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Abstract-Exact queueing analysis of erasure networks with 
network coding in a finite buffer regime is an extremely hard 
problem due to the large number of states in the network. In 

such networks , packets are lost due to either link erasures or due 
to blocking due to full buffers. In this paper, a block-by-block 
random linear network coding scheme with feedback on the 
links is selected for reliability and more importantly guaranteed 
decoding of each block. We propose a novel method that 
iteratively estimates the performance parameters of the network 
and more importantly reduces the computational complexity 
compared to the exact analysis. The proposed framework yields 
an accurate estimate of the distribution of buffer occupancies 
at the intermediate nodes using which we obtain analytical 
expressions for network throughput and delay distribution of 
a block of packets. 

I. INTRODUCTION 

In networks, packets transfer through a series of intermedi­
ate nodes (routers). Hence, the packets may have to be stored 
at intermediate nodes for transmission at a later time, and 
often times, buffers are limited in size. Although a large buffer 
size is usually affordable and preferred to minimize packet 
drops, large buffers have an adverse effect on the latency of 
the network. Further, using larger buffer sizes at intermediate 
nodes will cause practical problems such as on-chip board 
space and increased memory-access latency. 

The problem of buffer sizing and congestion control is of 
paramount interest to router design engineers. Typical routers 
today route several tens of gigabits of data each second [1]. 
Realistic studies have shown that, at times, Internet routers 
handle about ten thousand independent streamslflows of data 
packets. With a reasonable buffer size of few Gigabytes of 
data, each stream can only be allocated a few tens of data 
packets. Therefore, at times when long parallel flows congest 
a router, the effects of such a small buffer space per flow 
come to play. This work aims at providing a framework to 
analyze the performance of single information flow in finite­
buffer line networks and investigates the trade-offs between 
throughput, delay and buffer size. 

The problem of computing throughput capacity and de­
signing efficient coding schemes for lossy networks has been 
widely studied [2]-[4]. However, the study of capacity of 
networks with finite buffer sizes has been limited [5]-[8]. 
This can be attributed solely to the fact that finite buffer 
systems are analytically hard to track. In [5], [6], it was shown 
that min-cut capacity cannot be achieved due to the limited 
buffer constraint in a line network. They also proposed upper 
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and lower bounds for the throughput capacity of wireline 
networks. Recently in [7], authors presented an iterative 
estimation method to analyze the performance of a random 
routing scheme in general wired networks. Here, we will 
exploit similar ideas (on iterative estimation) to analyze the 
performance of block-based network coding scheme,l which 
is a combination of both random linear coding and an ideal 
feedback. This is partly motivated by the feedback-based 
network coding scheme in [9], [10]. Further, the problem 
of finding the packet delay has been visited in queueing 
theory literature on the behavior of open tandem queues, 
which are analogous to line networks [11], [12]. However, the 
approaches therein cannot be used to study the performance 
of the random linear coding (RLC) scheme. 

This work is motivated by the fact that the RLC scheme 
for finite-buffer networks introduced in [8] has the limitation 
that it cannot be used to characterize the latency profile. This 
is because, the typical notion of latency is not meaningful 
for the RLC scheme. Since latency is critical for real-time 
applications (such as video streaming), a block-by-block 
encoding of the stream is required. Hence, we introduce our 
Block-based Random Linear Coding scheme, which applies 
RLC on each individual block2• We will see that our approach 
guarantees a certain decoding delay while this is not the case 
in RLC, which is a rate-optimal scheme with large decoding 
delay. Further, by using RLC, only one feedback is required 
for transmission of K packets which considerably limits the 
average number of feedbacks per transmission. 

This paper is organized as follows. First, we present a 
formal definition of the problem and the network model in 
Section II. Next, we define the network states and the need 
for an approximation of the exact problem. We investigate 
the tools and steps for finite-buffer analysis in Section IV. 
We then obtain expressions for throughput and probability 
distribution of delay in Section V. Finally, Section VI presents 
our analytical results compared to the simulations. 

I In the network coding literature, it is also referred as generation-based 
scheme, where each intermediate node combines only those packets that from 
the same generation. 

