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Abstract— In this paper, we investigate the performance
of universal coding schemes on finite-length memoryless se-
quences. Rissanen demonstrated that for the universal com-
pression of k-ary memoryless sources, expected redundancy
for regular codes is asymptotically lower bounded by k−1

2
log n

for almost all sources. Xie and Barron derived the minimax
expected redundancy for k-ary memoryless sources, which
characterizes the maximum redundancy over all possible source
parameters. It does not provide much information about
different source parameter values. This paper is a finite-length
extension to Rissanen’s result. Our treatment in this paper is
probabilistic. In particular, we derive a lower bound on the
probability measure of the sources that are not compressible
with a redundancy smaller than a certain fraction of k−1

2
log n.

In other words, we demonstrate a lower bound on the re-
dundancy for a given percentile of sources. We demonstrate
that as the length of the memoryless sequence decreases, the
redundancy tends to become significant and comparable to the
entropy of the sequence.

I. INTRODUCTION

Recently, the amount of data that is being stored in
storage systems has been increasing with a very high rate.
Hence, the development of compression for storage systems
has gained a lot of interest. In many cases, one complete
database may be compressed to less than one tenth of its
original size. The redundancy in the data may be leveraged
to significantly reduce the cost of data maintenance as well
as data transmission. However, most applications require
that individual files be retrieved and updated separate from
the rest of the database. Therefore, the compressed data
for individual files need to be independently retrievable
and updateable. On the other hand, the individual files are
relatively very small. Moreover, the files may come from
various natures, which calls for universal compression. It is
well known that if a small file is compressed alone, exist-
ing universal compression techniques are unable to achieve
good performance. Rissanen’s result describes asymptotic
achievable compression rates for universal compression of
individual files [1], [2]. However, it does not provide much
insight on the performance of universal coding for a small
given file. The minimax redundancy [3] is concerned with
the maximum redundancy over all parameters. However, it
does not characterize the redundancy for other parameters.

Since Shannon’s work on the analysis of communication
systems [4], many researchers have contributed towards the

development of source coding schemes with the compression
rate as close as possible to the entropy rate of the information
source. It is well known that using a prefix-free code, a
stationary ergodic information source cannot be compressed
at a rate lower than the entropy rate of the source [5]. Thus,
the goal of source coding is to achieve a compression rate
that approaches the entropy rate.

In this paper, we focus on the universal compression
of memoryless sources with a finite-alphabet size. Let S
denote a universal memoryless information source with k-ary
alphabet α = {α1, ..., αk}. Further, denote θ = (θ1, ..., θk) ∈
Theta as the vector in the (k − 1)-dimensional simplex of
source parameters such that for a symbol X generated by S,
P[X = αi] = θi, for 1 ≤ i ≤ k. Let h(θ) be the entropy
rate of S given parameters θ, i.e., h(θ) = −∑

j θj log θj .
Finally, we use the notation Xn = (X1, ..., Xn) to present a
vector of length n of iid random variables generated by S.

Let l(Xn) ∈ L denote the regular length function that
describes the codeword associated with the sequence Xn.
Denote Rn(l, θ) as the expected redundancy of the code with
length function l(.) and parameter vector θ on a sequence
of length n, defined as the difference between the expected
codeword length and the entropy of the sequence Xn:

Rn(l, θ) = E[l(Xn)]− nh(θ). (1)

For an asymptotically optimal code with length function
l(Xn), Rn(l,θ)

n → 0 as n → ∞ for all θ.
Provided that the statistics of the information source are

known, Huffman block coding achieves the entropy rate with
a redundancy smaller than 1 bit per source symbol [5].
However, the assumption of known source statistics fails
to hold for many practical applications. We usually cannot
assume a priori knowledge on the statistics of the source
although we still wish to compress the unknown stationary
ergodic source to its entropy rate. This is known as the
universal compression problem.

The maximum average redundancy for a length function
of a code with length function l is given as Rn(l) =
maxθ∈ΘRn(l, θ), which is lower bounded by the minimax
average redundancy Rn = minl∈L maxθ∈ΘRn(l, θ) [3].
The leading term of the average minimax redundancy is
asymptotically k−1

2 logn. According to Rissanen’s results,
for the universal compression of memoryless sources with
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uniformly distributed parameter vector θ, the redundancy of
regular codes is asymptotically lower bounded by Rn(l, θ) ≥
(1 − δ)k−1

2 logn [2], for all ǫ > 0 and almost all sources.
These results were later extended in [6], [7] to more general
classes of sources. The asymptotic lower bound is tight
since there exist coding schemes that achieve the bound
asymptotically [2], [8]. We will formally state Rissanen’s
result in Sec. II.

