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Abstract—Social recommender systems exploit the historic
user data as well as user relations in the social networks to make
recommendations. However, users are increasingly concerned
with their online privacy, and hence, they are not willing to reveal
their personal data to the general public. In this paper, we propose
a social recommendation algorithm for top-N recommendation
using only implicit user preference data. In particular, we model
users’ consumption behavior in the social network with Bayesian
networks, using which we can infer the probabilities for items to
be selected by each user. We develop an Expectation Propagation
(EP) message-passing algorithm to perform approximate infer-
ence efficiently in the constructed Bayesian network. The original
proposed algorithm is a central scheme, in which the user data are
collected and processed by a central authority. However, it can be
easily adapted for a distributed implementation, where users only
exchange messages with their directly connected friends in the
social network. This helps further protect user privacy, as users
do not release any data to the public. We evaluate the proposed
algorithm on the Epinions dataset, and compare it with other
existing social recommendation algorithms. The results show its
superior top-N recommendation performance in terms of recall.

I. INTRODUCTION

To counter the information overloading problem on the
Internet, recommender systems have been widely employed
by online service websites to suggest items, e.g., movies
and books, to users who might like them [1]. In typical
practical implementations, a list of N items are rendered
to an active user which he may find the most interesting.
This is known as the top-N recommendation task. There are
a variety of recommendation algorithms including content-
based recommendations and collaborative recommendations.
In content-based recommendations, each item is characterized
by a set of attributes, based on which item similarity is
estimated, and the active user will be recommended items
similar to the ones he liked in the past. However, the content-
based recommendation system suffers from limited content-
analysis, e.g., it is difficult to explicitly describe multimedia
data using features. Instead, in collaborative recommendations,
also known as collaborative filtering, the active user will be
recommended items favorably rated by other users with similar
tastes to the active user. The user similarity can be estimated
based on user profiles including detailed personal information,
but due to privacy concerns they are very difficult to obtain.
Hence, the collaborative recommender systems evaluate user
similarity based on users’ historic rating data. This causes
the cold-start problem for new users or users who do not
provide enough ratings, i.e., the recommender systems cannot
find similar users for them.

Recently, with the thriving of online social networks
(OSN), the social collaborative recommendation has attracted
significant attention. In social networks, people are more likely
to connect to other people sharing similar interests, and they
are influenced more by people they connect to, further fostering
similarity to each other [2]. Hence, by exploiting the social
structure of social networks, social recommender systems
can make satisfactory recommendations even for cold-start
users when provided with their social connections. Moreover,
social recommendation can also be conveniently incorporated
with traditional collaborative filtering algorithms, e.g., ma-
trix factorization [3]-[6] and neighborhood methods [6], [7],
improving their recommendation performance, especially for
cold-start users.

Today, people are increasingly concerned with their online
privacy, adding new challenges to the recommendation prob-
lem. Although rating data do not directly tell personal details,
it is still possible to infer user demographics, such as age and
gender, from their ratings [8], and even uncover user identities
and reveal sensitive personal information with access to other
databases [9]. Therefore, users are not willing to make their
personal data accessible to the general public. Hence, when
designing collaborative recommendation systems, we need to
take into account user privacy. Several works proposed to
obfuscate user ratings with random noise, e.g., perturbation
[10] and differential privacy [11], or to disguise genuine user
profiles by adding extra fake data [8], [12]. However, such
obfuscation techniques do not completely prevent rating data
leakage. Alternatively, recommender systems can utilize only
implicit data, e.g., whether a user has consumed an item or
not, avoiding exposing explicit user rating data.

In this paper, we propose a social recommendation algo-
rithm that exploits the social network to generate recommen-
dations using implicit user data. We develop a probabilistic
Bayesian Network (BN) model for item consumption in the
social network, and infer the probability for each item to be se-
lected by the active user given the observed implicit user data.
Then, the top-/V items with the highest probabilities are listed
in the recommendation. Specifically, we propose an Expecta-
tion Propagation (EP) message-passing algorithm for approxi-
mate inference in the BN, based on which we further develop
an iterative EP algorithm that performs EP message-passing
for all users in a unified bipartite graph representation. We
note that the original algorithm is a central scheme, in which
the user data are collected and processed by a central authority.
However, the algorithm can be easily adapted for distributed
implementation, where users only exchange messages with



friends they are directly connected to in social networks. This
helps further protect user privacy, since users only share data
with their immediate friends. Previously, in [13] we developed
probabilistic factor graph models for similarity computation
in collaborative filtering recommender systems, and employed
Belief Propagation (BP) to perform inference efficiently. In
[14], we proposed privacy-preserving item-based collaborative
filtering, where users send out probabilistic messages on item
similarities without revealing personal rating data.

