓

(xn

) log

✓
1

µ
✓

(xn

)

◆
.1

(1)
Note that log(·) denotes the logarithm in base 2 in this paper.

Let I(✓) be the Fisher information matrix,2 i.e.,

I(✓), lim

n!1

1

n log e
E

⇢
@2

@✓
i

@✓
j

log

✓
1

µ
✓

(Xn

)

◆�
. (2)

Roughly speaking, Fisher information quantifies the average
amount of information that each symbol in a sample sequence
xn from the source conveys about the source parameter
vector ✓. Let the least favorable Jeffreys’ prior on the space
of the parameter vectors be denoted by

p
J

(✓) , |I(✓)| 1
2

R
�2⇤ |I(�)| 1

2 d�
. (3)

Jeffreys’ prior is optimal in the sense that the minimum
average redundancy is asymptotically achieved by an optimal
code when the source parameter vector is assumed to follow
Jeffreys’ prior [4]. This prior distribution is particularly
interesting because it also corresponds to the least favorable
prior for the compression performance of the best coding
scheme, i.e., it is the capacity achieving distribution.

We need some regularity conditions to hold for the para-
metric model so that our results can be derived.
P1. The parametric model is smooth, i.e., twice differen-

tiable with respect to ✓ in the interior of ⇤ so that the
Fisher information matrix can be defined. Further, the
limit in (2) exists.

P2. The determinant of fisher information matrix is finite for
all ✓ in the interior of ⇤ and the normalization constant
in the denominator of (3) is finite.

1Throughout this paper expectations are taken over functions of the
random sequence Xn with respect to the (unknown) probability measure
µ✓(2) unless otherwise stated.

2We assume that the parametric sources of interest are smooth so that the
Fisher information matrix exists, and is positive definite, and all its elements
are continuous.

P3. The parametric model has a minimal d-dimensional
representation, i.e., I(✓) is full-rank. Hence, I�1

(✓)
exists.

P4. We require that the central limit theorem holds for
the maximum likelihood estimator ˆ✓(xn

) of each ✓ in
the interior of ⇤ so that (

ˆ✓(Xn

) � ✓)
p

n converges to
a normal distribution with zero mean and covariance
matrix I�1

(✓).

III. CORRELATION MODEL

In this section, we present our model for the nature of
the correlation between the parameter vectors ✓(1), . . . , ✓(k).
In this model, as we shall see, the correlation between the
sources is controlled using the parameter t1, . . . , tk. We
assume that the unknown (and unobserved) parameter vector
� follows a prior distribution q, i.e., p

�

(�) = q(�). Let
Zti be a random sequence of length t

i

that follows µ
�

.
We further assume that given Zti , the parameter vectors
� and ✓(i) are independent and identically distributed, i.e.,
p

✓

(i)|zti (·) = p
�|zti (·).

Lemma 1: The conditional distribution of ✓(i) given �, i.e.,
pti

✓

(i)|�(·), is given by

pti

✓

(i)|�(✓(i)|�) = q(✓(i)
)f(t

i

, �, ✓(i)
), (4)

where f(t
i

, �, ✓(i)
) is defined as

f(t
i

, �, ✓(i)
) ,

X

z

ti2X ti

✓
µ

�

(zti
)µ

✓

(i)(zti
)R

⇤ µ
�

(zti
)q(�)d�

◆
. (5)

Proof:

pti

✓

(i)|�(✓(i)|�) =

X

z

ti2X ti

p(✓(i), zti |�) (6)

=

X

z

ti2X ti

p
�|zti (✓

(i)|zti
)µ

�

(zti
) (7)

= q(✓(i)
)

X

z

ti2X ti

✓
µ

�

(zti
)µ

✓

(i)(zti
)R

⇤ µ
�

(zti
)q(�)d�

◆
, (8)
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where (22) follows from the fact that ✓(i) and � are indepen-
dent and identically distributed given Zti , and (8) follows
from the Bayes rule.

Lemma 2: Z

⇤
f(t

i

, �, ✓(i)
)q(�)d� = 1. (9)

Proof:

Z

⇤
f(t

i

, �, ✓(i)
)q(�)d�

=

X

z

ti

✓
µ

✓

(i)(zti
)

R
⇤ µ

�

(zti
)q(�)d�R

⇤ µ
�

(zti
)q(�)d�

◆

=

X

z

ti

µ
✓

(i)(zti
) (10)

=1, (11)

where (10) is obtained since the two integrals in the numer-
ator and denominator cancel.