2 Just as in any network coding scheme, the packets received by the 
destination are linear combinations of the original data in a block. Hence, 
with the knowledge of this linear transformation at the decoder, inversion 
can be performed to recover the data block. 
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II. PROBLEM STATEMENT AND NETWORK MODEL 

We consider line networks for our study. As illustrated in 
Fig. 1, a line network is a directed graph of h hops with --> 
the vertex set V = {Va,Vl, ... ,Vh} and the edge set E = 

{(Vi,Vi+I): i = O, ... , h- l} for some integer h � 2. In 
the figure, the intermediate nodes are shown by black ovals. 
The links are assumed to be unidirectional, memory less and 
lossy. We let Ei denote the packet erasure probability over the 
link (Vi-I, Vi)' The erasures model only the quality of links 
(e.g., presence of noise, interference) and do not represent 
packet drops due to finite buffers. Each node Vi E V has 
a buffer size of mi packets. It is assumed the destination 
node has no buffer constraints and that the source node has 
infinitely many innovative packets 3 . The system is analyzed 
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Fig. I. An illustration of the line network. 

using a discrete-time model, where each node transmits one 
packet over a link per epoch. The unicast capacity between a 
pair of nodes is defined to be the supremum of all achievable 
rates of transmission of information packets (in packets per 
epoch) between the pair of nodes over all possible means 
used for packet generation and buffer update at intermediate 
nodes. The capacity is discussed thoroughly by the authors 
in [13]. However, in this work we are not aiming to analyze 
the fundamental capacity of the network using rate optimal 
schemes. A practical network coding scheme, which is well­
suited for transmitting real-time data streams in a block-by­
block fashion using RLC and feedback, is introduced. The 
proposed scheme guarantees certain decoding delay, which is 
not the case in the RLC. 

In the proposed practical scheme, the source node takes 
the stream of packets and divides them into blocks of K 
packets each. The buffer of each intermediate node Vi E V 
is then segmented into Mi blocks. In other words, we have 
mi = MiK. Each block is then served using RLC over 
all the packets in the block. The blocks are served based 
on a first-come first-serve policy. An instant lossless hop-by­
hop acknowledgment per block is also employed to indicate 
the successful receipt of a complete block of K packets. In 
each epoch, one or multiple of the following events occur in 
different orders: 

1. If a node neither receives any innovative packet nor 
conveys any innovative packet to the next node, then 
the content of its buffer does not change4. 

3 A received packet is called innovotive with respect to a node if the packet 
cannot be generated by a linear combination of the current buffer contents 
of the node. 

4[n this work, by conveying a packet, we mean that the packet is 
successfully transmitted and stored at the next-hop node. 
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2. Upon receiving an innovative packet, it will be stored 
in the last available block (a block of memory with less 
than K innovative packets stored in it). The packets of 
this block will be served after all the previously received 
blocks in the buffer are completely served. 

3. In each epoch, every node transmits a packet formed by 
the RLC encoding over its current block (oldest block in 
the queue), until the node receives an acknowledgment 
indicating that the block is fully conveyed to the next-hop 
node. The block will then be removed from the buffer 
and the next block in the queue will be served. This also 
implies that free space in the buffer will be increased by 
K packets. 

To implement the per-block feedback mechanism, a node 
must distinguish innovative packets upon their reception. One 
way is to compute the rank of the received packets in a 
block. A more practical protocol is to use a variable CMB in 
the header of each encoded packet, indicating the number of 
innovative packets used by RLC to form the packet. Further, 
every node maintains a counter INV indicating the number 
of innovative packets received in its current block so far. 
Every node sets INV = 0 for each new incoming block 5 and 
increments it by one for each incoming packet whose CMB 
is greater than INV of the receiving node. Note that, if the 
current block in the queue of a node has K innovative packets 
then CMB is equal to K for all the packets to be transmitted 
by that node. 

In this work, we will employ the following notations. For 
any x E [0, 1], x � I-x. The convolution operator is denoted 
by @ and @l f is used as a shorthand for the I-fold convolution 
of f with itself. For 0 < .\ < 1, <G(.\) denotes the probability 
mass function of a random variable that is geometric with 
mean I�A' 

III. EXACT ANALYS[S AND NETWORK STATES 

In [5], a Markov-chain approach for exact analysis of a 
finite-buffer line network identifies the throughput as equiv­
alent to the problem of finding the buffer occupancy distri­
bution of the intermediate nodes. However, the size of the 
Exact Markov Chain (EMC) and the multiple reflections due 
to the finiteness of buffers at each intermediate node render 
this problem mathematically intractable for even networks 
of small hop-lengths and buffer sizes. We therefore aim to 
approximate the distribution of buffer occupancies. 

