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Abstract—Collaborative filtering (CF) is the most popular
recommendation algorithm, which exploits the collected historic
user ratings to predict unknown ratings. However, traditional rec-
ommender systems run at the central servers, and thus users have
to disclose their personal rating data to other parties. This raises
the privacy issue, as user ratings can be used to reveal sensitive
personal information. In this paper, we propose a semi-dis-
tributed belief propagation (BP) approach to privacy-preserving
item-based CF recommender systems. Firstly, we formulate the
item similarity computation as a probabilistic inference problem
on the factor graph, which can be efficiently solved by applying
the BP algorithm. To avoid disclosing user ratings to the server or
other user peers, we then introduce a semi-distributed architecture
for the BP algorithm. We further propose a cascaded BP scheme
to address the practical issue that only a subset of users partic-
ipate in BP during one time slot. We analyze the privacy of the
semi-distributed BP from a information-theoretic perspective. We
also propose a method that reduces the computational complexity
at the user side. Through experiments on the MovieLens dataset,
we show that the proposed algorithm achieves superior accuracy.

Index Terms—Collaborative filtering (CF), recommender sys-
tems, privacy, belief propagation (BP), factor graph.

I. INTRODUCTION

T HE thriving of the Internet and online services has over-
whelmed users with an explosive amount of product infor-

mation. It is too exhausting for users to go through the complete
list of thousands of items, e.g., books and movies, to find items
interest them. Recommender systems have been widely used in
e-commerce websites, such as Amazon.com and Netflix.com, to
suggest to users items that they might like [1]. Good recommen-
dation services increase user satisfaction and boost business.
Since users have different tastes, it necessitates personalized
recommendation services that meet an individual's preferences.
Collaborative Filtering (CF) is the most popular recommen-

dation algorithm [2], where users express opinions on items by
rating them, and the CF algorithm exploits the collected his-
toric user ratings to predict ratings on unseen items for an in-
dividual user, and recommends to the user the items with the
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highest predicted ratings. The CF recommendation can be di-
vided into user-based and item-based methods. The user-based
CF method recommends to an active user new items favorably
rated by other users with similar tastes to the active user [3].
The item-based CF method on the other hand analyzes the sim-
ilarity between items using the aggregated user ratings, and rec-
ommends to an active user new items that are similar to the items
he liked in the past [4]. Closely related to the item-based CF is
the content-based recommendation method, which also recom-
mends similar items. However, the content-based method eval-
uates item similarity based on the explicit features that describe
the items, and hence it is limited by the content analysis tech-
niques, as it is difficult to automatically extract features from
multimedia data [2]. The item-based CF recommendation is im-
mune to such problems, an important reason for the popularity
of the CF recommendation.
In traditional recommender systems, the recommendation al-

gorithm is run at the central server of the commercial websites
or other third party providers, and thus the users have to dis-
close their personal information, such as preferences, age and
gender, to the server in order to receive satisfactory recommen-
dation services. This raises the privacy issue, as users simply
have no control over how their personal data will be dissemi-
nated and used [5]. It is not uncommon that websites sell to other
parties such data, which are valuable for targeted advertising.
As users become more concerned about their online privacy,
they are less willing to directly release their personal informa-
tion. Since detailed user profiles are difficult to obtain, most rec-
ommender systems employ the CF recommendation approach
which only relies on the user ratings. Although rating data do
not directly tell personal details, it is still possible to infer user
demographics, such as age and gender, from their ratings [6],
and even uncover user identities and reveal sensitive personal
information with access to other databases [7]. While personal-
ized recommendations at e-commerce websites have been very
successful [8], users are increasingly worried about online pri-
vacy [9]. Privacy-preserving CF recommender systems are thus
in urgent need. The challenge stems from the conflict between
accuracy and privacy. That is, to provide recommendations that
better match the user's tastes, the system needs to know more
about the user.
Most privacy-preserving recommender systems are devel-

oped either by obfuscating user data with random noise [10] or
fake data [11] at the cost of recommendation accuracy, or by
encrypting user data using cryptography techniques [12] which
require careful key management. In this paper, we hope to
build a recommender system with intrinsic privacy-preserving
properties. To achieve this goal, it is evident that any commu-
nications between the server and users or between user peers
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should avoid exposing user ratings. An interesting work in [13]
utilized concordance measure for computing user similarity
required by the user-based CF algorithm, where computation
is conducted between users without exposure of their ratings
to each other, but unfortunately, to collaboratively generate
recommendation, users need to reveal ratings to other users.
We notice that user-based CF relies on direct collaboration
among users, i.e., a user needs to know what other people like
to find out what he might like, whereas item-based CF exploits
the consistency in an individual user's taste, i.e., if a user
likes an item, he might also like other items similar to it. We
consider item-based CF a better choice for privacy-preserving
recommender systems. The accuracy of the item-based CF
system depends on the measure of item similarity, which has to
be estimated based on ratings on items, and further, subject to
the privacy constraint.
In this paper, we introduce a semi-distributed Belief Propaga-

