
Privacy-Preserving Item-Based Collaborative

Filtering Using Semi-Distributed Belief Propagation

Jun Zou, Arash Einolghozati, and Faramarz Fekri

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332, USA

Email: {junzou, einolghozati, fekri}@ece.gatech.edu

Abstract—Recommender systems are increasingly employed
by e-commerce websites to suggest items to users that meet their
preferences. Collaborative Filtering (CF), as the most popular
recommendation algorithm, exploits the collected historic user
ratings to predict ratings on unseen items for users. However,
traditional recommender systems are run by the commercial
websites, and thus users have to disclose their personal rating
data to the websites in order to receive recommendations. This
raises the privacy issue, as user ratings can be used to reveal
sensitive personal information. In this paper, we propose a
privacy-preserving item-based CF recommender system using
semi-distributed Belief Propagation (BP), where rating data are
stored at the user side. Firstly, we formulate the item similarity
computation as a probabilistic inference problem on the factor
graph, which can be efficiently solved by applying the BP
algorithm. To avoid disclosing user ratings to the server or other
user peers, we then introduce a semi-distributed architecture for
the BP algorithm, where only probabilistic messages on item
similarity are exchanged between the server and users. Finally,
an active user locally generates rating predictions by averaging
his own ratings on items weighted by their similarities to unseen
items. As such, the proposed recommender system preserves
user privacy without relying on any privacy techniques, e.g.,
obfuscation and cryptography. Further, there is no compromise
in recommendation performance compared to the centralized
counterpart of the proposed algorithm. Through experiments on
the MovieLens dataset, we show that the proposed algorithm
achieves superior accuracy.

I. INTRODUCTION

The thriving of the Internet and online services has over-
whelmed users with an explosive amount of product infor-
mation, which users never experienced in traditional real-
entity consuming activities. It is too exhaustive for users to
go through the complete list of thousands of items, e.g.,
books and movies, to find items interest them. Recommender
systems have been widely used in e-commerce websites, such
as Amazon.com and Netflix.com, to suggest to users items
that they might like. Good recommendation services increase
user satisfaction and boost business. Since users have different
tastes, it necessitates personalized recommendation services
that meet an individual’s preferences.

Collaborative Filtering (CF) is so far the most popular
recommendation algorithm [1], where users express opinions

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1115199, and a gift from the Cisco University
Research Program Fund, an advised fund of Silicon Valley Community
Foundation.

on items by rating them, and the CF algorithm exploits the
collected historic user ratings to predict ratings on unseen items
for an individual user, and recommends to the user the items
with the highest predicted ratings. The CF recommendation
can be divided into user-based and item-based methods. The
user-based method recommends to an active user new items
favorably rated by other users with similar tastes to the active
user [2]. The item-based method on the other hand analyzes
the similarity between items using the aggregated user ratings,
and recommends to an active user new items that are similar
to the items he liked in the past [3]. Closely related to the
item-based CF is the content-based recommendation, where
each item is characterized by a set of attributes, based on
which item similarity is estimated [1]. However, content-based
recommendation suffers from limited content-analysis, e.g.,
it is difficult to explicitly describe multimedia data using
features, whereas the CF recommendation is immune to such
problems, an important reason for the popularity of the CF
recommendation.

In traditional recommender systems, the recommendation
algorithm is run at the central server owned by the commercial
website, and thus the users have to disclose their personal in-
formation, such as preferences, age and gender, to the websites
in order to receive satisfactory recommendation services. This
raises the privacy issue, as users simply have no control over
how their personal data will be disseminated and used [4].
It is not uncommon that websites sell to other parties such
data, which are valuable for targeted advertising. As users
become more concerned about their online privacy, they are
less willing to directly release their personal information. Most
recommender systems instead rely on the user ratings, through
the CF recommendation.

Although rating data do not directly tell personal details,
it is still possible to infer user demographics, such as age
and gender, from their ratings [5], and even uncover user
identities and reveal sensitive personal information with access
to other databases [6]. While users certainly do not want
their privacy compromised, they still hope to enjoy the fun
and convenience brought by recommender systems. Privacy-
preserving recommender systems are thus in urgent need.
The challenge stems from the conflict between accuracy and
privacy. That is, to provide recommendations that better match
the user’s tastes, the system needs to know more about the
user. Since completely withholding the user data from the
recommender system is not favourable, it seems attractive to
obfuscate user ratings with random noise, e.g., perturbation [7]

and differential privacy [8], or to disguise genuine user profiles
by adding extra fake data [5], [9]. However, obfuscation trades
accuracy for privacy, and users have to sacrifice more privacy
for better recommendation.

An alternative approach is to preserve privacy through user-
side storage of personal data [10]. If the central server still
participates in generating recommendations, advanced cryp-
tography techniques can be employed to hide user information
from the recommender server, which only operates on the en-
crypted user data [11], [12], but the required key management
is difficult to implement in practice. A more aggressive move
is to switch to a fully distributed recommender system, where
user ratings are only exchanged among users themselves, and
recommendation is generated in a distributed fashion without
relying on the central server [13]. The only problem is,
users may not feel comfortable to share personal data with
other users either, which discourages users from participation.
Indeed, an attacker can easily mimic the behaviour of genuine
users to acquire their personal data. A compromising solution
is to apply obfuscation techniques [7] to distributed systems
as well [14].