Next, we find the marginal distribution of ✓(i), i.e.,
pti

✓

(i)(✓
(i)

).
Lemma 3: pti

✓

(i)(✓
(i)

) = q(✓(i)
).

Proof:

pti

✓

(i)(✓
(i)

) =

Z

⇤
pti

✓

(i)|�(✓(i)|�)q(�)d�

= q(✓(i)
)

Z

⇤
f(t

i

, �, ✓(i)
)q(�)d� (12)

= q(✓(i)
), (13)

where (12) follows from Lemma 2.
Lemma 4: If t

i

= 0, then ✓(i) is independent of �.
Proof: By definition of f(·), and the fact that µ

�

(z0
) =

1, we have

f(0, �, ✓(i)
) =

✓
1R

⇤ q(�)d�

◆
= 1. (14)

Hence, using Lemma 1, we have

p0
✓

(i)|�(✓(i)|�) = q(✓(i)
)f(0, �, ✓(i)

) = q(✓(i)
), (15)

which proves the claim.
Lemma 5: ✓(i) converges in mean square to � as t

i

! 1,
that is

lim

ti!1
E||✓(i) � �||2 = 0. (16)

Proof: Let ˆ✓(Zti
) be the maximum likelihood estimate

of � from the observation Zti . By definition, ˆ✓(Zti also
serves as the maximum likelihood estimate of ✓(i). Then,

E||✓(i) � �||2  E||✓(i) � ˆ✓(Zti
)||2 + E||� � ˆ✓(Zti

)||2

(17)

= 2E||� � ˆ✓(Zti
)||2 (18)

=

2

t
i

|I(�)|�1, (19)

and hence,

lim

ti!1
E||✓(i) � �||2  lim

ti!1

|I(�)|�1

t
i

= 0, (20)

which completes the proof.
Next, we will derive the joint probability distribution of

✓(i) and ✓(j) for i 6= j.
Lemma 6: For all i, j 2 {1, . . . , k} such that i 6= j, we

have p
ti,tj

✓

(i)
,✓

(j)(✓
(i), ✓(j)

) is given by

p
ti,tj

✓

(i)
,✓

(j)(✓
(i), ✓(j)

) =q(✓(i)
)q(✓(j)

)

⇥
Z

⇤
f(t

i

, �, ✓(i)
)f(t

j

, �, ✓(j)
)q(�)d�.

(21)

Proof:

p
ti,tj

✓

(i)
,✓

(j)(✓
(i), ✓(j)

) =

Z

⇤
pti,tj

(✓(i), ✓(j)|�)q(�)d�

=

Z

⇤
pti

(✓(i)|�)ptj
(✓(j)|�)q(�)d� (22)

=q(✓(i)
)q(✓(j)

)

⇥
Z

⇤
f(t

i

, �, ✓(i)
)f(t

j

, �, ✓(j)
)q(�)d�,

(23)

where (22) follows from the independence of ✓(i) and ✓(j)

given �, and (23) follows from Lemma 1 and the definition
of g(·).
Please note that the strategy above can be extended to derive
the joint distribution of all of the source parameter vectors.

Lemma 7:

pt1,t2,...,tk

✓

(1)
,✓

(2)
,...✓

(k)(✓
(1), ✓(2), . . . ✓(k)

) =

kY

i=1

⇣
q(✓(i)

)

⌘Z

⇤

kY

i=1

⇣
f(t

i

, �, ✓(i)
)

⌘
q(�)d�. (24)

Lemma 8: If t
i

= 0, then ✓(i) is independent of all ✓(j)

(i 6= j), i.e.,

p
0,tj

✓

(i)
,✓

(j)(✓
(i), ✓(j)

) = q(✓(i)
)q(✓(j)

).

Proof:

p
0,tj

✓

(i)
,✓

(j)(✓
(i), ✓(j)

) =q(✓(i)
)q(✓(j)

)

⇥
Z

⇤
f(0, �, ✓(i)

)f(t
j

, �, ✓(j)
)q(�)d�.

(25)

=q(✓(i)
)q(✓(j)

)

Z

⇤
f(t

j

, �, ✓(j)
)q(�)d�

(26)

=q(✓(i)
)q(✓(j)

), (27)

where (25) follows from Lemma 6 and (26) follows from (14)
and (27) follows from Lemma 2.
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According to Lemma 8, we can make ✓(i) independent of the
rest of the parameter vectors by setting t

i

= 0.
Lemma 9: The parameter vector ✓(j) converges in mean

square to ✓(i) as t
i

, t
j

! 1, i.e.,

lim

ti,tj!1
||✓(i) � ✓(j)|| = 0. (28)

Proof: By triangle inequality, we have

||✓(i) � ✓(j)||  ||✓(i) � �|| + ||✓(j) � �|| (29)

and the rest follows from Lemma 5.
According to Lemma 9, when t ! 1, we have ✓(2) ! ✓(1)

in probability, which reduces to the universal compression of
identical sources studied in [18].