To approach this approximation problem properly, it is 
necessary to clearly define the buffer states in a manner 
that (a) an irreducible ergodic Markov chain is obtained, and 
(b) the steady-state distribution of the chain allows tractable 
expressions for the performance parameters of the network. 
Thus, a proper definition for the buffer states cannot be 
proposed unless the communication scheme is known. For the 
scheme in Sec. II, two variables are needed to track all the 
buffer states of a node. Let s be the total number of innovative 
(w.r.t. the next-hop node) packets stored at a node. Denote t 
to be the number of successfully conveyed innovative packets 

5[f [NY = K, then the counter is reset to 0 and an acknowledgment is 
sent to the previous node. 



by the node from the current block. Then, the pair (8, t) can 
be defined as the state of the buffer of the node. Note that 8 
is the minimum number of packets that a node has to store in 
its buffer. Also note that, since a new block starts to be served 
after the Kth packet of the current block, t E {D, ... , K - 1 }. 
As an example, assuming that node Vi is in state (8, t) at the 
start of the epoch, given that during the epoch it only sends a 
packet successfully but does not receive any packets, the state 
of the network will change to (8, t+ 1) ift = {D, 1, ... , K -2} 
or it will change to (8 - K, D) if t = K - 1. 

IV. A FRA MEWORK FOR FINITE-BuFFER ANALYSIS: 

MARKOV CHAIN MODELING 

In this section, we aim to determine the distribution of 
buffer occupancy of an intermediate node, which will later 
be used to analyze network parameters such as throughput 
and latency of a block. 

Due to the discrete-time nature of the analysis framework, 
two Markov chains need to be constructed for each inter­
mediate node. The first one considers the buffer occupancy 
at instants when a packet has just been transmitted (either 
successfully or unsuccessfully), which is called receive-first 

Markov chain (RFMC). This is required to compute the prob­
ability of blocking, which is caused when the state of a node 
is forced to remain unchanged because the transmitted packet 
was successfully delivered to the next-hop node, but the latter 
does not store the packet due to full buffer occupancy . The 
second one considers the buffer occupancy at instants when a 
packet has just been received/stored, which is called transmit­

first Markov chain (TFMC). This will be used to calculate the 
incoming rate of innovative packets at each node. 

Note that the problem of exactly identifying the steady­
state probabilities of the RFMC and TFMC suffers the same 
difficulties as identifying that of the EMC [13]. The finite 
buffer condition introduces a strong dependency of state 
update at a node on the state of the node that is downstream. 
To develop an estimation scheme that considers blocking, we 
make the following assumptions. 

1. Packets are ejected from nodes in a memoryless fashion. 
This assumption allows us to keep track of only the 
information rate. 

2. The blocking event occurs independent of the state 
of a node. This allows us to track just the blocking 
probability. 

3. At any epoch, given the occupancy of a particular node, 
packet arrival and blocking events are independent of 
each other. 

These assumptions spread the effect of blocking equally 
over all non-zero states of occupancy at each node. Now, 
given that the arrival rate of innovative packets at node Vi is ri 
packets/epoch, and that the probability of the next node being 
full, (i.e., 8 = mi+1 for node vi+d is Pbi+l' we can show that 
transition dynamics of the state change for node Vi is given 
by the Markov chain depicted in Fig. 2 for both TFMC and 
RFMC 6. Also, obtaining the state transition probabilities is 

6Self-Ioops are not demonstrated in the figure. 
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Fig. 2. The general structure for both TFMC and RFMC for a node with 
buffer size m = M K. 

straightforward using ri, Pbi+l' Ci and Ci+I. As an example, 
for TFMC we have the following { ri 8 = t 

p(�,�)�(S+I,t) = r
D
i(Ci+1 + Ei+IPbi+l) 8 - 1:::: t . (1) 

Otherwise 

Note that we notate 8 and t instead of 8i and ti for the 
simplicity of notation when considering node Vi. The same 
transition probability for RFMC is different from TFMC and 
is given by 

p(��)�(S+I,t) = ri(Ci+l + Ei+IPbi+I)' (2) 

Note that, both (1) and (2) are valid for 8 
{D, l , ... , MiK - 1} and t = {D, l , ... , K  - 1}. 

For all input parameters, the Markov chains can be shown 
to be aperiodic, irreducible and ergodic. Therefore, it pos­
sesses a unique steady-state distribution. The steady state 
probability of node Vi being in state (8, t), is denoted by 
PflF(8, t) and P[F(8, t) for RFMC and TFMC, respectively. 