tion (BP) approach to privacy-preserving item-based CF recom-
mender systems. Firstly, we formulate the item similarity com-
putation, a key step of item-based CF, as a probabilistic infer-
ence problem on a proper factor graph, which can then be ef-
ficiently solved using BP. Then we develop a semi-distributed
architecture for BP, where probabilistic messages on item simi-
larity are exchanged between the server and users, without dis-
closing user ratings to the server or other peer users. We further
propose a cascaded BP scheme to address the practical issue that
only a subset of users are available for BP during one time slot.
Each user locally generates rating predictions by averaging his
own ratings on items weighted according to their similarities to
other unseen items. Hence, the proposed item-based CF algo-
rithm preserves user privacy in both item similarity computa-
tion and rating prediction. We analyze the achieved privacy of
the semi-distributed BP from a information-theoretic perspec-
tive. We also propose a method that reduces the computational
complexity of BP at the user side. Through experiments on the
MovieLens dataset, we show that our algorithm achieves supe-
rior accuracy.
The rest of the paper is organized as follows. In Section II,

we introduce the preliminaries. In Section III, we present the
modelling and computation of item similarity on factor graphs
as a key step of item-based CF. In Section IV, we describe the
semi-distributed privacy-preserving architecture as well as the
cascaded BP scheme. In Section V, we present the informa-
tion-theoretic privacy analysis. In Section VI, we analyze and
reduce the computational complexity. In Section VII, we eval-
uate the recommendation performance of the proposed algo-
rithm on the MovieLens dataset, and compare it against other
well-known item-based CF algorithms. In Section VIII, we re-
view the related works on privacy-preserving information pro-
cessing techniques and applications of BP to recommender sys-
tems. In Section IX, we conclude this paper1.

II. PRELIMINARIES

A. Collaborative Filtering
Assuming there are users and items in a recommender

system, let represent the set of all users, and
represent the set of all items. A user expresses

1Part of this work was previously published in [14].

his opinion on item in the form of rating which takes values
from a finite discrete set , e.g.,

. We arrange the collection of all ratings in an
incomplete matrix , with at the intersection of
-th row and -th column. The entries of unknown ratings are

unfilled. Let denote the subset of items rated by user , and
denote the subset of users who have rated item . The task of

a recommender system is to predict the ratings for an active user
on the subset of unseen items . Throughout this paper, we

focus on the item-based CF recommendation algorithm [4].
To predict the rating for user on an unseen item , the

algorithm sorts the items in according to their similarity to
item in descending order, and finds a subset of top most
similar items, denoted by , where . We refer to

as the neighborhood of item from user 's perspective,
and as the neighborhood size. Then is predicted by

(1)

where is the similarity between items and . The accuracy
of the algorithm depends on the measure of item similarity ,
which is computed based on the observed ratings on items. The
user-based CF algorithm uses a similar formula to (1), but based
on ratings from other users.
Several well-known methods for item similarity computation

include Cosine Similarity (CS), Pearson Correlation Similarity
(PCS), and Adjusted Cosine Similarity (ACS) [4]. Yet, all of
those mentioned methods directly operate on ratings from dif-
ferent users, which requires users to disclose ratings to the server
or other users. In this paper, we will introduce a semi-distributed
BP algorithm for item similarity computation with intrinsic pri-
vacy-preserving property.

B. Factor Graphs and Belief Propagation
A factor graph is a bipartite graph that expresses the factor-

ization structure of a global function of many variables, where
variable nodes and factor nodes represent variables and local
functions, respectively, and an edge connects a variable node to
a factor node if and only if the variable is an argument of the
local function represented by the factor node [15].
The sum-product BP algorithm is a message-passing algo-

rithm that operates on the factor graph, in which messages are
exchanged between the factor nodes and variable nodes. It es-
sentially exploits the factorization structure to efficiently com-
pute marginal functions from the global function [15], [16].

III. MODELLING ITEM SIMILARITY ON FACTOR GRAPHS

A. Probabilistic Problem Formulation
We model the similarity between items and as a dis-

crete random variable that takes values from a predefined set .
The total number of possible values is . Let

be the set of item similarities between item
and other items. We denote by the joint posterior prob-
ability distribution of . To obtain , we need the marginal
posterior probability distribution of , which can be derived
by

(2)
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Fig. 1. The factor graph .

For notational convenience, we rewrite (2) for the sum over all
variables in except as

(3)

However, direct computation using (3) is not appealing, because
it must be performed by a central server, and thus users are re-
quired to disclose their ratings to the server. Moreover, (3) in-
curs an exponential complexity of . We instead resort
to the factor graph to express the factorization of , and
apply the efficient sum-product BP algorithm to infer the mar-
ginal posterior probability distributions. More importantly, as
will be described in Section IV, the BP algorithm can be carried
out in a semi-distributed manner, so that the part of computation
that requires knowledge of user ratings can be locally performed
by the user, eliminating the need to disclosing user ratings.