II. RELATED WORKS

Social networks have been exploited to enhance traditional
collaborative filtering recommender systems. In [3]-[6], the
social network was incorporated into matrix factorization
methods, where the user latent factors are learnt with social
relations taken into account. All of them require users’ ex-
plicit rating data. Besides, performing matrix factorization is
computationally intensive, which is not suitable for frequent
updates of the recommender system with new rating records.

[6], [7] proposed social recommendation algorithms that
can be combined with traditional neighborhood methods. In
[7] the authors proposed a random walk approach TrustWalker,
where the recommendation algorithm carries out random walk
over the social network to collect ratings from other users,
and computes the average ratings to generate recommendations
for the active user. Obviously, user ratings are revealed to all
users connected to the social network. [6] proposed a voting-
based algorithm PureTrust, using only implicit user data. The
algorithm collects votes from users found via Breadth First
Search (BFS) in the social network. In contrast to [6], in our
work we avoid direct information exchange between indirectly
connected friends. Further, if a user has not consumed an item,
instead of simply collecting a ‘0’ vote for that item, our work
assigns a random binary variable to model the willingness
of the user to select that item, whose probability distribution
depends on his directly connected friends.

The Bayesian networks were applied to recommender
systems in [15], [16]. In [15], a Bayesian network is employed
to model probabilistic item-based rating prediction, where each
node corresponds to an item and its parent nodes correspond
to similar items. In [16], the Bayesian network is also used
to predict user ratings, but each node corresponds to an user
in the social network. Different from these approaches, our
work is interested in inferring the probabilities for items to be
selected by users using only implicit data.

III. TorP-N RECOMMENDATION USING SOCIAL
NETWORKS

A. Problem Description

We assume a set of M users denoted by U = {1,..., M}
and a set of L items denoted by I = {1,..., L} in the social
recommender system. Let U; denote the set of users who have
consumed item ¢, and [,, denote the set of items consumed by
user u. Note that user u may also provide explicit feedback
on item ¢ € I, in the form of rating r,;, but users keep such
explicit data private. We arrange the collection of observed
implicit data in a M x N matrix S, where for each user u
we place a ‘1’ at the intersection of the u-th row and i-th
column if ¢ € I, and leave the rest of the entries unfilled.

Fig. 1: Graphical representation of the social network.

Further, we assume that there is a social network established
among users, where each user u is directly connected to a
set of friends denoted by T),. Let w,, denote the trust value
user u assigns to user v € T, where larger trust value means
higher degree of trust. w,, can be some continuous value,
e.g., Wyy € [0, 1], or can be binary value, where ‘1’ indicates
the existence of trust relations and ‘0’ indicates unknown or
no trust relations. Note that the trust relations are generally
directed and asymmetric. We can represent the social network
in a directed graph G(V,E), where V is the set of vertices
representing users in U, and £ is the set of edges representing
social relations between users. In Fig. 1 we illustrate the
graphical representation of a social network, where the weight
on the edge is the trust value.

Given an active user z, the top-N recommendation task is
to generate a list of N items from I\, for user z. In this
work, we focus on exploiting the social relations for collab-
orative recommendation. We construct probabilistic Bayesian
networks to model the item consumption in the social network,
and infer the probabilities for items to be selected by the active
user given the observed data in S. Then the top-NV items with
the highest probabilities are recommended to the active user.

B. Social Network-Based Bayesian Network

We define a binary variable s,,; to represent whether or not
item ¢ is selected by user u, s,; = 1 if selected and s,; = 0
otherwise. Hence, s,; = 1 for item ¢ € I,,. However, for other
items ¢ € I\ [,,, instead of simply setting s,,; = 0, we consider
them as unknown, since our goal is to recommend items from
I\I, to user u. We are interested in inferring the probability
distribution of s,;, denoted by BEL(sy;), Vi € I\I,, given
the observed data in S. We make such inference following the
fact that a user is most influenced by the friends he directly
connect to in the social network.