In this paper, we study the redundancy for the universal
compression in finite-length regime. As the first step, we
consider universal coding for k-ary memoryless sources.
The work can be viewed as the extension of Rissanen’s
probabilistic treatment to the finite-length sequences. The
rest of this paper is organized as follows. In Section II,
we formally state the finite-length universal compression
problem followed by our main result. In Section III, we
present the proof of the main result. In Section IV, we
demonstrate the significance of the main result through two
main examples. Finally, the conclusion is given in Section V.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we formally state the finite-length redun-
dancy problem and present our main result and its implica-
tions. We focus on two-part codes, where the compression
scheme utilizes m bits for the identification of an estimate
for the unknown source parameters. The estimate parameter
is then used for the compression of the sequence. It has
been demonstrated that the two-part assumption brings about
a small O(1) redundancy term [9]. This corresponds to
2m possible estimate points in the parameter space for
the unknown parameter. In other words, the compression
scheme chooses the best among 2m estimate points in the
parameter space as it compresses the input sequence. Let
Φ = {φ1, ..., φ2m} denote the set of all estimate points.
Note that each φi is a point in the (k − 1)-dimensional
simplex of θ. For each sequence Xn, there is an estimate
point β = β(Xn) ∈ Φ that minimizes the redundancy.

Let ri denote the number of times symbol αi appears in
the sequence Xn. Let fi denote the relative frequency of
symbol αi, i.e., fi = ri/n. Let µθ denote the probability
measure defined over a memoryless source with parameter
vector θ as

µθ(X
n) = P[Xn|θ] = θr11 ...θrkk . (2)

We require the length function lθ(X
n) be regular, i.e.,

lθ(X
n) ≥ log

(

1

µθ(Xn)

)

∀Xn, 1 (3)

where µθ(X
n) is the memoryless probability measure de-

fined by the parameter vector θ. Note that the requirement (3)
is not restrictive since all codes that we know are regular [2].
Let lβ(Xn) denote the length function induced by β ∈ Φ.
Further denote µβ(X

n) as the probability measure induced
by β:

µβ(X
n) = β1

r1 ...βk
rk . (4)

1In this paper log(x) always denotes the logarithm of x in base 2.

Increasing m results in an exponential growth in the
number of estimate points and more accurate estimate for the
unknown source parameter vector hence better compression.
On the other hand, increasing m directly increases the
compression overhead. Therefore, it is desirable to find the
best m that minimizes the total codeword length as

l(Xn) = min
m

{m+ lβ(X
n)} . (5)

Since we assumed the code is regular, we may use (3) to
bound the redundancy rate

Rn(θ) ≥ min
m

{

m+E log
1

µβ(Xn)

}

− nh(θ). (6)

Using (4), we get

Rn(θ) ≥ min
m

{

m+ nE

k
∑

i=1

fi log
1

βi

}

− nh(θ). (7)

Our goal is to better characterize the lower bound in (7).
In [2], Rissanen proved an asymptotic lower bound on the
universal compression of parametric sources that can be
represented with k parameters. The following asymptotic
lower bound on the redundancy rate of universal coding of k-
ary information sources is a direct consequence of Rissanen’s
result:

Theorem 1 Let S denote a k-ary memoryless information
source with parameter vector θ. Let Xn denote a sequence of
length n produced by S. Let l(Xn) denote any regular length
function for universal compression. Then, for all parameters
θ, except in a set of asymptotically Lebesgue volume zero,
we have

lim
n→∞

Rn(θ)
k−1
2 logn

≥ 1− ǫ, ∀ǫ > 0, (8)

While Theorem 1 describes the asymptotic fundamental
limits of the universal compression of memoryless infor-
mation sources, it does not provide much insight for the
case of finite-length n. Moreover, the result excludes an
asymptotically volume zeros set of parameter vectors θ that
has non-zero volume for any finite n.