B. Modelling With Factor Graphs
We first find a proper factorization for . For each user

, we denote as the set of item
similarities between item and other items user has rated, and
use a local function to model the dependencies among
variables in from user 's perspective. Hence, fac-
torizes into local functions as follows

(4)

where is a normalization constant.We construct a factor graph
for the factorization in (4) as illustrated in Fig. 1, where there

are variable nodes and factor nodes. Each is
represented by variable node in , and each local function

is represented by factor node . The subset of variable
nodes for are connected to factor node via edges. Let
denote the set of common users of items and .
Hence, variable node is connected to factor nodes in
. Essentially, if a user has rated item and other items

in , then this user has a belief on the similarity
, from his perspective. The factor graph allows users'

beliefs be exchanged and aggregated following the principle of
sum-product message passing. To solve for all item similarities

, a total of such factor graphs need to be
constructed.
The local function determines how user estimates

item similarity based on his own ratings. It should be properly
designed with regard to the eventual goal to predict ratings using
(1). For a user who has rated item , we assume for now rating

is unknown, and let . Given a configuration of
item similarities in , user predicts as

(5)

Note that (5) has a similar form to (1). Then user checks
against the actual rating using the following factor

node function

(6)

where is a normalization constant, and is a designing pa-
rameter that controls the sensitivity of to the discrep-
ancy between and . We note that decreases
with increasing discrepancy.

C. BP for Similarity Computation
We describe the sum-product BP algorithm to infer the

marginal posterior distribution , on the
factor graph , without worrying about privacy. Later in
Section IV-A, we will introduce the semi-distributed im-
plementation of BP for privacy, yet with no impacts on the
computed similarities. Since the constructed factor graph has
loops, we apply the “loopy” BP algorithm that iteratively
exchanges messages between factor nodes and variable nodes
along the edges until convergence [15]. As in the sum-product
principle, there are two types of messages passed on : (i) The
-message sent from a factor node to a variable

node , and (ii) the -message sent from a variable
node to a factor node .
We illustrate the message passing in Fig. 3. In each iteration,

each node (factor node or variable node) in the factor graph gen-
erates and sends messages to the neighbor nodes connected to
it, based on incoming messages. In iteration , factor node
generates the -message sent to variable node by
computing the product of local factor function with all
-messages received in the previous iteration from neighbor

variable nodes of factor node , excluding the message from
the recipient variable node , and sums out all variables except

as follows

(7)

The -message is a list of the beliefs on the similarity
, perceived from user 's perspective, given

the current collective knowledge of the similarity between other
items in and item .
Variable node generates the -message sent to

factor node as the product of all incoming -messages re-
ceived in the current iteration from all factor nodes connected
to variable node , excluding the one from the recipient factor
node as follows

(8)

where denotes the set of factor nodes connected to variable
node . Here in graph . The -message

is a list of beliefs on the similarity ,
which is generated by aggregating beliefs from other users in

on the similarity .
After convergence, the marginal posterior distribution

is computed at variable node as product of all
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Fig. 2. Architecture of semi-distributed BP.

-messages received from neighbor factor nodes connected to
variable node as

(9)

where is a normalization constant. Finally, based on themar-
ginal posterior distribution , the item similarity can
be estimated in various ways. We consider using the minimum
mean squared error criterion, for which the optimal estimated

is given by the expectation

(10)

We summarize the BP algorithm for computing on factor
graph in Alg. 1.

Alg. 1 BP on for computing item similarity .

• Initialize all messages as and
, and set iteration .

• Iterative message passing until convergence.
• Update all -messages using (7);
• Update all -messages using (8);
• . If not convergent, repeat (a) and (b).

• Compute marginal posterior probability distributions
of using (9).

• Compute item similarity using (10).

IV. SEMI-DISTRIBUTED PRIVACY-PRESERVING CF
Our goal is to build a privacy-preserving recommender

system. Specifically, we would like to preserve user privacy
for both item similarity computation and recommendation
generation. In the following, we introduce the semi-distributed
architecture of the proposed BP algorithm for item similarity
computation without exposing user ratings, and the user-side
recommendation generation as well.

A. Semi-Distributed BP
From Section III-C, we know that the messages exchanged

between factor nodes and variable nodes are probabilistic state-
ments on item similarity, and such messages do not directly re-
veal user ratings. However, the user rating data are used to com-
pute for generating -messages using (7). Hence, the

Fig. 3. Illustration of message passing at iteration . (a) The -message
. (b) The -message .

key to preserve user privacy is to compute -messages at the
user side. The -messages can be generated at a central server by
performing multiplication operations on received -messages.
This leads to the semi-distributed implementation of the BP al-
gorithm. As wewill see next, the computation follows the BP al-
gorithm described in Section III-C, and thus the semi-distributed
BP does not impact the computed results.
The architecture of the semi-distributed BP is shown in Fig. 2.