We denote by M (u, K') a subset of K users with the highest
trust values from user u’s friend set T),. To determine A (u, K)
in scenarios where users do not explicitly specify trust values,
e.g., assuming one for all trusted users, we first compute w,,,,,
Yv e T,, as
[T, N L]

uvzl T o~ 7,
v Jr|IumIv|+c

ey
where ¢ > 0 is a constant. If user u has selected many items
in common with user v in the past, user w is supposed to have
high trust on user v. Given an active user z, to infer BEL(s;)
for item ¢, we construct a Bayesian network G, as illustrated
in Fig. 2. The root node at Layer O represents variable s;.
Its parent nodes at Layer 1 are denoted by P,; = {$y; : v €
N(z, K)}, which correspond to the friends of user z. Similarly,
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Fig. 2: Bayesian network G; for active user z.

for each node s,; at Layer 1, we place its parent nodes at
Layer 2. We repeat this process until Layer D. According to
the conditional independence in the Bayesian network, each
node s,,; is conditionally independent of other non-descendant
nodes, given the configuration of its parent nodes P,;. We
describe the conditional probability P(s,;|Py:) as

Zvé/\/(u,K) Wy Sui

(2)
ZUEN(U,K) Wy

where P(sy; = 0[Pui) = 1 — P(84; = 1|Pus).

C. Inference and Expectation Propagation

Before introducing the inference process, we specify the
observed and hidden variables in G.;. Let V; = {s,; : v € U;}
be the set of observed variables for users who have consumed
item ¢. Then s = 1, Vs € V;. Further, we assume the set
L.:(D) of variables at Layer D are also observed. Spe01ﬁcally,
we set s = 0 for s € L,;(D)NV;, where V; = {s,; : v €
U\U;}. We treat the rest of the variables in V;\L.;(D) as
hidden variables whose values are unknown.

We employ the Belief Propagation (BP) algorithm [17] to
perform inference. However, exact inference can be intractable
due to loops in the Bayesian network G.;. We instead resort
to approximate inference by assuming a tree structure for G;.
Then inferring BEL(s,;) is completed by passing probabilistic
messages along the edges from the variable nodes at Layer d to
the ones at Layer d — 1, starting from Layer D. Specifically,
we compute the message 7, (sp;) sent to node s,; at Layer
d — 1 from node sy; € P,; at Layer d as follows

Ta(Spi) = QZP(Sbi|Pbi) H b(Sqi), 3)

Phi geN (b,K)

where « is a normalization factor such that ZS €{0,1} o (Spi =

s) = 1. Note that if sp; is observed as sy; = 8pi, Sp; € {0, 1},
then 7,(sp; = Sp;) = 1 and m,(sp;) will not be updated.
7o (Spi) expresses the probability distribution of sp;, given the
new evidence acquired by sp; from incoming messages. Each
node s,; in G.; generates messages sent to its children nodes
once all messages from P,; have arrived at s,;.

The computational complexity in (3) is O (K2), which
grows exponential with K. However, (3) can be simplified as

Fig. 3: Iterative EP in a unified bipartite graph G;.

following. Substituting (2) into (3), we have

azqu(b,K) 2p,, WoaSai [genn, 1) ™ (34i)
quN(b,K) Whg

=a Y tugEr,(sq), )

geEN (b,K)

Ta(Sps = 1) =

A, A
where we define Wy, = ﬁ, and denote E(-)
VEN (b, ) Wou

as expectation operation. Note that E., (sq) is carried out
with respect to the distribution my(sq;). By using (4), the
computational complexity of generating a single message is
reduced to O(K). Moreover, since E,_(sp;) = ma(sp: = 1),
we can rewrite (4) as

Er, (s6:) = & Y pgEr, (5i)- (5)
geEN(b,K)

We hereafter refer to message passing using (5) as Expectation
Propagation (EP). Finally, when all messages from nodes P.;
have arrived at s,;, we compute BEL(s,;) as

Z wz’U]Eﬂ'z (Svi)- (6)

vEN(z,K)

BEL(s.; =1) =

We would like to clarify that, the propagation of messages
between nodes is performed in a central server that collects
and processes user data. Hence, there is no actual exchanges
of messages between users in real world. However, the algo-
rithm can be readily adapted for distributed implementation as
explained in Sec. III-E.