In [3], Xie and Barron derive the expected minimax redun-
dancy Rn for memoryless sources, where they demonstrate
that

Rn =
k − 1

2
log

( n

2π

)

+ log

(

Γ(1/2)k

Γ(k/2)

)

+ o(1), (9)

where Γ(x) =
∫∞

0
tx−1e−tdt is the gamma function. The

minimax redundancy characterizes the maximum redundancy
on the space of all possible parameter vectors but does not
imply much about the rest of the space of the parameter
vectors.

In this paper, we derive a lower bound on the probability
that a source with parameter vector θ is compressed with
redundancy rate Rn(θ) > R0 for any R0 > 0. In other
words, we find a lower bound on P[Rn(θ) > R0]. Using this
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result, we demonstrate the fundamental limits of the universal
compression for finite-length n. The following is our main
result:

Theorem 2 Let S denote a k-ary memoryless information
source with parameter vector θ that follows the Dirichlet
distribution. Let Xn denote a sequence of length n produced
by S. Let l(Xn) denote any regular length function. Let ǫ
be a real number such that 0 < ǫ < 1. Then, the probability
that Rn(θ) is greater than (1−ǫ) times the asymptotic bound
is lower bounded as follows:

P

[

Rn(θ)
k−1
2 logn

≥ 1− ǫ

]

≥ 1−Bk

(

k − 1

enǫ

)
k−1

2

, (10)

where Bk =
Γ( k

2 )
Γ( k+1

2 )

√

1
π . Note that Bk ≈

√

2
kπ for k ≫ 2.

Proof: See Section III.
Note that it is straightforward to deduce Theorem 1 from
Theorem 2 by letting n → ∞. Note that for any ǫ such

that 1 − Bk

(

k−1
enǫ

)

k−1

2 > 0, Rǫ = (1 − ǫ)k−1
2 log n is a

lower bound on the minimax redundancy since there exists
a source that has a redundancy of at least Rǫ. We will later
demonstrate that this lower bound is actually tight, and gives
back the minimax redundancy.

III. PROOF OF THE MAIN RESULT

In this section, we present the proof of Theorem 2. We
break down the main proof to a few intermediate lemmas
that constitute the main proof. First, we simplify (7) as

Lemma 1 The redundancy rate Rn(θ) is lower bounded by

Rn(θ) ≥ min
m

{

m+ nE

k
∑

i=1

fi log
θi

βi(Xn)

}

.

Proof: This is straightforward since h(θ) =
E
∑k

i=1 fi log
1
θi

.
In order to bound the redundancy in Lemma 1, in the

following, we bound E
∑k

i=1 fi log
θi

βi(Xn) . Note that this
term implicitly depends on m since β is a function of m.

Lemma 2 Assume that ∃β ∈ Φ such that 1 ≤ ∀i ≤
2m; D(θ||β) ≤ D(θ||φi). Then, we have

E

k
∑

i=1

fi log
θi

βi(Xn)
≥ D(θ||β), (11)

where

D(x||y) =
k

∑

j=1

xj log

(

xj

yj

)

. (12)

Proof: See Appendix I
Note that D(θ||β) is the non-negative Kullback–Leibler
divergence between the probability measures defined by θ

and β. We use a probabilistic treatment in order to bound
D(θ||β) for a certain percentage of source parameters. We
assume that the parameter vector θ follows the Dirichlet
distribution. The Dirichlet prior distribution is particularly
interesting since it results in uniform redundancy over the
parameter vector space, which results in the achievement of
the minimax expected redundancy [3], [10]. The Dirichlet
probability distribution for the parameter vector θ is given
by:

p(θ) =
Γ (k/2)

Γ (1/2)k

k
∏

j=1

1
√

θj
, (13)

where Γ(.) is the gamma function defined in Theorem 2.
In order to bound the redundancy rate Rn(θ), in the

following, we find an upper bound on the Lebegue measure
of the volume defined by D(θ||β) < δ in the (k − 1)-
dimensional simplex of θ. Since β ∈ Φ, the total measure
of the volume defined by ∃φi ∈ Φ; D(θ||φi) < δ may be
upper bounded as well. This provides with a lower bound on
the measure of the sources with Rn(θ) ≥ δ.