The message passing on graph is carried out by exchanging
messages between the server and the users. Users locally store
their personal ratings, and generate -messages according to
(7) without disclosing their ratings to the server or other users.
User sends the -message to the server in the format

shown in Table I, where the -entry vector stores the values
of . The server is responsible for gen-
erating -messages. To compute the -message , the
server checks if all -messages from users in
have been received. The server then performs multiplication op-
erations on the -messages to generate -messages according to
(8), and sends the -message to user in the format
shown in Table II, where the -entry vector stores the values
of . The server checks the convergence
of messages, and obtains the item similarity after convergence
using (10). Although we have applied synchronous BP here,
asynchronous BP can be readily used, where messages are up-
dated whenever newmessages arrive. Indeed, round-robin asyn-
chronous BP converges at least as fast as synchronous BP [17].
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TABLE I
THE FORMAT OF -MESSAGES

TABLE II
THE FORMAT OF -MESSAGES

The computation of all item similarities in
requires factor graphs, with computed using factor graph
. We introduce three protocols for coordinating the message

passing on different graphs: the serial protocol, the parallel pro-
tocol, and the pipeline protocol. In the serial protocol, the mes-
sage passing on factor graphs is performed in a serial manner,
that is at any time, all generated messages belong to one factor
graph, and unless inference on that graph is finished, no mes-
sages on other factor graphs are generated. Alternatively, we can
adopt the parallel protocol. If the bandwidth of the communica-
tion channel between users and the server is sufficient, and if
the user's computational capability allows, message passing on
multiple factor graphs can be performed in parallel to accelerate
the inference process. The pipeline protocol, which is a combi-
nation of the serial and parallel protocols, is favorable when the
delay in the network is large. While waiting for the messages
on one factor graph to arrive, users can compute messages on
other factor graphs and continue to send them to the server, so
as to increase throughput and make more efficient use of com-
putational resources as well.
Aside from the semi-distributed implementation, a fully dis-

tributed implementation is also possible. For example, [18] pro-
posed a distributed BP-based trust management algorithm for
P2P networks. Users directly send -messages to other users
instead of to the server, and also generate -messages locally
using received -messages, without relying on the server. How-
ever, there is a significant increase in communication overhead,
considering that a -message needs to be sent to each
of the users in , as they require this -message for updating
-messages. Moreover, for each item a user has rated, he needs

to find out other users who also have rated that item, i.e., the
graph must be known by the users. Further, since the item simi-
larity is locally computed by users, and user only obtains

, the users need to share with each other the item
similarities. Thus, a more sophisticated protocol needs to be de-
veloped for a fully distributed system.

B. Cascaded BP
The semi-distributed BP architecture in Section IV-A re-

quires that all users be active and participate in BP message
propagation at the same time. Yet, in practical scenarios, it
is difficult to meet this stringent requirement due to various
reasons, e.g., some users may not be active temporally. To
address this challenge, we adapt the original BP architecture to
perform BP in cascade. Rather than wait until all users become
active, we can perform BP on the subgraph constructed based
only on the subset of users active during the current time slot,
and store the inferred knowledge for use in the next time slot.

Let denote the available subsets of users at
time slots , respectively. We construct based on

at each time slot , and perform inference in . To incor-
porate the knowledge from the previous graph into
at time slot , we introduce the priors ,
where is the marginal distribution of com-
puted from . With these priors, the server computes the
-messages according to

(11)

Upon convergence, the server computes the marginal distribu-
tion as follows

(12)
Note that is actually computed by the server in
the previous graph , and hence it is directly available for
the server. The computation of -messages at the user side is
still the same as (7). Hence, during cascaded BP, the priors are
always directly computed and used at the server side.
The intermediate item similarity at time slot can be com-

puted as

(13)

Wewill also update at each time slot of the cascaded BP. This
allows us to generate recommendations using the most up-to-
date item similarity.

C. User-Side Recommendation
Thus far, we have focused on the item similarity computa-

tion using the semi-distributed BP algorithm. To complete the
privacy-preserving item-based CF recommender system, it re-
mains to specify the recommendation generation. As introduced
in Section II, the item-based CF computes rating prediction for
user on item using (1), which takes as its input the past ratings
of user and item similarities. To avoid revealing user ratings,
users would then locally generate rating predictions. Since the
item similarities are obtained at the server side in the semi-dis-
tributed BP algorithm, the server should send to users the re-
quired item similarities. To predict ratings on all unseen items
in , user only needs item similarities in

. After computing rating predictions, users can locally
store the item similarities received from the server for future
uses, and only update them periodically. We summarize the
functions of the server and users in Table III.
It is worth noting that in addition to preserving privacy,

user-side recommendation also enhances user trust in e-com-
merce. Traditionally, centralized recommender systems owned
by the commercial websites can manipulate the recommenda-
tions in various ways for revenue. A website might place the
items with the highest profits on top of the recommendation list,
or even employ recommendations as tools for advertisement of
new products. This trust issue is well addressed by user-side
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TABLE III
SUMMARIZATION OF ENTITY FUNCTIONS

recommendation, where users locally generate recommenda-
tions on their personal computers.

D. Accuracy and Communication Overhead
Assuming all users participate in BP, the semi-distributed

architecture does not compromise the accuracy. Basically, we
let users locally conduct the computations that require private
rating data, but all computations are carried out exactly as
in a centralized approach in Section III-C, and the user-side
recommendation generates rating predictions using exactly (1).
When not all users are available for BP at the same time slot,
we can apply the cascaded BP scheme to improve performance
over time. We will present performance evaluation later in
Section VII.
The proposed algorithm incurs additional communication

overhead. In the semi-distributed BP on graph , for each
user , there are -messages and -messages
exchanged between the server and user in each iteration.
And the server needs to send a total of item
similarities to user for user-side recommendation. Whereas in
the centralized approach, only the generated recommendations
need to be sent to the user.