D. Iterative Expectation Propagation

In Secs. III-B and III-C, we have shown that to infer
BFEL(s;;) for an active user z, we need to construct a Bayesian
network G, consisting of D layers of variable nodes. However,
the intermediate results during the inference process in G,;
are not fully utilized. Indeed, there are significant amounts of
repeated computations when performing inference for different
users. In the following, we propose an iterative EP algorithm to
simultaneously compute { BEL(s,;) : u € U} of all users for
each item 4 in a single unified bipartite graph G; that concisely
encodes all social connections.

We create a set of virtual users, denoted by U =
{1,..., M}, where each virtual user % € U is an image of
a umque user u© € U. We also assign a variable sgz; for each
user @. We represent the variables in S;(U) = {s,; : u € U}
and S;(U) = {sg; : & € U} as two rows of nodes as illustrated
in Fig. 3. Let N (u, K) denote the set of images of users in
N (u, K). For each variable node s,; € S;(U), we connect to
it the image nodes P,; = {s4 : v € N'(u, K)} rather than its



true parent nodes P,;. Similarly, we connect each sz; € S; (U)
to P, instead of P,,;. Then all layers of all concerned Bayesian
networks are included in this unified representation G;. To see
this, we can consider S;(U) and S;(U) respectively as Layer
d + 1 and Layer d, when messages are sent from S;(U) to
S;(U) along the directed edges, and as Layer d — 1 and Layer
d, when messages are sent to S;(U) from S;(U). Hence, the
EP message-passing in any multi-layer Bayesian network can
be carried out in G; by iteratively passing messages between
S;(U) and S;(U). Moreover, we can simultaneously infer all
{BEL(sy;) : uw € U} in G;, reusing intermediate results and
thus reducing overall computational complexity.

Following (5), the messages exchanged between variable
nodes S;(U) and S;(U) are given as follows

Er, (50:) = Z WygEnr, (Sqi)a Vsi € Si(U), (7
GeEN (v,K)

Er,(s5i) = 3 tsgBr,(s4i), Vsui € Si(0).  (8)
qeEN (,K)

Note that passing messages using (7) and (8) for a total
of D times is equivalent to performing inference in D-
Layer Bayesian networks shown in Fig. 2. We initialize the
messages as in Sec. III-C. Assuming it starts from (7), we
set B, (s3:) = 1 if v € U;, and Er, (s5;) = 0 otherwise. In
addition, during iterations, we always set both E, (sz;) and
E,. (syi) to one for v € U,.

The resulting iterative EP inference algorithm is executed
for every item in I in order to generate top-N recommen-
dations. After obtaining {BEL(sy;) : u € U}, Vi € 1, for
each user u, we rank the items in I\ 7,, in descending order of
BEL(sy; = 1), and recommend the top-N items to user u.
We observe that both steps (7) and (8) have the computational
complexity of O(K). Then, the overall complexity of inferring
{BEL(sy;) : w € U}, Vi € I, is O(DLMK), when using
the proposed iterative EP algorithm to perform inference for
all users simultaneously in the unified bipartite graph with D
steps of message passing for each item.

E. Distributed Implementation

The proposed EP message-passing algorithm is very suit-
able for distributed implementation. To acquire recommenda-
tions from the social network, an active user z sends request to
his directly connected friends N(z, K) for their information
about items. In addition, user z also sends a decremental
counter C' with initial value D to its friends. If a friend
v € N(z, K) has consumed item i, he will send the message
E,.(svi) = 1 back to the requester user z. Otherwise, user
v first decreases the counter C' by 1, and if C' is still greater
than O, he sends a request to his directly connected friends
N (v, K) for information on item ¢, along with the counter C,
otherwise he sends the message E._(s,;) = 0 back to user z.
In cases that user v does send request to his friends, each friend
u in M (v, K) repeats the same procedure as user v undergoes.
Suppose user u sends request to his friends. Then he waits for
response messages from A (u, K). Upon receiving all needed
messages, user u generates the message E (s,;) according to
(5), which is then sent back to user v. After the requester user 2z
receives all messages from N(z, K), he calculates BEL(sy;)
according to (6).