Remark: The degree of correlation between the two param-
eter vectors ✓(i) and ✓(j) is determined via the parameters t

i

and t
j

. This degree of correlation varies from independence
of the two parameter vectors at t

i

= 0 or t
j

= 0 all the way to
the vectors being equal (convergence in mean square) when
t
i

, t
j

! 1. Please also note that the covariance matrix of
the parameter vectors ✓(i) and ✓(j) for sufficiently large t

i

and t
j

converges to 2
t

? I�1
(�), where

1

t?
=

1

t
i

+

1

t
j

. (30)

IV. PROBLEM SETUP

In this section, we present the basic setup of the problem.
As shown in Fig. 2, the setup is comprised of two sources
with parameter vectors ✓(1) and ✓(2). Let Xn and Y m

denote two random sequences (samples) of lengths m and
n, respectively, that are generated by parameter vectors ✓(1)

and ✓(2), respectively.We consider four coding strategies
(according to the orientation of the switches s

e

and s
d

in
Fig. 2) for the compression of xn from ✓(1) provided that the
sequence ym from ✓(2) is available to the encoder/decoder
or not.3

• Ucomp (Universal compression without side informa-
tion), where the switches s

e

and s
d

in Fig. 2 are both
open. In this case, the encoder input space is given by
C = X n ⇥ Z⇤. We let C = (xn, m) denote the input
to the encoder. The decoder input space is denoted by
D = {0, 1}⇤ ⇥ Z⇤ and we let D = (c(C), m) denote
the input to the decoder.

• UcompE (Universal compression with encoder side in-
formation), where the switch s

e

in Fig. 2 is closed

but the switch s
d

is open. In this case, the encoder
input space is given by CE

= X n ⇥ X m. We let
CE

= (xn, ym

) denote the input to the encoder. The
decoder input space is denoted by DE

= {0, 1}⇤ ⇥ Z⇤

and we let DE

= (c(CE

), m) denote the input to the
decoder.

3In this paper, we assume that m and n are a priori known to both the
encoder and the decoder.

• UcompD (Universal compression with decoder side in-
formation), where the switch s

e

in Fig. 2 is open but
the switch s

d

is closed. In this case, the encoder input
space is given by CD

= X n⇥Z⇤. We let CD

= (xn, m)

denote the input to the encoder. The decoder input
space is denoted by DD

= {0, 1}⇤ ⇥ X m and we let
DD

= (c(CD

), ym

) denote the input to the decoder.
• UcompED (Universal compression with encoder-

decoder side information), where the switches s
e

and
s

d

in Fig. 2 are both closed. In this case, the encoder
input space is given by CED

= X n ⇥ X m. We let
CED

= (xn, ym

) denote the input to the encoder. The
decoder input space is denoted by DED

= {0, 1}⇤⇥X m

and we let DED

= (c(CED

), ym

) denote the input to
the decoder.

Please note that, from the viewpoint of applications, the in-
teresting coding strategy in this study is UcompD, where the
side information sequence from S1 is available at the decoder
while it is not known to the encoder. The Ucomp coding
is the benchmark for the achievable universal compression
when no side information is present. Further, UcompED is
the benchmark in the evaluation of UcompD but it may not
be always practically feasible since it requires the sequence
ym from S1 to be available at the encoder of S2, i.e.,
coordination between the two encoders, which may not
be always possible. Finally, UcompE is presented for the
sake of completeness and as expected, UcompE provides no
significant improvement over Ucomp.

In this paper, we focus on the family of fixed-to-variable
length codes that map an n-vector to a variable-length binary
sequence [19]. We only consider codes that are uniquely
decodable, i.e., satisfy Kraft inequality.

Definition 1: The code c : C ! {0, 1}⇤ is called strictly
lossless (also called zero-error) if there exists a reverse
mapping d : D ! X n such that

8xn 2 X n

: d(D) = xn.

Most of the practical data compression schemes are ex-
amples of strictly lossless codes, namely, the arithmetic
coding [20], Huffman [21], Lempel-Ziv [5], [6], and context-
tree-weighting (CTW) algorithm [8]. Please note that based
on the orientation of the switches in Fig. 2 and the input and
output spaces, it is straightforward to extend the definition of
strictly lossless codes to UcompE, UcompD, and UcompED.