The blocking probability that the node Vi-I perceives from 
the node Vi is the same as the probability of Vi being full 
(8 = MiK) at the instant when a packet is transmitted suc­
cessfully by the previous node. Hence, this probability have 
to be calculated using the steady state probability distribution 
of RFMC as follows 

K-l 
Pbi = L pflF(MiK, t). 

t=O 
(3) 

Similarly, the steady state probability distribution of TFMC 
can be used to compute the arrival rate at the next node using 

K-I 
'" TF -ri+1 = (1- � Pi (t, t))Ci+I. 
t=o 

(4) 

Note that if a node is in the state (t, t) (t E {D, ... , K -
1 }), it means that it has stored t innovative packets from the 
current block so far and it has also sent t linear combinations 
of them successfully. Therefore, there is no more innovative 
packets to send. 

Finally, Given two vectors r = (rl, ... , rh) E [D, l ]h 
and Pb = (Pbl"",Pbh) E [D, l ]\ we term (r,Pb) as an 
approximate solution to the exact problem, if they satisfy 



(3) and (4) in addition to having Tl = €l and Pbh = 0. 
Fortunately, the result from our previous work on the capacity 
of line networks in [13] can be applied to this setup as well 
and guarantees both the uniqueness and an algorithm for 
identifYing the approximate solution. 

The approximate solution is obtained iteratively by the 
following procedure: 

1. Initialization: r = (€1' ... ,€h) and Ph = (0, ... ,0) 
2. Construct TFMC and RFMC respectively and compute 

their steady-state probabilities. 
3. Using PfF(8, t) and p[F(8, t) (obtained from step 2) 

calculate the new values for r and Ph by (3) and 
(4), respectively, for i = 1, 2, ... , h - 1 and auxiliary 
equations Tl = 1 - El and Pbh = 0. 

4. Repeat steps 2 and 3 until all the distributions converge. 

V. COMPUTATION OF NETWORK PAR AMETERS 

In this section, we exploit the results of the iterative 
estimation of buffer occupancy distributions in Sec. IV to 
obtain analytical expressions for both network throughput and 
delay distribution of a block. The Block Delay is defined as 
the time taken for a block of K information packets (at the 
source) to be transferred through a line network from the 
instant when the first packet of that block is transmitted from 
the source node to the instant when the Kth innovative packet 
of that block is received by the destination node (i.e., the block 
can be decoded at the destination). 

Given a line network with link erasures t: = (E 1, ... , E h)' 
intermediate node buffer sizes M = (ml' ... , mh-l), we can 
find the approximate solution (r, Ph). Using this, an estimate 
of the throughput is obtained using the following 

(5) 

To compute the distribution of the total block delay, one 
can proceed in a hop-by-hop fashion in the following way: 

(6) 

where T 1 is the probability distribution of the time taken 
for a packet in the source to be conveyed to node v 1. Further, 
Wi is the probability distribution of the time taken from the 
instant when node Vi stores the first innovative packet of a 
block to the instant the first packet of the corresponding block 
in Vi is conveyed to node Vi+l. Finally F is the probability 
distribution of the time taken for all the K packets of a 
block in node Vh-l to be conveyed to the destination node 
from the instant when the first innovative packet of the same 
block is stored in the buffer of node V h-l. Thus, using the 
definition, we have Tl = <G(i1), where il is the effective 
erasure probability (after considering blocking) and is given 
by 

'. _ { Ei + Pbi€i i = 1, 2, ... , h - 1 E, - Eh i = h . (7) 

Also, the average waiting time in node Vi is formulated as 

Mi-l K-l 
Wi = 7ri(O, 0)8i(0, 0) + L L 7ri(dK, t)8i(dK, t), (8) 

d=1 t=o 
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where, 7ri(8, t) is the probability that an aITIvmg packet 
finds node Vi in state (8, t) given that it is the first packet 
of its corresponding block. Also, 8i(8, t) is the probability 
distribution of the time taken for the first innovative packet 
of a block in Vi to be conveyed to node Vi+l from the instant 
when the first innovative packet of that block arrives at node 
Vi and finds its buffer at state (8, t). 