V. INFORMATION-THEORETIC PRIVACY ANALYSIS

We analyze the achieved privacy of the proposed algorithm
for item-based CF by characterizing the information leakage
from the information-theoretic perspective. According to
Section IV, the -messages and -messages are exchanged
between the server and users, which can cause privacy
degradation.

A. User Privacy Loss due to -Messages
The -message in (7) is sent from user to the

server. Suppose the server tries to infer information from -mes-
sages about user 's ratings on items. We characterize the upper
bound of information-theoretic privacy loss. To simplify the
analysis, we assume can only take values from .
From (7) and (6), we can see that

(14)

where is a parameter whose value is determined
by ratings on other items and the messages

. Since the server does not have direct
access to user ratings, is unknown to it. To derive an upper

bound, we assume that is close to 1 with large probability,
as the empirical results in [4] show that the item-based rating
prediction method generates a rating with absolute error less
than 1 on average using datasets with similar rating scale to .
Using this prior knowledge and (14), the server can infer about
user ratings as follows

(15)

We define the total privacy of user , i.e., his rating informa-
tion unknown to the server, as

(16)

where denotes entropy. Note that we have assumed that
user rates different items independently, and the user rating
on each item takes values from with equal probabilities.
Next we compute the privacy loss as the re-

duction of unknown information of user 's ratings after the
server observes

(17)

Since only introduces dependency between and
, we have

Hence,

(18)

Specifically, for the two cases in (15), we have:
1) If

(19)

2) If

(20)

The expected privacy loss per -message can be given by

(21)



1312 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 7, OCTOBER 2015

where is the probability that user rates items
and with the same rating, and

.
Taking into account all -messages from user on graph ,

we can compute the -message privacy loss for user on graph
as

(22)

Observing that

(23)

(24)

we have

(25)

Hence, the expected privacy loss resulting from all -messages
from user on graph is

(26)

As one example, suppose user has rated 20 items with the
rating scale . His total privacy is
bits, and the expected privacy loss due to -messages on one
graph is 8.02 bits.

B. Total User Privacy Lost to the Server
In the previous analysis, we focused on the privacy loss due

to messages on a single graph, but each user may participate
in as many graphs as the number of items he rated, e.g., user
may send -messages on the set of graphs . We

are interested to know the total privacy loss of user as a result
of participating in multiple graphs. However, it is not simply
the sum of privacy loss on all graphs, since the -messages on
different graphs are not independent and thus there is signifi-
cant redundancy in the revealed information. We next derive an
upper bound of the total privacy loss.

Suppose the server is intelligent, and by combining the pair-
wise relationships between item ratings of user inferred from
-messages on multiple graphs using (15), it can divide the un-

known ratings of user in to groups, where the items in each
group have the same rating while items in different
groups have different ratings. Let denote the set of items in
group , then . The unknown information of
item ratings in each group is

(27)
The unknown information of item ratings in all groups can be
derived as

(28)
Hence, the total privacy loss of user is

(29)

In the example of 20 rated items with , the privacy loss
is 39.53 bits versus the total privacy of 46.44 bits. However,
without knowing exactly the rating of each group, the server
will not be able to launch effective attacks against users to re-
veal sensitive personal information [6], [7]. Yet, the users are
suggested to randomly participate in only a subset of graphs to
better preserve their privacy.

C. User Privacy Lost to Other Users due to -Messages
The -messages are sent from the server to users, and no di-

rect messages are exchanged between users. Suppose a curious
user tries to extract from -messages information about rat-
ings of other users. We notice that in (8) mixes the
-messages from multiple users, but does not contain any infor-

mation about who are the source users that send those -mes-
sages. Thus, even if user can extract any information from
-messages, he does not know whom the information should be

related to.
Nevertheless, we are interested in characterizing the amount

of information a curious user can extract from -messages about
ratings of other users, assuming the server colludes with some
curious users and provides the graph structure information of
to them. We compute the upper bound of the rating information
of other users a curious user can infer about from the received
-message , as well as the privacy of a particular user

lost to user .
From (8), we know that is the product of -mes-

sages from multiple users in . To simplify analysis, we
consider the worst case of privacy loss where is con-
sistent with each -message , i.e., user can infer
about -messages as follows
1) If
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2) If

With the inferred -messages, user can further infer about
the ratings from other users in . The inference process is
the same as described in Section V-A. Hence, the upper bound
of the rating information of other users extracted from -mes-
sage can be given by

(30)

Using (21), we can obtain the expected amount of information
extracted by user from as

(31)
The privacy of user lost to a curious user are essentially

caused by the -messages on graph that mix -messages
from user and are forwarded to user by the server. Hence,
we can derive the expected privacy of user lost to user on
graph as

(32)

where denotes the set of common items rated by
users and .

VI. COMPLEXITY ANALYSIS AND REDUCTION
The computational complexity of the BP algorithm is de-

termined by the computation of -messages and -messages.
While the complexity of generating a -message using (8) is

, the complexity of generating a -message using (7)
is , where , which is exponential in the
degree of the factor node, i.e., the number of items user has
rated. Unfortunately, in recommender systems, a user can rate
over hundred of items. We thus propose a complexity reduction
technique by controlling the degree of the factor node.