Most privacy-preserving techniques for recommender sys-
tems are developed without modifying the recommendation
algorithm itself. Rather than design a separate privacy module
for the recommendation algorithm, we hope to build a rec-
ommender system with intrinsic privacy-preserving properties.
To achieve this goal, it is evident that any communications
between the server and users or between user peers should
avoid exposing user ratings. An interesting work in [15]
utilized concordance measure for computing user similarity,
a key step in the user-based CF algorithm, where computation
is conducted between users without exposure of their ratings
to each other, but unfortunately, to collaboratively generate
recommendation, users need to reveal ratings to other users.
We notice that user-based CF relies on direct collaboration
among users, i.e., a user needs to know what other people
like to find out what he might like, whereas item-based CF
exploits the consistency in an individual user’s taste, i.e., if
a user likes an item, he might also like other items similar
to it. We consider item-based CF a better choice for privacy-
preserving recommender systems. The accuracy of the item-
based CF system depends on measure of item similarity, which
has to be estimated based on ratings on items, and further,
subject to the privacy constraint.

In this paper, we introduce a privacy-preserving item-based
CF recommender system using Belief Propagation (BP). We
formulate the item similarity computation as a probabilistic
inference problem on a proper factor graph, which can then
be efficiently solved using BP, a probabilistic message passing
algorithm [16], [17]. Further, we develop a semi-distributed
architecture for BP, where probabilistic messages on item
similarity are exchanged between the server and users, without
disclosing user ratings to the server or other peer users. There
is no direct communication between users. The server decides
when to quit BP by checking the convergence of the messages,
and computes the item similarity using the observed messages
upon convergence. The last piece that completes our privacy-
preserving recommender system is user-side recommendation.
The user locally generates rating predictions by averaging his

own ratings on items weighted according to their similarities
to other unseen items. Hence, the proposed item-based CF
algorithm preserves user privacy in both item similarity com-
putation and rating prediction, without employing any privacy-
protection techniques, e.g., obfuscation and cryptography. In
addition, there is no compromise in recommendation perfor-
mance due to privacy preserving, compared to the centralized
counterpart of the proposed algorithm. Through experiments
on the MovieLens dataset, we show that our algorithm achieves
superior accuracy, in terms of Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE).

The rest of the paper is organized as follows. In Sec. II, we
introduce the background on CF recommendation algorithms.
In Sec. III, we present the proposed privacy-preserving item-
based recommender system in detail. In Sec. IV, we evaluate
the recommendation performance of the proposed algorithm
on the MovieLens dataset, and compare it against other well-
known item-based CF algorithms without considering privacy.
In Sec. V, we review the related works on privacy-preserving
item-based recommender systems and application of BP to
recommender systems. In Sec. VI, we conclude this paper.

II. BACKGROUND ON COLLABORATIVE FILTERING

Assuming there are M users and N items in a recom-
mender system, let U = {1, . . . ,M} represent the set of all
users, and I = {1, . . . , N} represent the set of all items. A
user u expresses his opinion on item i in the form of rating
rui. We arrange the collection of all ratings in an incomplete
M × N matrix R, with rui at the intersection of u-th row
and i-th column. The entries of unknown ratings are unfilled.
Let Iu denote the subset of items rated by user u, and Ui

denote the subset of users who have rated item i. The task of a
recommender system is to predict the ratings for an active user
u on the subset of unseen items I\Iu. Throughout this paper,
we focus on the item-based CF recommendation algorithm [3].

To predict the rating rui for user u on an unseen item i, the
algorithm sorts the items in Iu according to their similarity to
item i in descending order, and finds a subset of top K most
similar items, denoted by Nui, where |Nui| = K . We refer to
Nui as the neighbourhood of item i from user u’s perspective,
and K as the neighborhood size. Then rui is predicted by

r̂ui =

∑

j∈Nui
sij × ruj

∑

j∈Nui
|sij |

, (1)

where sij is the similarity between items i and j. The accuracy
of the algorithm depends on the measure of item similarity sij ,
which is computed based on the observed ratings on items.
The user-based CF algorithm uses a similar formula to (1),
but based on ratings from other users.

Several well-known methods for item similarity compu-
tation include Cosine Similarity (CS), Pearson Correlation
Similarity (PCS), and Adjusted Cosine Similarity (ACS) [3].
Yet, all of those mentioned methods directly operate on ratings
from different users, which requires users to disclose ratings
to the server or other users. Next, we will introduce a semi-
distributed BP algorithm for item similarity computation with
intrinsic privacy-preserving property.

Variable node Factor node

f1 f2 fu

si1 sij siN

Fig. 1: The factor graph Gi.

III. PROPOSED PRIVACY-PRESERVING ITEM-BASED CF

A. Probabilistic Modelling of Item Similarity

We model the similarity sij between items i and j as a
discrete random variable that takes values from a predefined
set S. The total number of possible values is L = |S|. Let
Si = {sij : 1 ≤ j ≤ N, j 6= i} be the set of item similarities
between item i and other items. We denote by P (Si|R) the
joint posterior probability distribution of Si. To obtain sij ,
we need the marginal posterior probability distribution of sij ,
which can be derived by

P (sij |R) =
∑

si1∈S

. . .
∑

si(j−1)∈S

∑

si(j+1)∈S

. . .
∑

siN∈S

P (Si|R) .

(2)
For notational convenience, we rewrite (2) for the sum over
all variables in Si except sij as

P (sij |R) =
∑

Si\sij

P (Si|R) . (3)

Similar notations are used for this type of sum throughout this
paper. However, direct computation using (3) is not appealing,
because it must be performed by a central server, and thus
users are required to disclose their ratings to the server.
Moreover, (3) incurs an exponential complexity of O

(

LN
)

. We
instead resort to the factor graph to express the factorization
of P (Si|R), and apply the efficient sum-product BP algorithm
to infer the marginal posterior probability distributions. More
importantly, the BP algorithm can be carried out in a semi-
distributed manner, so that the part of computation that requires
knowledge of user ratings can be locally performed by the user,
eliminating the need to disclosing user ratings.