V. MINIMAX AND MAXIMIN REDUNDANCY

Let l : C ! R denote the universal (strictly lossless)
length function for Ucomp coding.4 Denote L as the space
of almost lossless universal length functions. Denote R(l, ✓)

4Note that we have ignored the integer constraint on the length functions
in this paper, which will result in a negligible redundancy smaller than 1
bit and is exactly analyzed in [19], [22].
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Fig. 2: The compression model for universal source coding with two correlated parameter vectors.

as the expected redundancy of the code with length function
l(·), defined as

R(l, ✓) = El(C) � H
n

(✓). (31)

Define ¯R as the minimax redundancy of Ucomp coding, i.e.,

¯R = min

l

max

✓2⇤
R(l, ✓). (32)

Let R denote the maximin redundancy of Ucomp coding,
i.e.,

R = max

w

min

l

Z

✓2⇤
R(l, ✓)w(✓)d✓. (33)

It is straightforward to extend the definitions of the length
function and the minimax and maximin redundancy to
UcompE, UcompD, and UcompED coding strategies that
are denoted by ¯R

E

, ¯R
D

, and ¯R
ED

, respectively. In light of
Gallager’s result in [23], it can be deduced that the minimax
and maximin risks in the abovementioned problems are equal,
i.e., 8

>><

>>:

¯R = R
¯R

D

= R
D

¯R
E

= R
E

¯R
ED

= R
ED

. (34)

The following intuitive inequalities demonstrate that the
redundancy decreases with the availability of the side infor-
mation.

Lemma 10: The following set of inequalities hold:
⇢

¯R
ED

 ¯R
E

 ¯R
¯R

ED

 ¯R
D

 ¯R
. (35)

Proof: Let ˇl 2 L denote the optimal code for Ucomp
coding strategy. Then, it is straightforward to see that ˇl 2 L

E

(i.e., ˇl is a code with encoder side information) since the
encoder can choose not to use the side information sequence
ym in the coding. Likewise, if ˇl

E

2 L
E

is the optimal code
with encoder side information. We have ˇl

E

2 L
ED

as it is
a candidate code for the encoder-decoder side information
case when the coding system is only a function of the side
information sequence length at the decoder and not the side
information sequence itself. This completes the proof of the

first set of inequalities. The proof for the second set of the
inequalities is similar and is omitted for brevity.

Before we delve into the main results of this paper, we
present another result that will be useful in characterizing
the redundancy in later sections.

Lemma 11: If t1 = 0 or t2 = 0, we have

¯R
ED

=

¯R
D

=

¯R
E

=

¯R.

Proof: It suffices to show that ¯R
ED

=

¯R. Then, by
Lemma 10, the rest follows. As pointed out in Lemma 8,
when t1 = 0 or t2 = 0, then ✓(1) and ✓(2) are independent.
Hence, Xn and Y m are also independent and the result
follows.
According to Lemma 11, there is no benefit provided by
the side information when the two parameter vectors of the
sources S1 and S2 are independent. This is not surprising
as when ✓(1) and ✓(2) are independent, then Xn (produced
by S1) and Y m (produced by S2) are also independent.
Thus, the knowledge of ym does not affect the distribution
of xn. Hence, ym cannot be used toward the reduction of the
codeword length for xn.

VI. PERFORMANCE OF STRICTLY LOSSLESS CODES

In this section, we present our main results on the min-
imax redundancy for strictly lossless codes. As previously
discussed, we only consider the case where m = !(n), i.e.,
when the size of the side information sequence is sufficiently
large. In other words, our focus is not on the transient period
where the memory is populated with data traffic. Instead, we
would like to analyze how much performance improvement is
obtained when a sufficiently large side information sequence
is used in the compression of a new sequence.

In the case of Ucomp, the side information sequence is
not utilized at the encoder/decoder for the compression of xn,
and hence, the minimum number of bits required to represent
xn is H(Xn

). Thus, it can be shown that
Theorem 1 ( [2], [4]): The minimax redundancy for strictly
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lossless Ucomp coding is

¯R =

d

2

log

⇣ n

2⇡e

⌘
+ log

Z

⇤
|I(�)| 1

2 d� + o(1).5

Next, we confine ourselves to UcompE strategy and es-
tablish that the side information provided by ym only at the
encoder does not provide any benefit on the strictly lossless
universal compression of the sequence xn.

Theorem 2: The minimax redundancy for strictly lossless
UcompE coding is

¯R
E

=

¯R.

