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ABSTRACT

Recommender systems have been widely used in e-commerce
websites to suggest items that meet users’ preferences. Col-
laborative filtering, which is the most popular recommen-
dation algorithm, is vulnerable to shilling attacks, where a
group of spam users collaborate to manipulate the recom-
mendations. Several attack detection algorithms have been
developed to detect spam users and remove them from the
system. However, the existing algorithms focus mostly on
rating patterns of users. In this paper, we develop a proba-
bilistic inference framework that further exploits the target
items for attack detection. In addition, the user features
can also be conveniently incorporated in this framework.
We utilize the Belief Propagation (BP) algorithm to per-
form inference efficiently. Experimental results verify that
the proposed algorithm significantly improves detection per-
formance as the number of target items increases.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering, Retrieval models.
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1. INTRODUCTION
Recommender systems are increasingly employed by e-

commerce websites, e.g., Amazon.com and Netflix.com, to
provide personalized recommendations to users. Collabora-
tive Filtering (CF) is so far the most popular recommen-
dation algorithm, which relies on historic ratings given by
users on items to make recommendations. Unfortunately, it
is vulnerable to the so called “shilling” attacks [6], in which a
group of spam users collaborate to influence the recommen-
dations for their benefits, e.g., to recommend their products
more often.
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To protect the recommender systems against such attacks,
one of the major approaches is to detect the spam users and
remove them from the system. A number of detection algo-
rithms have been proposed in the literature. Earlier work
in [3] introduced several metrics for detecting the rating pat-
terns of spam users. Then in [2], the authors improved the
detection accuracy over [3] by including more model-specific
features for classification. However, those feature-based al-
gorithms suffer from low accuracy, as they only look at indi-
vidual user rating patterns. In [7], the authors exploited the
statistical properties of spam users, e.g., covariance, to per-
form detection via variable selection using Principle Com-
ponent Analysis (PCA-VarSel). PCA-VarSel is very effec-
tive when spam users have low covariance, e.g., when they
rate items randomly selected from all items, because gen-
uine users have high covariance since they mostly rate only
the popular items. However, it was shown in [4] that PCA-
VarSel easily fails if spam users also selectively rate only
those popular items.

All the existing works focused extensively on rating pat-
terns of spam users, but they did not take into account the
effect on the target items. In this work, we develop a prob-
abilistic inference framework that further exploits the tar-
get items for attack detection. In particular, we propose a
factorized probabilistic model, and apply the efficient Belief
Propagation (BP) algorithm [5] for inference. Previously, [8]
applied BP to build a privacy-preserving CF system.

2. SHILLING ATTACK DETECTION

2.1 Attack Models
The shilling attack includes two general classes: push at-

tacks and nuke attacks. In push attacks, the spam users col-
laboratively promote the target items by rating them high,
whereas in nuke attacks, the spam users demote the target
items by rating them low. In addition, to effectively affect
the recommendations made to the genuine users, each spam
user also rates a set of filler items to increase similarity with
those genuine users. Some well-known shilling attack models
include Random attacks and Average attacks [6]. In Ran-
dom attacks, the set of filler items are rated randomly on a
distribution learnt from the ratings in the dataset, whereas
in Average attacks, each filler item is rated around the av-
erage rating of this individual item, making the spam users
more similar to the genuine users. Hence, the Average at-
tack is more effective than the Random attack. Moreover,
in both attack models, the set of target items are given the
highest allowed rating for push attacks and the lowest rating
for nuke attacks.



2.2 Probabilistic Modeling of Attack Detection
We assume there are a set of M users denoted by U =

{1, . . . ,M} and a set of N items denoted by I = {1, . . . , N}
in the system. Let rui denote user u’s rating on item i, and
R denote the set of all observed ratings in the system. The
set of users who have rated item i is denoted by Ui, and the
set of items rated by user u is denoted by Iu. For each user u,
we assign a binary variable mu, where mu = 1 if user u is a
spam user and mu = 0 otherwise. Similarly, for each item i,
we assign a binary variable ti, where ti = 1 if item i is a tar-
get and ti = 0 otherwise. Let M = {mu : 1 ≤ u ≤ M} and
T = {ti : 1 ≤ i ≤ N}. We denote by P (M,T |R) the joint
posterior probability distribution of M and T given the ob-
served ratings in R. To identify spam users, we need to find
the marginal distributions of P (mu|R), ∀u ∈ U. P (mu|R)
can be directly computed from P (M, T |R) by summing over
all variables in M and T except mu as follows