A factor graph is a bipartite graph that expresses the factor-
ization structure of a function, where variable nodes and factor
nodes represent variables and local functions, respectively, and
an edge connects a variable node to a factor node if and only
if the variable is an argument of the local function represented
by the factor node [17]. In our concerned problem, to solve
for Si, we first find a proper factorization for P (Si|R). For
each user u ∈ Ui, we denote Sui = {sij : j ∈ Iu\i} as the
set of item similarities between item i and other items user
u has rated, and use a local function fu(Sui) to model the
dependencies among variables in Sui from user u’s perspective.
Hence, P (Si|R) factorizes into local functions as follows

P (Si|R) =
1

Z

∏

u∈Ui

fu(Sui), (4)

where Z is a normalization constant. We construct a factor
graph Gi for the factorization in (4) as illustrated in Fig. 1,

where there are |Si| variable nodes and |Ui| factor nodes. Each
sij ∈ Si is represented by variable node j in Gi, and each local
function fu(Sui) is represented by factor node u. The subset
of variable nodes for Sui are connected to factor node u via
edges. Let Uij denote the set of common users of items i
and j, Uij = Ui ∩ Uj . Hence, variable node j is connected
to |Uij | factor nodes in Gi. Essentially, if a user u has rated
item i and other items in Iu\i, then this user has a belief
on the similarity sij , ∀j ∈ Iu\i, from his perspective. The
factor graph allows users’ beliefs be exchanged and aggregated
following the principle of sum-product message passing.

The local function fu(Sui) determines how user u esti-
mates item similarity based on his own ratings. It should be
properly designed with regard to the eventual goal to predict
ratings using (1). For a user u who has rated item i, we assume

for now rating rui is unknown, and let Îu = Iu\i. Given a
configuration of item similarities in Sui, user u predicts rui as

r̂ui(Sui) =

∑

j∈Îu
sij × ruj

∑

j∈Îu
|sij |

. (5)

Note that (5) has a similar form to (1). Then user u checks
r̂ui(Sui) against the actual rating rui using the following factor
node function

fu (Sui) =
1

Zu

exp

{

−
1

σ2
(r̂ui(Sui)− rui)

2

}

, (6)

where Zu is a normalization constant, and σ is a designing
parameter that controls the sensitivity of fu (Sui) to the
discrepancy between r̂ui(Sui) and rui. We note that fu (Sui)
decreases with increasing discrepancy. Now the specification
of the factor graph Gi is completed.

To solve for all item similarities {Si : 1 ≤ i ≤ N}, a total
of N such factor graphs need to be constructed. Note that
different from traditional similarity measures such as CS and
ACS, our algorithm does not possess the symmetric property of
sij = sji, i 6= j. Indeed, this could be one of the reasons that
our algorithm actually achieves better accuracy as we will see
in Sec. IV. According to (1), an item’s influence on the rating
prediction on item i depends on its weight relative to those of
other items. In other words, to achieve accurate prediction on
item i, the item that is more similar to it should be assigned
with a larger weight, and thus it is the relative similarity that
matters rather than the absolute similarity. Our algorithm can
be considered as a collaborative process among users to find
relative similarities. It is not surprising that, while item j can
be one of the top items most similar to item i, item i might
be perceived as mildly similar to item j compared with other
items.

B. BP for Similarity Computation

We first describe the sum-product BP algorithm to infer
the marginal posterior distribution P (sij |R), ∀sij ∈ Si, on
the factor graph Gi, without worrying about privacy. Later in
Sec. III-D, we will introduce the semi-distributed implemen-
tation of BP for privacy, yet with no impacts on the computed
similarities. Since the constructed factor graph has loops, we
apply the “loopy” BP algorithm that iteratively exchanges
messages between factor nodes and variable nodes along the

fu

si1 si2 sijreplacements

µ
(n−1)
1,u

µ
(n−1)
2,u

λ
(n)
u,j

(a) The λ-message λ
(n)
u,j

(sij).

f1 f2 fu

sij

λ
(n)
1,j

λ
(n)
2,j

µ
(n)
j,u

(b) The µ-message µ
(n)
j,u

.

Fig. 2: Illustration of message passing at iteration n.

edges until convergence [17]. As in the sum-product principle,
there are two types of messages passed on Gi: (i) The λ-
message λu,j(sij) sent from a factor node u to a variable node
j, and (ii) the µ-message µj,u(sij) sent from a variable node
j to a factor node u.

We illustrate the message passing in Fig. 2. In each
iteration, each node (factor node or variable node) in the factor
graph generates and sends messages to the neighbor nodes
connected to it, based on incoming messages. In iteration n,

factor node u generates the λ-message λ
(n)
u,j (sij) sent to vari-

able node j by computing the product of local factor function
fu(sui) with all µ-messages received in the previous iteration
from neighbor variable nodes of factor node u, excluding the
message from the recipient variable node j, and sums out all
variables except sij as follows

λ
(n)
u,j (sij) ∝

∑

Sui\sij

fu(Sui)
∏

h∈Îu\j

µ
(n−1)
h,u (sih). (7)

The λ-message λ
(n)
u,j (sij) is a list of the beliefs on the similarity

sij = s, ∀s ∈ S, perceived from user u’s perspective, given the
current collective knowledge of the similarity between other

items in Îu\j and item i.

Variable node j generates the µ-message µ
(n)
j,u (sij) sent

to factor node u as the product of all incoming λ-messages
received in the current iteration from all factor nodes connected

Algorithm 1 BP on Gi for computing item similarity Si.

• Initialize all messages as λ
(0)
u,j(sij = s) = 1

L
and

µ
(0)
j,u(sij = s) = 1

L
, ∀s ∈ S, and set iteration counter

n = 1.
• Iterative message passing until convergence.