A. Complexity Reduction
We randomly divide the variable nodes in at factor node

into small groups of size where is a small integer. There are
such groups. Let denote the size of group

for and
for . Let denote the variable nodes in group . We
set an indicator if and otherwise.
Since each variable node only belongs to one group,
we have . Let denote
the variable nodes in group of . Assuming independence of
variable nodes in different groups, we replace the factor node
function in (6) with

(33)

Fig. 4. Illustration of complexity reduction via grouping. (a) A high-degree
factor node. (b) Multiple -degree factor nodes.

where is the local function of variables in group . Hence,
wemodify the factor graph accordingly to obtain a new factor
graph for complexity reduction. Instead of connecting all
variable nodes in to one factor node , we connect a sep-
arate factor node to the group of variable nodes in . We
illustrate the complexity reduction at one factor node in Fig. 4.
A more intuitive understanding is that, user first randomly

divides the items in into multiple groups of size , and de-
cides item similarity on the basis of groups, as if items in dif-
ferent groups were rated independently by user . Since vari-
able node is associated with item , the variable nodes in
are grouped exactly as the grouping among items.
The local function at factor node can be similarly derived

as (6). Assuming on item is unknown, then using ratings
from items within group , user predicts as

(34)

We substitute with in (6) to obtain the new
local function of factor node

(35)

where is a normalization constant.
On the new factor graph , we apply the BP algorithm de-

scribed in Section III-C. The -messages and -messages are
exchanged between the new factor nodes and variable nodes.
The -message sent from factor node to vari-
able node is given by

(36)

And the -message sent from variable node to
factor node is given by

(37)

where .
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The complexity of updating a -message is effectively
reduced to from by using (36). Mean-
while, the total number of -messages need to be generated
from user 's perspective in each iteration remains , which
is the same as in . There is no change in complexity re-
garding the -messages. The overall complexity of the BP
algorithm on with complexity reduction in each iteration is

, where is the average number of
items rated by one user, and is the average number of users
of one item. Since the number of items a user can consume
is limited by his time and money, we can assume is much
smaller than . As for , we assume grows in the order of

, where . Then we can rewrite the computation
complexity on as , and
when and is large, it is dominated by the second term, so
we have .

B. Impact on Semi-Distributed BP
The complexity reduction part can be easily integrated into

the semi-distributed BP architecture in Section IV. Indeed,
the complexity reduction is for reducing the computational
burden of the users, and users can locally perform the required
grouping. Also, the grouping information is not needed at the
server side for BP. The server does not need to know from
which group of user the -message is generated, since only
one message is generated by user that is destined
to variable node on graph . Meanwhile, at the user side,
user can easily recover the group information “ ” from the
received message by looking up for with ,
and obtain , as if it was computed using (37), which
can then be used to update in (36).
Therefore, the grouping step is transparent to the server. The

computational complexity on graph at each user is only
, regardless of and , and users can autonomously

adjust according to the availability of local computation re-
sources and power.

VII. EXPERIMENTAL EVALUATION

We evaluate the accuracy of the proposed privacy-preserving
item-based CF algorithm on the 100 K MovieLens dataset2,
which consists of 100,000 ratings on 1682 items (movies) by
943 users. Each rating is an integer between 1 and 5. We ran-
domly divide the dataset into two disjoint sets: a training set
containing 80% of the ratings, and a test set containing the rest
20% of the ratings. The ratings in the training set are used as
memory for the item-based CF algorithm to compute item simi-
larities and predict unknown ratings. We compare the predicted
ratings with the actual ratings in the test set to evaluate the accu-
racy of the recommendation algorithms in terms of Mean Abso-
lute Error (MAE) and RootMean Squared Error (RMSE), which
are computed as follows

2Available at: http://www.grouplens.org/node/73.

where is the predicted rating, and is the actual rating in
the test set denoted by . The smaller the MAE and RMSE, the
better accuracy. Note that RMSE is more sensitive to large er-
rors thanMAE. In the experiments in Sections VII-A and VII-B,
we assume all users are active and participate in BP during the
same time slot. In Section VII-C we examine the performance of
the cascaded BP where only a subset of users are active during
each time slot.

A. Performance Comparison

We compare our proposed privacy-preserving algorithm with
other item-based CF algorithms using the well-known similarity
measures, including the CS, PCS and ACS methods as intro-
duced in Section II. In all cases, rating predictions are gener-
ated by (1). We assume no privacy requirement is imposed on
other algorithms, so the CS, PCS and ACS measures are di-
rectly applied to original rating data, and thus their results are
not compromised by privacy techniques such as obfuscation. In
particular, the presented results of the CS measure represent the
best achievable performance of the distributed personal recom-
mender system proposed in [19], as the item similarity between
two items is computed based on the complete rating vectors as-
sociated with them in , rather than computed in an incremental
manner as in [19].
The PCS and ACS methods compute the item similarity

between two items and using the ratings from the set of their
common users . We denote by the minimum
number of common users required for computing the item simi-
larity using PCS and ACS. If , then neither item
nor item will be used to predict each other's ratings. Let be
the set of all valid items for item under . To predict ratings
on item for user , the neighborhood used in (1) is formed
from the set of items in . In addition, given a re-
quired neighborhood size , if , we simply say the
unknown rating in the test set is unpredictable by the PCS
and ACS. We denote as the subset of all predictable rat-
ings in at neighborhood size . Note that changes with