P (mu|R) =
∑

M\mu,T

P (M, T |R). (1)

However, the computational complexity is O
(

2M+N
)

, which
is exponential in the total number of users and items. In the
following, we propose a proper factorization of P (M, T |R),
and employ the efficient Belief Propagation (BP) algorithm
that operates in a factor graph to infer P (mu|R), ∀u ∈ U.

We begin by describing the local functions that P (M,T |R)
factorizes into. Since spam users collaboratively work to-
gether to influence the ratings on target items, the local
dependency among spam users is induced by their ratings
on target items. Let Mi = {mu : u ∈ Ui, rui = ra}, where
ra denotes the maximum rating in cases of push attacks and
the minimum rating in cases of nuke attacks. The reader
may focus on push attacks, as the method and results hold
for the nuke attacks as well. Hence, we introduce the lo-
cal function fi (Mi, ti|R) to model the local probabilistic
dependency among variables in {Mi, ti}. Given a config-
uration of Mi, we can compute the rating bias caused by
spam users as

∆ri (Mi) =
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, (2)

where the first term in the absolute operator is the average
rating on item i, including all ratings, and the second term
is the unbiased average rating after removing ratings from
spam users. Based on (2), we express fi (Mi, ti|R) as

fi (Mi, ti|R) =
1

1 + exp ((−1)1−tiαt (∆ri (Mi)− δr))
, (3)

where αt < 0 and δr > 0, and both are adjustable scalars.
Given a configuration of Mi, if the rating bias ∆ri (Mi)
exceeds δr, this function assigns a larger value for ti = 1
than for ti = 0, and vice versa.

We also introduce a local factor function for each variable
in M and T , so as to incorporate the local information ex-
tracted from each individual user and item. Let gu(mu|R)
be the local function for mu ∈ M. gu(mu|R) can be de-
signed to take into account the rating patterns of individual
users, such as those user features introduced in [2]. Here, for
the purpose of illustration, we consider the use of a single
feature φu of user u. A simple probabilistic discriminative
classifier [1] based solely on feature φu can be given in the
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Figure 1: The factor graph for attack detection.

following form

gu(mu|R) =
1

1 + exp ((−1)1−muβ1(φu − τ1))
, (4)

where β1 and τ1 are design parameters.
Likewise, we define a local factor function hi(ti|R) for each

ti ∈ T . We notice that the ratings of target items are more
likely to have large variances than those of normal items,
due to the eccentric ratings from spam users. Let ϕi denote
the variance in ratings of item i. Similar to gu(mu|R), we
define hi(ti|R) as follows

hi(ti|R) =
1

1 + exp ((−1)1−tiβ2(ϕi − τ2))
, (5)

where β2 and τ2 are design parameters.
Based on the local functions, we can express the factor-

ization of P (M,T |R) as

P (M, T |R) =
1

Z

∏

i∈I

fi (Mi, ti|R)

×
∏

u∈U

gu(mu|R)
∏

i∈I

hi(ti|R), (6)

where Z is a normalization factor.

2.3 BP-based Inference in A Factor Graph
A factor graph is a bipartite graph that expresses the fac-

torization structure of a function, where variable nodes and
factor nodes represent variables and local functions, respec-
tively, and an edge connects a variable node to a factor node
if and only if the variable is an argument of the local func-
tion associated with the factor node [5]. We illustrate the
factor graph that expresses the factorization of P (M, T |R)
by (6) in Fig. 1. Specifically, user variable mu is represented
by node mu, and item variable ti is represented by node ti
in Fig. 1. Each factor function in (6) is represented by a fac-
tor node. We connect each factor node gi to item variable
node ti, and connect each factor node hu to user variable
node mu. Also, we connect each factor node fi to the user
variable nodes in Mi and the item variable node ti.