(a) Update all λ-messages using (7);
(b) Update all µ-messages using (8);
(c) n = n + 1. If not convergent, repeat (a) and

(b).

• Compute marginal posterior probability distributions
of sij ∈ Si using (9).

• Compute item similarity sij ∈ Si using (10).

fu

si1 si2 sij

(a) A high-degree factor node.

DD

fu
(1)

fu
(k)

si1 sij

(b) Multiple D-degree factor nodes.

Fig. 3: Illustration of complexity reduction via grouping.

to variable node j, excluding the one from the recipient factor
node u as follows

µ
(n)
j,u (sij) ∝

∏

f∈Fj\u

λ
(n)
f,j (sij), (8)

where Fj denotes the set of factor nodes connected to variable
node j. Here in graph Gi, Fj = {u : u ∈ Uij}. The µ-message

µ
(n)
j,u (sij) is a list of beliefs on the similarity sij = s, ∀s ∈ S,

which is generated by aggregating beliefs from other users in
Uj\u on the similarity sij .

After convergence, the marginal posterior distribution
P (sij |R) is computed at variable node j as product of all
λ-messages received from neighbor factor nodes connected to
variable node j as

P (sij |R) =
1

Zij

∏

f∈Fj

λ
(n)
f,j (sij), (9)

where Zij is a normalization constant. Finally, based on the
marginal posterior distribution P (sij |R), the item similarity
sij can be estimated in various ways. We consider using the
minimum mean squared error criterion, for which the optimal
estimated sij is given by the expectation

ŝij =
∑

s∈S

s× P (sij = s|R) . (10)

We summarize the BP algorithm for computing Si on factor
graph Gi in Alg. 1.

C. Complexity Reduction

The computational complexity of the BP algorithm is
determined by the computation of λ-messages and µ-messages.
While the complexity of generating a µ-message using (8) is
O (|Iu|), the complexity of generating a λ-message using (7)
is O

(

|Iu|L|Iu|
)

, where L = |S|, which is exponential in the
degree of the factor node, i.e., the number of items user u
has rated. Unfortunately, in recommender systems, a user can
rate over hundred of items, rendering the BP algorithm almost
practically infeasible. We thus propose a complexity reduction
technique by controlling the degree of the factor node. It is
based on the understanding that, user u first randomly divides

the items in Îu into multiple groups of size D, where D is

Server

User 1 User 2 User u

Server

User 1 User 2 User M

si1 sij siN

f1 f2 fu

Gi

GN

Fig. 4: Architecture of semi-distributed BP.

a small integer, and decides item similarity on the basis of
groups, as if items in different groups were rated independently
by user u.

Hence, we modify the factor graph Gi accordingly to

obtain a new factor graph Ĝi for complexity reduction. Since
variable node j is associated with item j, each user u groups

the variable nodes in Îu exactly as the grouping among

items. There are Gu = ⌈|Îu|/D⌉ such groups from user u’s

perspective. Let D
(k)
u denote the size of group k, D

(k)
u = D

for 1 ≤ k ≤ Gu − 1 and D
(k)
u = |Îu| − D(Gu − 1) for

k = Gu. Let I
(k)
u denote the variable nodes in group k. We

set an indicator j
(k)
u = 1 if j ∈ I

(k)
u and j

(k)
u = 0 otherwise.

Since each item j ∈ Îu only belongs to one group of user

u, we have
∑Gu

k=1 j
(k)
u = 1. Instead of connecting all variable

nodes in Îu to one factor node u, we connect a separate factor

node u(k) to the group of variable nodes in I
(k)
u . We illustrate

the complexity reduction at one factor node in Fig. 3.

The local function at factor node u(k) can be similarly

derived as (6). Let S
(k)
ui = {sij : j ∈ I

(k)
u }. Again, assuming

rui on item i is unknown, then using ratings from items within
group k, user u predicts rui as

r̂ui(S
(k)
ui) =

∑

j∈I
(k)
u

sij × ruj
∑

j∈I
(k)
u

|sij |
. (11)

We substitute r̂ui(Sui) with r̂ui(S
(k)
ui) in (6) to obtain the new

local function of factor node u(k)

f (k)
u

(

S
(k)
ui

)

=
1

Z
(k)
u

exp

{

−
1

σ2

(

r̂ui(S
(k)
ui)− rui

)2
}

, (12)

where Z
(k)
u is a normalization constant.

On the new factor graph Ĝi, we apply the BP algorithm
described in Sec. III-B. The λ-messages and µ-messages are
exchanged between the new factor nodes and variable nodes.

The λ-message λ
(n)

u(k),j
(sij) sent from factor node u(k) to

variable node j is given by

λ
(n)

u(k),j
(sij) ∝

∑

S
(k)
ui

\sij

fu(S
(k)
ui)

∏

h∈I
(k)
u \j

µ
(n−1)

h,u(k)(sih). (13)

And the µ-message µ
(n)

j,u(k)(sij) sent from variable node j to

factor node u(k) is given by

µ
(n)

j,u(k)(sij) ∝
∏

f∈F̂j\u(k)

λ
(n)
f,j (sij), (14)

where F̂j = {v(k) : v ∈ Uij , j
(k)
v = 1, 1 ≤ k ≤ Gv}.