Lemma 3 Let β = (β1, ..., βk) and θ = (θ1, ..., θk) be a
fixed and a variable point in the (k−1)-dimensional simplex
of θ, respectively. If θ follows the Dirichlet distribution, the
probability P[D(θ||β) < δ] is upper bounded by

P[D(θ||β) < δ] ≤ Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π

(

2δ

log e

)
k−1

2

. (14)

Moreover, P[∃φi ∈ Φ; D(θ||φi) < δ] is upper bounded by

P[∃φi ∈ Φ; D(θ||φi) < δ] ≤ 2m
Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π

(

2δ

log e

)
k−1

2

.

(15)

Proof: See Appendix II.
Lemma 3 states that the probability measure that is cov-

ered P[D(θ||β) < δ] does not depend on β when θ follows
the Dirichlet prior. In other words, the choice of the set of
the parameter points Φ does not affect the performance of
the compression.

We are now equipped to prove the main result given in
Theorem 2.

Proof: [Proof of Theorem 2] Lemma 3 bounds
the probability measure of the parameter vectors that may
be compressed with a small redundancy. The condition in
Lemma 2 is satisfied if m < k−1

2 logn for points close to
some φ ∈ Φ. This is because 2m = o(n

k−1

2 ) and thus the
distance between the points is ω(1/

√
n). Using Lemmas 1

and 2,

Rn(θ) ≥ min
m

min
i

{m+ nD(θ||φi)} . (16)

Therefore,

P

[

Rn(θ)
k−1
2 logn

≤ 1− ǫ

]

(17)
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Fig. 1. Redundancy level R0 as a function of percentile of sources P0

with Rn(l, θ) > R0. Alphabet size: k = 2.

≤ P

[

min
m

min
i

{m+ nD(θ||φi)} ≤ (1− ǫ)
k − 1

2
logn

]

(18)

= min
m

min
i

P

[

D(θ||φi) ≤ (1 − ǫ)
k − 1

2n
logn− m

n

]

(19)

≤ min
m

{

2m
Γ
(

k
2

)

Γ
(

k+1
2

)

√

k

π

(

2δ(m)

log e

)
k−1

2

}

. (20)

The last inequality is obtained using Lemma 3. Here, δ(m)
is given by

δ(m) = (1− ǫ)
k − 1

2n
logn− m

n
. (21)

Carrying out the minimization in (20) leads to the desired
result in Theorem 2.

IV. ELABORATION OF THE RESULTS AND EXAMPLES

In this section, we illustrate the results through two exam-
ples. In Figures 1 and 2, the x-axis is a percentile P0 and
the y-axis represents a redundancy level R0. The solid curves
demonstrate the derived lower bound on the redundancy as a
function of the percentile of the sources that have redundancy
beyond the specified level based on Theorem 2, i.e., we have
P[Rn(θ) ≥ R0] ≥ P0. In other words, at least a fraction P0

of the sources that are chosen from the Dirichlet prior have
an expected redundancy that is greater than R0.

A. Minimax Redundancy of Two-Part Codes: Lower Bound

Note that the solid curves are a lower bound on the
minimax redundancy for all values of P0 > 0. This is due to
the fact that a non-zero percentage of the sources may not
be compressed beyond the level R0 hence the worst case is
included in this region. Therefore, we may use our result to
derive a lower bound on the minimax redundancy of two-part
codes when P0 → 0 as a side product:

Rn,2p ≥ k − 1

2
logn−logBk−

k − 1

2
log(k−1)+

k − 1

2
log e,

(22)
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n = 512b (Minimax)
n = 2kb (This Work)
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n = 8kb (This Work)
n = 8kb (Minimax)
n = 32kb (This Work)
n = 32kb (Minimax)

Pr[R
n
(θ,l)>R

0
]≥ P

0

Fig. 2. Redundancy level R0 as a function of percentile of the sources P0

with Rn(l, θ) < R0. Alphabet size: k = 256.

where Bk is defined in Theorem 2. This may be rewritten
as follows:

Rn,2p ≥ Rn+logΓ

(

k + 1

2

)

− k − 1

2
log

(

k − 1

2e

)

. (23)

Note that it is straightforward to demonstrate that the lower
bound Rn,2p → Rn as k → ∞, i.e., the effect of two-part
assumption will be negligible.