To infer the marginal distributions P (mu|R), ∀u ∈ U, we
apply BP in the factor graph to exploit the factorization for
efficient inference. Since the constructed factor graph has
loops, we cannot apply the standard BP algorithm for exact
inference. We thus resort to “loopy” BP, which performs
iterative message passing between variable nodes and factor
nodes along the edges in the factor graph [5].

2.4 Complexity Reduction
While the BP algorithm can be much more efficient than

direct computation using (1), the computational complexity



for generating messages at the factor node is exponential in
the degree of the factor node. This computational burden
can be quite significant at factor node fi, where the com-

plexity in terms of multiplications is O
(

|Mi|2
|Mi|

)

for gen-

erating a message. Since in recommender systems an item
can be rated by over hundreds of users, it renders the BP
algorithm almost practically infeasible. Hence, we propose
a complexity reduction technique by reducing the degree of
factor node fi as follows.

We randomly divide the user variable nodes in Mi into
Gi = ⌈|Mi|/D⌉ groups, where D is a small integer. Let

M
(k)
i denote the set of user variable nodes in group k, and

Mik be the size of group k, where Mik = D for 1 ≤ k < Gi,
and Mik = |Mi|modD for k = Gi. Assuming independence
among groups, we can approximate (6) using

P (M, T |R) =
1

Z

∏
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i
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where we derive f
(k)
i
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)

from (3) by replacing
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where Ûi = {u : u ∈ Ui, rui 6= ra}, R̂i =
∑

u∈Ûi
rui, and

wik = Mik/|Mi|. Note that we allocate R̂i, the sum of rat-

ings from Ûi, to each group in proportion to the group size.
Similarly as in Sec. 2.3, we construct a new factor graph for
(7) and apply the BP algorithm. The computational com-

plexity at factor node f
(k)
i is O

(

D2D
)

. The overall com-
plexity of the BP algorithm with complexity reduction is
O

(

D2D |Ra|
)

, where Ra is the subset of the observed rat-
ings with value ra.

3. EXPERIMENTAL EVALUATION

3.1 Experiment Setup
We evaluate the performance of the proposed BP-based

attack detection algorithm using the 100K MovieLens dataset1.
The dataset contains 100, 000 ratings, all integers from 1 to
5, on 1682 items (movies) by 943 users. We treat the origi-
nal users in the dataset as genuine users. To launch shilling
attacks, a number of spam users are injected into the sys-
tem. The ratio of spam users to genuine users is set as 1

10
.

Each spam user randomly selects a set of filler items from
the top 50% most popular items according to the number
of ratings each item receives, similar to [4]. We refer to the
ratio of filler items to all items as filler size. We consider the
Average attack model described in Sec. 2.1, since it is more
effective than the Random attack. The rating on each filler
item follows a normal distribution with standard deviation
σ, and its mean is set as the average rating received by the
filler item. Finally, a set of items are selected as targets in
the attack. For the push attack, each target item has an av-
erage rating between 1 and 3, whereas for the nuke attack,

1Available at: http://www.grouplens.org/node/73.

each target item has an average rating between 3 and 5. We
assume all spam users have the same set of targets.

We evaluate the performance of the attack detection al-
gorithms in terms of Precision = |D ∩S|/|D| and Recall =
|D∩S|/|S|, where D and S denote the sets of detected spam
users and true spam users, respectively. We compare the
performance of various detection algorithms, including the
proposed BP algorithm, the PCA-VarSel algorithm in [7],
and the feature-based algorithm using (4).

To assess the detection performance, the PCA-VarSel al-
gorithm described in [7] sorts the users in ascending order
of their contribution to the principle components (PCs) ob-
tained from PCA analysis, and selects the top-Md listed
users as spam users. For easy comparison and fairness, in
the proposed BP algorithm, we likewise sort users in de-
scending order of P (mu = 1|R), and also select the top-Md

users as spam users. Similarly, in the feature-based algo-
rithm, we select the top-Md users ranked in descending or-
der of gu(mu = 1|R). In our experiments, we set Md as the
number of true spam users injected into the system, so the
Precision and Recall are equal.