The complexity of updating a λ-message is effectively
reduced to O

(

DLD
)

from O
(

|Iu|L|Iu|
)

by using (13). Mean-
while, the total number of λ-messages needs to be generated

from user u’s perspective in each iteration remains |Îu|, which
is the same as in Gi. There is no change in complexity
regarding the µ-messages. The overall complexity of the BP

algorithm on Ĝi with complexity reduction in each iteration
is O

(

M̄N̄DLD +NM̄2
)

, where N̄ is the average number of

items rated by one user, and M̄ is the average number of users
of one item. Since the number of items a user can consume
is limited by his time and money, we can assume N̄ is much
smaller than N . As for M̄ , we assume M̄ grows in the order of
M1−ǫ, where 0 < ǫ < 1. Then we can rewrite the computation

complexity on Ĝi as O
(

M1−ǫN̄DLD +NM2(1−ǫ)
)

, and
when N and M is large, it is dominated by the second term,
so we have O

(

NM2(1−ǫ)
)

.

D. Semi-Distributed Implementation of BP

Now we are ready to introduce the semi-distributed im-
plementation of the proposed BP algorithm for item similarity
computation. Our goal is to build a privacy-preserving recom-
mender system. From (7) and (8), we can see that the user
rating data are only used in computing fu(Sui) to generate
λ-messages. Hence, the key to preserve user privacy is to
compute λ-messages at the user side. The µ-messages can
be generated at a central server by performing multiplication
operations on received λ-messages. This leads to the semi-
distributed implementation of the BP algorithm. As we will
see next, the computation follows the BP algorithm described
in Sec. III-B and III-C, and thus the semi-distributed BP does
not impact the computed results.

The architecture of the semi-distributed BP is shown in
Fig. 4. The message passing on graph Gi is carried out by
exchanging messages between the server and the users. In
addition, users also do the grouping for complexity reduction
as explained in Sec. III-C, but the grouping information is not
needed at the server side. Users locally store their personal
ratings, and generate λ-messages according to (13) without

TABLE I: The format of λ-messages.

Graph i User u Item j Iteration n L-entry vector
−→

λ

TABLE II: The format of µ-messages.

Graph i User u Item j Iteration n L-entry vector −→µ

disclosing their ratings to the server or other users. User u

sends the λ-message λ
(n)
u,j (sij) to the server in the format

shown in Table I, where the L-entry vector
−→
λ stores the values

of λ
(n)
u,j (sij = s), ∀s ∈ S. Note that the group information “k”

is not included in the λ-messages, since only one λ
(n)
u,j (sij)

message is generated by user u, regardless of within which
group of user u the message is generated. In other words, the
grouping step is transparent to the server, and the complexity
reduction is for reducing the computational burden of the users.
Specifically, the computational complexity on graph Gi at each
user is only O

(

N̄DLD
)

, regardless of N and M .

The server is responsible for generating µ-messages. To

compute the µ-message µ
(n)
j,u (sij), the server checks if all λ-

messages λ
(n−1)
u,j (sij) from users in Uj have been received.

The server then performs multiplication operations on the λ-
messages to generate µ-messages according to (8), and sends

the µ-message µ
(n)
j,u (sij) to user u in the format shown in Table

II, where the L-entry vector −→µ stores the values of µ
(n)
j,u (sij =

s), ∀s ∈ S. At the user side, user u can easily recover the

group information “k” from µ
(n)
j,u (sij) by looking up for k

with j
(k)
u = 1, and obtain µ

(n)

j,u(k)(sij), as if it was computed

using (14). The server checks the convergence of messages,
and obtains the item similarity after convergence using (10).

The computation of all item similarities in {Si : 1 ≤
i ≤ N} requires N factor graphs, with Si computed using
factor graph Gi. We introduce three protocols for coordinating
the message passing on different graphs: the serial protocol,
the parallel protocol, and the pipeline protocol. In the serial
protocol, the message passing on factor graphs is performed
in a serial manner, that is at any time, all generated messages
belong to one factor graph, and unless inference on that graph
is finished, no messages on other factor graphs are generated.
Alternatively, we can adopt the parallel protocol. If the band-
width of the communication channel between users and the
server is sufficient, and if the user’s computational capability
allows, message passing on multiple factor graphs can be
performed in parallel to accelerate the inference process. The
pipeline protocol, which is a combination of the serial and
parallel protocols, is favorable when the delay in the network
is large. While waiting for the messages on one factor graph
to arrive, users can compute messages on other factor graphs
and continue to send them to the server, so as to increase
throughput and make more efficient use of computational
resources as well, but the total amount of messages transmitted
on the network needs to be carefully controlled to avoid
paralyzing the network.

TABLE III: Summarization of entity functions.

Entity Function

Server
Coordinate message passing;
Generate µ-messages;
Compute and store item similarity.

User
Store personal rating data;
Generate λ-messages;
Generate recommendations.

Aside from the semi-distributed implementation, a fully
distributed implementation is also possible. For example, [18]
proposed a distributed BP-based trust management algorithm
for P2P networks. Users directly send λ-messages to other
users instead of to the server, and also generate µ-messages
locally using received λ-messages, without relying on the serv-
er. However, there is a significant increase in communication
overhead, considering that a λ-message λu,j(sij) needs to be
sent to each of the users in Uj , as they require this λ-message
for updating µ-messages. Moreover, for each item a user has
rated, he needs to find out other users who also have rated
that item, i.e., the graph must be known by the users. Further,
since the item similarity is locally computed by users, and user

u ∈ Ui only obtains {sij : j ∈ Îu}, the users need to share with
each other the item similarities. Thus, a more sophisticated
protocol needs to be developed for a fully distributed system.

E. User-Side Recommendation

Thus far, we have focused on the item similarity compu-
tation using the semi-distributed BP algorithm. To complete
the privacy-preserving item-based CF recommender system, it
remains to specify the recommendation generation. As intro-
duced in Sec. II, item-based CF computes rating prediction
for user u on item i using (1), which takes as input the past
ratings of user u and item similarities. To avoid revealing user
ratings, users would then locally generate rating predictions.
Since the item similarities are obtained at the server side in
the semi-distributed BP algorithm, the server should send to
users the required item similarities. To predict ratings on all
unseen items in I\Iu, user u only needs item similarities in
{sij : i ∈ I\Iu, j ∈ Iu}. After computing rating predictions,
users can locally store the item similarities received from the
server for future uses, and only update them periodically. We
summarize the functions of the server and users in Table III.