, since impacts . For fair comparison of different algo-
rithms, we apply the same to all evaluated algorithms.
In Tables IV and V, we examine the MAE and RMSE perfor-

mance of various algorithms. The parameters of the proposed
algorithm are set as , and . We show
the results for and 8 with varying from 10 to 50 in
steps of 10. Under each , to fairly compare the performance
of different 's, all results are obtained on the same subset of
test ratings , and the percentage of ratings in used for eval-
uation is

%

Our proposed algorithm achieves superior performance com-
pared to other algorithms in terms of both MAE and RMSE.
As increases from 10, the performance of the proposed al-
gorithm, as well as PCS and ACS algorithms, first improves
but then degrades when becomes too large, because ratings
from neighbor items with smaller similarity to the active item,
on which the rating is predicted, corrupt the prediction accuracy.
Thus, to achieve the best performance, a proper neighborhood
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TABLE IV
MAE PERFORMANCE COMPARISON OF VARIOUS ITEM-BASED CF ALGORITHMS UNDER DIFFERENT NEIGHBORHOOD SIZE

TABLE V
RMSE PERFORMANCE COMPARISON OF VARIOUS ITEM-BASED CF ALGORITHMS UNDER DIFFERENT NEIGHBORHOOD SIZE

Fig. 5. Impact of on MAE of the proposed algorithm.

size should be chosen. The computational complexity cost
of our algorithm to solve for the similarities between item and
other items on graph is for large and
as discussed in Section VI, whereas for the CS method the com-
plexity is , and for PCS and ACS, the complexity is

. Finally, as we will see next, the performance of
our algorithm can be further improved if a higher degree is
used, but at the cost of increased computational complexity at
users.

B. Impact of Parameters
In the following experiments, we investigate the impact of

the parameters , and on the performance of our proposed
algorithm. We always set and evaluate the proposed al-
gorithm on . In Fig. 5, we investigate the influence of group
size on the accuracy of the proposed algorithm, where we fix
other parameters as , and . It can be seen that
increasing slightly improves accuracy. However, since the
computational complexity at user side is , which is
exponential in , users need to wisely choose according to
their computational capability. In Fig. 6, we show the results for
different 's, where and . The performance

Fig. 6. Impact of on MAE of the proposed algorithm.

TABLE VI
IMPACT OF ON MAE OF THE PROPOSED ALGORITHM

slightly degrades if is too small or too large, since for a small
, the curve of the factor function (6) quickly flattens out with

respect to , while for a large , the curve becomes too
flat. But overall, the algorithm is not sensitive for large dynamic
ranges of .
In Table VI, we show the results of the proposed algorithm

for different 's, where ,
and . We observe that and achieve their best
performance when , but actually provides better ac-
curacy than . This is because large could cause overfitting,
that is the obtained item similarity is strongly biased towards the
memory data, and does not generalize well when used for pre-
diction. Meanwhile, the computational complexity
at user side significantly increases with , depending on
.
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Fig. 7. MAE versus percentage of participating users.

C. Cascaded BP

We now investigate the more challenging scenarios where
only a subset of users are available for BP at a given time slot.
Firstly, we consider applying the basic BP algorithm without
introducing priors, i.e., the inferred knowledge from previous
time slots are not incorporated. The parameters are set as

, and . In Fig. 7, we
show the MAE results with the percentage of participating users
ranging from 10% to 100%. The performance degrades signif-
icantly as the percentage of users decreases. Thus, relying only
on the users available at the current time slot is not satisfactory.
Next, we apply the cascaded BP proposed in Section IV-B.

In the experiment, the users are randomly divided into 5 subsets
with equal sizes, i.e., only 20% of users can participate in BP
at each time slot. In Fig. 8, we show the MAE performance
versus the number of elapsed time slots, where at each time slot
the updated item similarity results are used to predict ratings.
We also show the results of the original BP algorithm with all
users participating at the same time slot. We can see that as the
number of elapsed time slots increases, the MAE performance
improves. After 5 time slots, the performance of the cascaded
BP approaches that of the original BP algorithm with all users.
Therefore, incorporating knowledge from previous time slots
can effectively improve the performance.

VIII. RELATED WORKS

Recently, privacy-preserving information processing and
data mining techniques have been widely studied. In [20],
the authors proposed distributed online learning with intrinsic
privacy-preserving properties, where local parameters at each
participating user are updated based on local data sources,
and parameters are periodically exchanged among a small
subset of neighbors, and they showed that malicious users
cannot reconstruct the subgradients of other users. In [21], the
authors applied homomorphic encryption to privacy-preserving
distributed aggregation of energy consumption metering data
in smart grids. A number of works also investigated pri-
vacy-preserving information processing in semi-distributed or

Fig. 8. MAE performance of cascaded BP.