In the proposed BP algorithm, we adopt the MeanVar
feature introduced in [2] for φu in (4). The MeanVar φu of
user u is computed as

φu =

∑

i∈Iu\Īu
(rui − r̄i)

2

|Iu\Īu|
,

where r̄i is the average rating of item i, and Īu = {i : rui =
ra, i ∈ Iu}. The MeanVar feature is particularly effective for
detecting spam users in Average attacks.

3.2 Results and Discussion
In Fig. 2, we present the results for detecting spam users

in Push attacks, where we have set the parameters of the
proposed BP algorithm as αt = −3 and δr = 0.35 in (3),
β1 = −1 and τ1 = 0.5 in (4), β2 = 1 and τ2 = 1.5 in
(5), and the group size D = 8 for complexity reduction de-
scribed in Sec. 2.4. The results show that the performance
of the proposed BP algorithm improves significantly as the
number of targets increases, reaching almost 100% precision
when there are enough number of targets, whereas the other
algorithms do not exhibit such improvement. This verifies
that the proposed algorithm can effectively exploit the tar-
get items to detect spam users with high accuracy. Since the
BP algorithm also incorporates the output gu(mu|R) of the
feature-based algorithm as illustrated in Fig. 1, we would like
to examine the case when the performance of the feature-
based algorithm is very poor. In Fig. 2c, the detection preci-
sion of the feature-based algorithm is only around 20% after
we set σ = 0.7. Interestingly, we observe a threshold phe-
nomenon for the BP algorithm, that is the BP algorithm has
0% precision when the number of targets is small, but when
the number of targets exceeds a certain number, the BP al-
gorithm provides almost 100% precision. This is because as
the number of targets increases, the information gained from
target items becomes dominant and corrects the results of
the feature-based algorithm. Note that in practical imple-
mentations, we can incorporate into the BP algorithm more
advanced feature-based algorithms for better performance.
We have also performed experiments for Nuke attacks, and
similar results can be observed, so we only present one set
of those results in Fig. 3.

In Fig. 4, we investigate the impact of the filler size on
the performance of the BP algorithm. We show the detec-
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(a) Filler size = 5% and σ = 0.6
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(b) Filler size = 10% and σ = 0.6
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(c) Filler size = 10% and σ = 0.7

Figure 2: Detection precision versus number of targets in Push attacks.
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Figure 3: Detection precision
versus number of targets in Nuke

attacks. Filler size = 10% and
σ = 0.7.
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versus number of targets
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(b) Detection precision of target items
versus number of targets

Figure 4: Detection performance in Push attacks under varying filler
sizes. σ = 0.6.

tion results for both spam users and target items in Fig. 4a
and Fig. 4b, respectively. Here, to evaluate the detection
performance for the target items, we infer P (ti|R) from (6)
and select the top-Nt items ranked in descending order of
P (ti = 1|R), where Nt is set as the number of true targets.
Note that the existing algorithms only detect spam users. As
the filler size increases, the BP algorithm suffers from per-
formance loss for small numbers of targets. This is because
the BP algorithm relies on information from target items,
but the noise information from the filler items corrupts the
useful information. Indeed, we can see in Fig. 4b that the
detection precision for target items drops with increasing
filler size. However, when there are enough target items to
suppress the noise information, the BP algorithm still can
achieve high detection precision. It is worth noting that in
practice a higher cost is incurred for attackers to increase the
filler size while decreasing the target number. Also, the BP
algorithm can be enhanced with feature-based algorithms
that deliver high detection accuracy for large filler sizes.

4. CONCLUSION
To protect the collaborative filtering systems against the

shilling attacks, we proposed a BP-based algorithm for de-
tecting spam users in a probabilistic inference framework.
Different from the existing algorithms that rely solely on
users’ rating patterns, the proposed algorithm further ex-
ploits the target items. Considering the computational com-
plexity for inference, we developed a factorized probabilistic
model for attack detection and applied BP to perform in-
ference efficiently. The proposed detection algorithm can
also conveniently incorporate the existing algorithms for en-
hanced performance. We showed through experiments that
the proposed BP algorithm significantly improves detection

accuracy as the number of target items increases. We also
observed that its performance degrades with increasing filler
sizes. In the future work, we will develop more robust algo-
rithms to deal with more sophisticated attack scenarios.
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