If an arriving packet is the first of its corresponding block, it 
finds the buffer at states of the form (dK, t) where d can take 
any value between ° and Mi - 1. This is because of the fact 
that the last block had been completely served before the first 
packet of the current block arrives. Hence, both 8 i (8, t) and 
7ri(8, t) will be ° if 8 is not a multiple of K. Finally, 7ri(8, t) 
can be formulated as follows for n E {a, 1, ... , Mi - 1}, 

8=nK 
Otherwise 

(9) 

where <PfF' (8) is the marginal probability distribution of 8 for 
an arriving packet (i. e., The probability that an arriving packet 
finds the buffer of node Vi in the states of the form (8, .)). <Pi 
can be computed as follows 

min{K-l,s} 
<Pi(8) = L PiRF(8, t). (10) 

t=o 
Also, 8i(8, t) can be derived using the following relation 

for n E {a, 1, ... , Mi - 1} 

8=0 
8=nK 
Otherwise 

Finally, F can be calculated by taking the average over all 
the conditional delay distributions L(8, t) as 

mh-l-lK-l 
F=7rh_l(O,O)L(O,O)+ L L 7rh-l(dK,t)L(dK,t), 

d=1 t=O 
where L(8, t) is the probability distribution of the time taken 
for the whole block to be conveyed to the destination node 
given that the first packet of that block found the buffer 
of node Vh-l in state (8, t) when arrived. Note that after 
receiving the first packet of a block, node V h-l has to wait 
until all its previously stored blocks are conveyed to the desti­
nation, during which some of the packets of the corresponding 
block might have already been arrived. Let V (x, y) be the 
probability distribution of the time to convey y innovative 
packets to the next node when x of those packets (x :s: y) has 
yet to arrive for the same block, knowing that a packet departs 
with probability Pout and an innovative packet arrives with 
probability Pin in each time epoch. Hence, L(8, t) is derived 
using the following relation for n E {a, 1, ... , Mi - 1} { V(K - 1, K) 8 = ° 
L(8, t) = {®<>(n,t)<G(Eh)} + V(K - (3, K) 8 = nK 

° otherwise 

where a:(n, t) = (n - 1)K + (K - t) is the number of 
packets that have to leave node Vh-l before the next block 



to be served and (3 = min{K - 1, l C«';;:��'n J} is the 
expected number of packets from the correspondIng block 
that arrived during the time when those o: (n, t) packets were 
being conveyed. Further, Pin = €h-1(1- L��1 

Pl�l(t,t)) 
for h > 2, Pin = €h-1 for h = 2, and Pout = €h. V(x, y) 
will be determined by the following lemma. 

Lemma 1: V(x, y) (defined for x:::; y) is the solution to 
the following equation, 

vex, y) = [PI vex, y - 1) + P2 
vex - 1, y) + P3 

vex - 1, Y - 1) ]0G(P4) PI + P2 + P3 

with boundary conditions: 

V(O, y) 
V(x, x) 

0Y<G(1 - Pout) 
<G(1 - Pin) 0 V(x - 1, x) , 

where, 

P1 = Pout(1- Pin) 
P3 = PinPout 

P2 = Pin(1- Pout) 
P4 = (1 - Pin)(l - Pout). 

(I I) 

(12) 

Proof The proof is omitted due to space limitations. • 

VI. RESULTS OF SIMULATION 

In this section, we compare our analytical results to the 
actual simulations. To study the effect of buffer size on 
throughput and block delay, we simulated a line network 
of eight hops for two cases where all the links have the 
same probability of erasure of 0.1 or 0.2. The buffer size 
m (in packets) is divided into M blocks of K packets. Fig. 3 
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Fig. 3. Delay and throughput of an 8-hop line network as a function of m. 

presents the variation of our analytical results and the actual 
simulations for both throughput and average delay of a block, 
as the buffer size m of the intermediate nodes is varied 
while the block size is fixed at K = 5 packets. It can be 
seen that as the buffer size is increased, average delay also 
increases linearly. It appears that above memory sizes of 10, 
the gain in capacity is negligible, while the latency increases 
significantly. Hence, there is no need to allocate more storage 
to the flow even if the space is available in the router. Further, 
for buffer sizes of less than 10 packets, there is a gap from 
the min-cut capacity, a diverging point from asymptotic results 
due to the finite buffer effect. Fig. 4 presents a comparison 
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Fig. 4. Delay profiles of a 5-hop line network for varying buffer sizes 
(K=4). 

between the actual and the estimated delay profile for a five­
hop line network with the erasure probability on every link 
set to 0.05. It also compares the delay profiles for different 
buffer sizes when K = 4. It is noticed that as the buffer size 
of the intermediate nodes is increased, both average delay and 
its standard deviation are increased. This is undesirable since 
any increase in the standard deviation of the delay can make 
congestion control algorithms unstable. 
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