In the distributed implementation of message-passing, the
users only exchange messages with their directly connected
friends in the social network. There is no need for users to
reveal their data to the public. Also, each user mixes the
messages received from his friends to generate a new message.
Hence, it is difficult for users to extract the original data of
friends of his friends from the received messages. Therefore,
user privacy is further protected.

IV. EXPERIMENTAL RESULTS

We evaluate the top-N recommendation performance of the
proposed EP algorithm using the Epinions! dataset prepared by
[18]. The dataset consists of 49,290 users and 139,738 items.
A total of 664,824 ratings are given by users on items, and
each rating is an integer between 1 and 5. The dataset also
includes 487,181 directed trust statements with trust value one.
We randomly select 20% users for testing, and the rest for
training. As in [6], [7], we define cold start users as users who
have less than 5 ratings. Of the testing users, 41.5% are cold
start users (52.8% in the overall dataset). For each user u in
the testing set T, we withhold an item, denoted by W,,, which
has the maximum rating among items rated by this user. The
performance of top-/N recommendation is measured by recall
computed as

Recall(N) = Zuer HIT (W, 1 (N) ), 9)
|T|
where I,,(N) is the set of top-N items recommended to user u,
and HIT(-) = 1if W, € I,(N) and HIT(-) = 0 otherwise.
Given N, higher recall means better performance.

We compare the performance of the proposed EP algo-
rithm, the random walk based TrustWalker algorithm [7], and
the voting-based PureTrust algorithm [6]. Note that due to
the sparsity of the dataset, the recalls are quite low for all
simulated recommendation algorithms when the number of
recommended items is too small. In Fig. 4, we present the
recall results for these algorithms for top-/N recommendations
when tested on (a) cold start users, and (b) all users. We set
the neighborhood size K as 10 for both EP and PureTrust,
and set D of EP as 4. We also set ¢ = 5 in (1). The
TrustWalker does not have a neighborhood size specification
as it performs random walks over all possible users. The
results indicate that the proposed EP outperforms the PureTrust
algorithm. The achieved improvement for cold start users is
19% and 21% for top-100 and top-500 recommendations,
respectively. The TrustWalker has the worst results as similarly
observed in [6]. This is because many rating predictions
generated by TrustWalker will have equal values, and the
top-N items are selected without considering their popularity,
which include many rarely rated items that have received one
or two 5-ratings. As for computational complexity, to generate
recommendations for all users, the proposed iterative EP
requires O(DLMK) as discussed in Sec. III-D, comparable
to O(LMK) of PureTrust.

We further investigate the impacts of parameters K and D
on the performance. To better illustrate the effects, we report
results for top-500 recommendations, considering the sparsity
of the dataset. In Fig. 5, we provide the top-500 recall results

Thttp://www.trustlet.org/wiki/Epinions_datasets.
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Fig. 5: Top-500 recall versus neighborhood size.

on cold start users under varying neighborhood size K. The
results of EP are shown for both D = 3 and 4. It can be
seen that EP achieves better results than PureTrust for all K
from 10 to 100. In Fig. 6, we investigate the impact of D.
We show the top-500 recall results on cold start users for
D from 2 to 5, when K = 10 and 20. We observe that
increasing D from 2 to 4 improves recall, but then as D
increases further, the performance starts to saturate or even
drop. This is because increasing D too high would allow the
propagation of information from users that are further away
from the active user in the trust network.

V. CONCLUSIONS

In this paper, we propose a message-passing based social
recommendation algorithm that exploits the social relations
between users in the social network to generate top-N rec-
ommendations, using only implicit user preference data. We
model the probabilities for items to be selected by the active

Recall (%)

Fig. 6: Top-500 recall versus D.

user in Bayesian networks constructed based on the social
network, and develop the EP message-passing algorithm to
perform approximate inference efficiently. We also propose an
iterative EP algorithm to carry out EP message-passing for
all users simultaneously in a unified bipartite graph repre-
sentation. Moreover, the proposed message-passing algorithm
is suitable for distributed implementation, where users only
exchange messages with their directly connected friends. The
experimental results on the Epinions dataset show that the
proposed EP algorithm achieves better top-N recommendation
performance in terms of recall than both the random walk
based and voting based social recommendation algorithms,
while its computational complexity is comparable to theirs.
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