It is worth noting that in addition to preserving priva-
cy, user-side recommendation also enhances user trust in e-
commerce. Traditionally, centralized recommender systems
owned by the commercial websites can manipulate the rec-
ommendations in various ways for revenue. A website might
place the items with the highest profits on top of the rec-
ommendation list, or even employ recommendations as tools
for advertisement of new products. This trust issue is well
addressed by user-side recommendation, where users locally
generate recommendations on their personal computers.

F. Trade-offs

Before discussing the trade-offs, we like to emphasize that
there is no trade-off between accuracy and privacy in the

TABLE IV: MAE performance comparison of various item-based CF algorithms under different neighborhood size K .

Algorithms
Nc = 3 (Ppred = 74%) Nc = 8 (Ppred = 67%)

K = 10 K = 20 K = 30 K = 40 K = 50 K = 10 K = 20 K = 30 K = 40 K = 50

PCS 0.8839 0.8486 0.8370 0.8326 0.8418 0.8330 0.8073 0.8009 0.7989 0.8127
ACS 0.7812 0.7585 0.7609 0.8029 0.9278 0.7390 0.7264 0.7389 0.8044 0.9765
CS 0.7567 0.7601 0.7676 0.7751 0.7812 0.7418 0.7428 0.7494 0.7566 0.7632

Proposed 0.7512 0.7437 0.7486 0.7557 0.7632 0.7283 0.7255 0.7293 0.7359 0.7450

TABLE V: RMSE performance comparison of various item-based CF algorithms under different neighborhood size K .

Algorithms
Nc = 3 (Ppred = 74%) Nc = 8 (Ppred = 67%)

K = 10 K = 20 K = 30 K = 40 K = 50 K = 10 K = 20 K = 30 K = 40 K = 50

PCS 1.0993 1.0562 1.0435 1.0392 1.0560 1.0403 1.0096 1.0031 1.0013 1.0208
ACS 0.9896 0.9622 0.9671 1.0473 1.2712 0.9433 0.9264 0.9475 1.0755 1.3740
CS 0.9754 0.9791 0.9876 0.9942 0.9992 0.9577 0.9583 0.9651 0.9716 0.9768

Proposed 0.9680 0.9543 0.9580 0.9637 0.9703 0.9397 0.9322 0.9349 0.9400 0.9485

proposed algorithm. Basically, all computations involved in the
semi-distributed BP in Sec. III-D and user-side recommenda-
tion in Sec. III-E are carried out exactly as in a centralized
approach, where the server performs BP for item similarity
computation and generates rating predictions using (1). Thus,
the accuracy performance shown in Sec. IV also represents
the performance of the centralized counterpart of the proposed
algorithm. However, the proposed algorithm does incur com-
munication overhead, trading off efficiency for privacy. In the
semi-distributed BP on graph Gi, for each user u ∈ Ui, there
are |Iu| λ-messages and |Iu| µ-messages exchanged between
the server and use u in each iteration. And the server needs
to send a total of |Iu|(N − |Iu|) item similarities to user
u for user-side recommendation. Whereas in the centralized
approach, only the generated recommendations need to be sent
to the user.

IV. EXPERIMENTAL EVALUATION

We evaluate the accuracy of the proposed privacy-
preserving item-based CF algorithm on the 100K MovieLens
dataset1, which consists of 100, 000 ratings on 1682 items
(movies) by 943 users. Each rating is an integer between 1
and 5. We randomly divide the dataset into two disjoint sets:
a training set containing 80% of the ratings, and a test set
containing the rest 20% of the ratings. The ratings in the train-
ing set are used as memory for the item-based CF algorithm
to compute item similarities and predict unknown ratings. We
compare the predicted ratings with the actual ratings in the test
set to evaluate the accuracy of the recommendation algorithms
in terms of MAE and RMSE, which are computed as follows

MAE =
1

|T|

∑

rui∈T

|rui − r̂ui|,

RMSE =

√

1

|T|

∑

rui∈T

(rui − r̂ui)2,

where r̂ui is the predicted rating, and rui is the actual rating
in the test set denoted by T. The smaller the MAE and RMSE,

1Available at: http://www.grouplens.org/node/73.

the better accuracy. Note that RMSE is more sensitive to large
errors than MAE.

We compare our proposed privacy-preserving algorithm
with other item-based CF algorithms using the well-known
similarity measures, including the CS, PCS and ACS methods
as introduced in Sec. II. In all cases, rating predictions are gen-
erated by (1). We assume no privacy requirement is imposed
on other algorithms, so the CS, PCS and ACS measures are
directly applied to original rating data, and thus their results are
not compromised by privacy techniques such as obfuscation. In
particular, the presented results of the CS measure represent
the best achievable performance of the distributed personal
recommender system proposed in [13], as the item similarity
between two items is computed based on the complete rating
vectors associated with them in R, rather than computed in an
incremental manner as in [13].

The PCS and ACS methods compute the item similarity
sij between two items i and j using the ratings from the set
of their common users Uij = Ui ∩ Uj . We denote by Nc the
minimum number of common users required for computing the
item similarity sij using PCS and ACS. If |Uij | < Nc, then
neither item i nor item j will be used to predict each other’s
ratings. Let Ni be the set of all valid items for item i under Nc.
To predict ratings on item i for user u, the neighborhood Nui

used in (1) is formed from the set of items in Nui = Ni∩Iu. In
addition, given a required neighborhood size K , if |Nui| < K ,
we simply say the unknown rating rui in the test set T is
unpredictable by the PCS and ACS. We denote TK as the
subset of all predictable ratings in T at neighborhood size K .
Note that TK changes with Nc, since Nc impacts Ni. For fair
comparison of different algorithms, we apply the same Nc to
all evaluated algorithms.