centralized cloud computing. [22] proposed privacy-preserving
back-propagation neural network learning via cloud computing,
where private data of each party are first encrypted before being
uploaded to the cloud, and operations over ciphertexts are
supported via doubly homomorphic encryption. [23] addressed
multi-keyword ranked search over encrypted data in cloud
computing using secure inner product computation.
There are existing works on both centralized and distributed

privacy-preserving recommendation systems. The privacy-pre-
serving techniques that have been applied to centralized systems
mainly include data obfuscation and cryptography approaches.
The data obfuscation approach is to obfuscate user ratings with
random noise before releasing them to the server, e.g., differ-
entially private recommender system [24] and the perturbation
technique [10]. In [6], [11], the authors proposed to disguise
genuine user profiles by adding extra fake data. However, ob-
fuscation and random noise undermine accuracy, and users have
to sacrifice more privacy for better recommendation. In [25], the
authors proposed a data perturbation approach based on differ-
ential privacy with accuracy guarantees.
The cryptography approach encrypts users data using ad-

vanced cryptography techniques to hide user information, e.g.,
item ratings, from the recommender server, which only operates
on the encrypted user data [26], [27]. In particular, [27] pro-
posed an item-based privacy-preserving recommender system
with homomorphic encryption, where the server maintains an
item-item similarity model, and generates rating predictions
blindly by performing homomorphic operations on the en-
crypted ratings. However, the authors assumed the similarity
model is known a priori, and did not provide any privacy-pre-
serving solution for that. Besides, key management required by
cryptography tools could be demanding in practice. [28] applied
the garbled circuits cryptographic technique to matrix factoriza-
tion collaborative filtering, where a third-party crypto-service
provider is required for private computation. [29] discussed
practical implementations of privacy-preserving collaborative
filtering deployed in cloud computing infrastructures.
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Alternatively, distributed privacy-preserving recommender
systems let users store data in their devices. [19] presented a
personal collaborative filtering recommender running on the
user side. Each user stores his data locally, and constructs an
item-item similarity model using the cosine similarity measure
by incrementally incorporating ratings from other neighbor
users in a peer-to-peer (P2P) environment. The quality of the
locally constructed similarity model depends on the set of
neighbors a user can find and contact. The best performance
is achieved by using ratings from all common users of two
items to evaluate the item similarity, which is much harder
to implement in P2P architectures than in a centralized CF
system. Moreover, the user privacy is not guaranteed as users
need to share their ratings with each other. An attacker can
easily mimic the behavior of genuine users to acquire their
personal data. As in centralized systems, cryptography [12]
and obfuscation techniques [30] can be applied to distributed
systems to avoid disclosing data to other users. A client-side
content-based mobile shopping recommender was proposed
in [31], where user data, e.g., historical purchases, are locally
stored on users' devices, e.g., smartphones, and each device runs
its own content-based recommendation algorithm to find prod-
ucts that match the user's profile based on product descriptions.
However, the complete product catalog can be challenging for
mobile devices to process, and incurs significant data traffic as
well. In [32], the authors proposed social connection recom-
mendation in mobile social networking, where matching user
attributes are computed via secure multi-party computation
(SMC) techniques based on secret sharing.
Previously, BP has been applied to recommender systems

without considering privacy in [33]–[35]. In [33], the proposed
algorithm therein follows the philosophy of the user-based
CF algorithm. To receive recommendations, an active user
discloses his ratings to other users, who then compare their
own ratings with the active user's ratings on common items in
order to update their “confidence”, which can be understood as
similarity to the active user. The central server collects “confi-
dences” as well as ratings of all users, and sends back to users
probabilistic messages regarding predicted ratings on items. In
[34], each user combines his “confidence” and ratings to form
probabilistic messages on ratings, and sends them to the server.
The work in [35] proposed to predict ratings for an active user
on a Pairwise Markov Random Field (PMRF), where the local
evidence for each unknown rating is the aggregated ratings
from other users similar to the active user, and probabilistic
messages on predicted ratings are exchanged between similar
items. Whereas in this work, we are concerned with preserving
privacy in item-based CF recommendation. Instead of directly
using BP for rating prediction as in [33]–[35], we employ BP
for item similarity computation in a semi-distributed fashion,
where messages are exchanged between the server and users,
without disclosing user ratings. The rating prediction for an ac-
tive user is then locally computed at the user side by combining
his own ratings and item similarity. We note that we can further
apply the distributed privacy-preserving belief propagation [36]
that sends only masked messages to each party for enhanced
privacy.

IX. CONCLUSION

In this work, we proposed a semi-distributed BP approach
to item-based CF recommender system that preservers user
privacy. The proposed algorithm computes item similarity
by exchanging probabilistic messages between the server and
users without directly exposing user ratings. To address the
issue that only a subset of users participate in BP at one time
slot, we proposed the cascaded BP scheme which accumulates
the inferred knowledge from the previous time slots. With
the computed similarities, a user then locally generates rating
predictions as the weighted average of his own ratings on items.
Through information-theoretic analysis, we showed that the
proposed semi-distributed BP algorithm effectively preserves
user privacy. In addition, we proposed a complexity reduction
technique for efficient computation at the user side. The exper-
imental results on the MovieLens dataset demonstrated that the
BP algorithm with all users participating at the same time slot
achieves superior performance, and the cascaded BP algorithm
can improve performance as the number of elapsed time slots
increases.
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