Proof: In the case of UcompE coding, since the side
information sequence ym is not available to the decoder, then
the minimum number of average bits required at the decoder
to describe the random sequence Xn is indeed H(Xn

). On
the other hand, it is straightforward to see that H(Xn

) =

H
n

(✓(2)
) + I(Xn

; ✓(2)
). Further, it is clear that

I(Xn

; ✓(2)
) =

¯R. (36)

by the redundancy-capacity theorem (cf. [7]).
Considering the UcompD strategy, we establish a result

that the side information provided by ym at the decoder
does not provide any performance improvement in the strictly
lossless universal compression of the sequence xn.

Theorem 3: The minimax redundancy for strictly lossless
UcompD coding is

¯R
D

=

¯R.

Proof: Since the two sources µ
✓

(1) and µ
✓

(2) are as-
sumed to be from the d-dimensional parametric sources, in
particular, they are also ergodic. In other words, any pair
(xn, ym

) 2 X n ⇥ X m occurs with non-zero probability and
the support set of (xn, ym

) is equal to the entire X n ⇥ X m.
Therefore, the knowledge of the side information sequence
ym at the decoder does not rule out any possibilities for xn

at the decoder, and hence, the probability distribution of xn

remains unchanged (equal to the prior distribution) after ym

has been observed. Proposition 3 is then completed by using
the known results of strictly lossless compression (cf. [24]
and the references therein).

Finally, we present our main result on the strictly lossless
UcompED coding. In this case, since a side information
sequence ym is known to both the encoder and the decoder,
the achievable codeword length for representing xn is given
by H(Xn|Y m

). Hence, the redundancy can be shown to be
obtained from the following theorem.

Theorem 4: For strictly lossless UcompED coding, if
min{t1, t2, m} = O(1), then6

¯R
ED

=

¯R � O(1),

5f(n) = o(g(n)) if and only if limn!1
f(n)
g(n) = 0.

6f(n) = O(g(n)) if and only if limn!1 sup f(n)
g(n) < 1.

and if min{t1, t2, m} = !(1), then7

¯R
ED

=

ˆR(n, m, t) + o(1),

where ˆR(n, m, t) is defined as

ˆR(n, m, t) =

d

2

log

⇣
1 +

n

m?

⌘
, (37)

and m? is given by the following.
1

m?

=

1

m
+

2

t1
+

2

t2
. (38)

Sketch of the proof: First, note that the minimax and
maximin redundancies are equal, i.e, ¯R

ED

= R
ED

. Also,
it is not difficult to see that Jeffreys’ prior is still capacity
achieving in this case. Hence, we can focus on redundancy
of the best code for Jeffreys’ prior.

If min{t1, t2, m} = O(1), then the estimate ˆ✓(Y m

),
which is the maximum likelihood estimator of ✓(1) from
the observation of Y m, is going to have a variance that is
bounded away from zero. Hence, the impact of Y m would
be to reshape the prior but since it will still be bounded
away from zero on the space ⇤, the redundancy will still be
of the form d

2 log n + ⇥(1) [2]. Hence, since Jeffreys’ prior
maximizes the redundancy, the reduction is going to be O(1)

Now, if min{t1, t2, m} = !(1), due to the property P4 of
the source parameter vectors, central limit theorem holds and
ˆ✓(Y m

) will be distributed around ✓(1) with a variance m?.
This will become similar to the case where a sequence zm

?

from a parametric source with source parameter vector ✓(1)

is available to the encoder and is studied in [18]. The result
then follows from Theorem 2 of [18].

VII. CONCLUSION

In this paper, we introduced a novel correlation model for
the problem of universal compression of parametric sources
with correlated parameter vectors. We formally defined a
correlation model, which departs from the nature of the cor-
relation in the Slepian-Wolf framework or the CEO problems.
Involving two source parameter vectors, we investigated the
minimax and maximin redundancy of lossless compression
for four different coding strategies (based on whether or not
the side information was available to the encoder and/or
the decoder). These strategies are: 1. Universal compres-
sion without side information, 2.Universal compression with
encoder side information, 3. Universal compression with
decoder side information, and 4. Universal compression
with encoder-decoder side information. We proved that the
interesting case is only when the side information is available
at both the encoder and the decoder.

Future work will investigate the case where several side
information sequences from sources with correlated param-
eter vectors are available. Also, future work will investigate
the notion of almost lossless coding (cf. [18]), where decoder
side information can offer performance improvement.

7f(n) = !(g(n)) if and only if g(n) = o(f(n)).
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