In Tables IV and V, we examine the MAE and RMSE
performances of various algorithms. The parameters of the
proposed algorithm are set as D = 4, S = {1, 2}, and σ = 0.5.
We show the results for Nc = 3 and 8 with K varying from
10 to 50 in steps of 10. Under each Nc, to fairly compare
performances of different K’s, all results are obtained on the
same subset of test ratings T50, and the percentage of ratings

2 2.5 3 3.5 4 4.5 5 5.5 6
0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

D

M
A

E

K = 10

K = 20

K = 30

Fig. 5: Impact of D on MAE of the proposed algorithm.

in T used for evaluation is

Ppred = |T50|/|T| × 100%.

Our proposed algorithm achieves superior performance com-
pared to other algorithms in terms of both MAE and RMSE.
As K increases from 10, the performance of the proposed
algorithm, as well as PCS and ACS algorithms, first improves
but then degrades when K becomes too large, because ratings
from neighbor items with smaller similarity to the active
item, on which the rating is predicted, corrupt the prediction
accuracy. Thus, to achieve the best performance, a proper
neighborhood size K should be chosen. The computational
complexity cost of our algorithm to solve for the similarities
between item i and other items on graph Gi is O

(

NM2(1−ǫ)
)

for large N and M as discussed in Sec. III-C, whereas for
the CS method the complexity is O (NM), and for PCS and
ACS, the complexity is O

(

NM (1−ǫ)
)

. Finally, as we will see
next, the performance of our algorithm can be further improved
if a higher degree D is used, but at the cost of increased
computational complexity at users.

In the following experiments, we investigate the impact
of the parameters D, σ, and S on the performance of our
proposed algorithm. We always set Nc = 3 and evaluate
the proposed algorithm on T50. In Fig. 5, we investigate the
influence of group size D on the accuracy of the proposed
algorithm, where we fix other parameters as S = {1, 2}, and
σ = 0.5. It can be seen that increasing D slightly improves
accuracy. However, since the computational complexity at user
side is O

(

N̄DLD
)

, which is exponential in D, users need to
wisely choose D according to their computational capability.
In Fig. 6, we show the results for different σ’s, where D = 3
and S = {1, 2}. The performance slightly degrades if σ is too
small or too large, since for a small σ, the curve of the factor
function (6) quickly flattens out with respect to |r̂ui − rui|,
while for a large σ, the curve becomes too flat. But overall,
the algorithm is not sensitive for large dynamic ranges of σ.

In Table VI, we show the results of the proposed algorithm
for different S’s, where Sl = {1, 2, . . . , l}, ∀l ∈ {2, 5}, D = 3,
and σ = 0.5. We observe that S2 and S5 achieve their
best performance when K = 20, but S2 actually provides
better accuracy than S5. This is because large l could cause

0 0.5 1 1.5 2 2.5 3 3.5
0.746

0.748

0.75

0.752

0.754

0.756

0.758

0.76

0.762

0.764

σ

M
A

E

K = 10

K = 20

K = 30

Fig. 6: Impact of σ on MAE of the proposed algorithm.

TABLE VI: Impact of S on MAE of the proposed algorithm.

S
MAE

K = 10 K = 20 K = 30

S2 0.7546 0.7471 0.7513
S5 0.7504 0.7500 0.7545

overfitting, that is the obtained item similarity is strongly
biased towards the memory data, and does not generalize
well when used for prediction. Meanwhile, the computational
complexity O

(

N̄DLD
)

at user side significantly increases
with L = |Sl|, depending on D.

V. RELATED WORKS

Several existing works have addressed privacy issues in
item-based recommender systems. The work in [13] present-
ed a personal CF recommender running on the user side.
Each user stores his data locally, and constructs an item-
item similarity model using the cosine similarity measure by
incrementally incorporating ratings from other neighbour users
in a peer-to-peer (P2P) environment. The quality of the locally
constructed similarity model depends on the set of neighbours
a user can find and contact. The best is to use ratings from
all common users of two items to evaluate the item similarity,
which is much harder to implement in P2P architectures than
in a centralized CF system. Moreover, the user privacy is not
guaranteed as users need to share their ratings with each other.

Another work in [19] applied homomorphic encryption
to obscure user ratings from the central server. The server
maintains an item-item similarity model, and generates rating
predictions blindly by performing homomorphic operations
on the encrypted ratings. However, the authors assumed the
similarity model is known a priori, and did not provide any
privacy-preserving solution for that. Besides, key management
required by cryptography tools could be demanding in prac-
tice. The general privacy solutions presented in other works,
including perturbation [7] and differential privacy [8], can also
be readily extended to item-based CF systems, but they only
alleviate the degree of privacy leakage, yet at the cost of
accuracy loss.

Previously, BP has been applied to recommender systems
without considering privacy in [20]–[22]. In [20], the proposed
algorithm therein follows the philosophy of the user-based
CF algorithm. To receive recommendations, an active user
discloses his ratings to other users, who then compare their
own ratings with the active user’s ratings on common items in
order to update their “confidence”, which can be understood
as similarity to the active user. The central server collects
“confidences” as well as ratings of all users, and sends back
to users probabilistic messages regarding predicted ratings on
items. It is much the same in [21], except that each user
combines his “confidence” and ratings to form probabilistic
messages on ratings, and sends them to the server. The work
in [22] proposed to predict ratings for an active user on
a Pairwise Markov Random Field (PMRF), where the local
evidence for each unknown rating is the aggregated ratings
from other users similar to the active user, and probabilistic
messages on predicted ratings are exchanged between similar
items. Whereas in this work, we are concerned with preserving
privacy in item-based CF recommendation. Instead of directly
using BP for rating prediction as in [20]–[22], we employ BP
for item similarity computation in a semi-distributed fashion,
where messages are exchanged between the server and users,
without disclosing user ratings. The rating prediction for an
active user is then locally computed at the user side by
combing his own ratings and item similarity.

VI. CONCLUSION

In this work, we proposed a item-based CF recommender
system that preservers user privacy in both item similarity com-
putation and rating prediction, without relying on any privacy
techniques, such as obfuscation and cryptography. Firstly, we
formulated the item similarity computation as a probabilistic
inference problem on the factor graph, which can be efficiently
solved via BP, a probabilistic message passing algorithm. To
avoid disclosing user ratings to the server or other users,
we then introduced the semi-distributed architecture of BP,
where probabilistic messages on item similarity are exchanged
between the server and users. In addition, we proposed a
complexity reduction technique for efficient inference at the
user side. Finally, an active user locally generates rating
predictions by averaging his own ratings on items weighted by
their similarities to unseen items. Overall, the computation is
carried out exactly as in a centralized approach, and thus there
is no compromise in recommendation performance compared
to the centralized counterpart of the proposed algorithm. The
experimental results on the MovieLens dataset validated the
superior accuracy of the proposed algorithm in terms of both
MAE and RMSE.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, pp. 734–749, Jun. 2005.

[2] P. Resnick, N. Iakovou, M. Sushak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of netnews,”
in Proceedings of the 1994 Computer Supported Cooperative Work

Conference, 1994, pp. 175–186.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th

International Conference on World Wide Web, 2001, pp. 285–295.

[4] M. S. Ackerman, L. F. Cranor, and J. Reagle, “Privacy in e-commerce:
Examining user scenarios and privacy preferences,” in Proceedings of

the 1st ACM Conference on Electronic Commerce, Denver, CO, USA,
1999, pp. 1–8.

[5] U. Weinsberg, S. Bhagat, S. Ioannidis, and N. Taft, “BlurMe: Inferring
and obfuscating user gender based on ratings,” in Proceedings of the

Sixth ACM Conference on Recommender Systems, Dublin, Ireland,
2012, pp. 195–202.

[6] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Proceedings of the 2008 IEEE Symposium on

Security and Privacy, 2008, pp. 111–125.

[7] H. Polat and W. Du, “Privacy-preserving collaborative filtering using
randomized perturbation techniques,” in Proceedings of the Third IEEE

International Conference on Data Mining, 2003, pp. 625–628.

[8] F. McSherry and I. Mironov, “Differentially private recommender
systems: Building privacy into the net,” in Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2009, pp. 627–636.

[9] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J.-P. Hubaux, “Pre-
serving privacy in collaborative filtering through distributed aggregation
of offline profiles,” in Proceedings of the Third ACM Conference on

Recommender Systems, 2009, pp. 157–164.

[10] D. Mulligan and A. Schwartz, “Your place or mine?: Privacy concerns
and solutions for server and client-side storage of personal information,”
in Proceedings of the Tenth Conference on Computers, Freedom and

Privacy: Challenging the Assumptions. ACM, 2000, pp. 81–84.

[11] J. F. Canny, “Collaborative filtering with privacy,” in Proceedings of the

2002 IEEE Symposium on Security and Privacy, 2002, pp. 45–57.

[12] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private
recommendations efficiently using homomorphic encryption and data
packing,” IEEE Transactions on Information Forensics and Security,
vol. 7, no. 3, pp. 1053–1066, Jun. 2012.

[13] B. N. Miller, J. A. Konstan, and J. Riedl, “Pocketlens: Toward a personal
recommender system,” ACM Transactions on Information Systems,
vol. 22, no. 3, pp. 437–476, Jul. 2004.

[14] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci, “Enhancing privacy
and preserving accuracy of a distributed collaborative filtering,” in
Proceedings of the 2007 ACM Conference on Recommender Systems,
2007, pp. 9–16.

[15] N. Lathia, S. Hailes, and L. Capra, “Private distributed collaborative
filtering using estimated concordance measures,” in Proceedings of the

2007 ACM Conference on Recommender Systems, 2007, pp. 1–8.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann Publishers, Inc., 1988.

[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001.

[18] E. Ayday and F. Fekri, “BP-P2P: Belief propagation-based trust and
reputation management for P2P networks,” in Proceedings of the 9th

Annual IEEE Communications Society Conference on Sensor, Mesh and

Ad Hoc Communications and Networks (SECON), 2012, pp. 578–586.

[19] Z. Erkin, M. Beye, T. Veugen, and R. L. Lagendijk, “Privacy-preserving
content-based recommender system,” in Proceedings of the 14th ACM

Workshop on Multimedia and Security, 2012, pp. 77–84.

[20] E. Ayday and F. Fekri, “A belief propagation based recommender system
for online services,” in Proceedings of the Fourth ACM Conference on

Recommender Systems, Barcelona, Spain, 2010, pp. 217–220.

[21] E. Ayday, A. Einolghozati, and F. Fekri, “BPRS: Belief propagation
based iterative recommender system,” in Proceedings of the 2012

IEEE International Symposium on Information Theory, Cambridge,
MA, 2012, pp. 1992–1996.

[22] E. Ayday, J. Zou, A. Einolghozati, and F. Fekri, “A recommender system
based on belief propagation over pairwise Markov random fields,” in
Proceedings of the 50th Annual Allerton Conference on Communication,

Control, and Computing, Monticello, IL, USA, 2012.