B. Example 1: k = 2

First, for a Bernoulli information source, i.e., k = 2, we
demonstrate the fundamental limits for the compression of
finite-length sequences. The plots are given for various n.
The markers in this Figure labeled as Minimax demonstrate
the minimax redundancy for a two-part code. For a Bernoulli
source, the minimax redundancy of the two-part code is given
by [9]:

Rn,2p = Rn +
1

2
log

(πe

2

)

≈ Rn + 1.048, (24)

where Rn is the minimax redundancy and is defined in (9).
As shown in Figure 1, at least 40% of Bernoulli sequences

of length n = 32 (n = 128) may not be compressed beyond
a redundancy of 3.5 (4.5) bits per symbol. Also, at least 60%
of Bernoulli sequences of length n = 32 (n = 128) may not
be compressed beyond a redundancy of 2.5 (3.5) bits per
symbol.

Note that as n → ∞, the redundancy approaches the
minimax redundancy for more sources, and asymptotically
redundancy approaches the minimax redundancy for all
sources as given in Theorem 1. Also, using (22) we get
the following lower bound on the minimax redundancy of
two-part codes for k = 2:

Rn,2p ≥ 1

2
logn+

1

2
log

(πe

2

)

, (25)

which is indeed equal to the minimax redundancy.
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C. Example 2: k = 256

Next, we consider k = 256, which is a common practice
to use the byte as a symbol. In Figure 2, the achievable
redundancy is demonstrated for four different values of n.
Here, the redundancy is measured in bits per source symbol
(byte). We observe that for n = 512b, we have Rn(l, θ) ≥
300 bits/symbol for almost all sources. This is considered
significant specially for sources with small entropy rate. For
example, if the entropy rate is around 1 bit/symbol, there
will be almost always more than 50% redundancy in the
compression of a sequence of length n = 512b. We also
observe that the two-part assumption does not incur further
redundancy for large k.

V. CONCLUSION

In this paper, we investigated the redundancy rate of
universal coding schemes on memoryless input sequences
in the finite-length regime. We derived a lower bound on
the probability measure of information sources that may
not be compressed beyond any certain redundancy level.
Our result may be viewed as the finite-length extension of
the previous asymptotic results. Our result may be used
to evaluate the performance of universal source coding on
finite-length sequences. We observe that redundancy may
be very significant in the compression of finite-length low-
entropy information sources.

APPENDIX I
PROOF OF LEMMA 2

Proof:

E

k
∑

i=1

fi log

(

θi
βi(Xn)

)

(26)

=
∑

r1,...,rk∑
j
rj=n

n!

r1!...rk!
θr11 ...θrkk

∑

i

ri
n
log

(

θi
βi(Xn)

)

, (27)

=
∑

i

∑

s1,...,sk∑
j
sj=n−1

(n− 1)!

s1!...sk!
θs11 ...θskk θi log

(

θi
βi(Xn)

)

,

(28)
where si = ri − 1 and sj = rj , j 6= i. Note that this could
now be viewed as taking expectations over a different set of
variables. Thus, (28) could be rewritten as

E

k
∑

i=1

θi log

(

θi
βi(Xn)

)

. (29)

This may be lower bounded using the fact ∀φi ∈ Φ,
D(θ||φi) ≥ D(θ||β), which proves the claim.

APPENDIX II
PROOF OF LEMMA 3

Proof: Let f(θ) = D(θ||β) = ∑k
i=1 θi log

(

θi
βi

)

. Then,
using Taylor expansion, we get

D(θ||β) ≥ L(θ, β) +O(θi − βi)
3, (30)

where

L(θ, β) =
log e

2

k
∑

i=1

1

βi
(θi − βi)

2.

Note that L(θ, β) ≤ δ, where δ > 0, defines an ellipsoid on
the (k − 1)-dimensional simplex of θ. It is straightforward
to demonstrate that the volume of the ellipsoid is given by

Vk(β) = Ck−1

(

2δ

log e

)
k−1

2
k
∏

i=1

√

βi, (31)

where Ck−1 = Γ(1/2)k−1

Γ((k+1)/2) is the volume of the (k − 1)-
dimensional unit ball. Moreover, since θ follows the Dirichlet
distribution, the probability measure of the covered ellipsoid
is given by

P[L(θ, β) ≤ δ] = Vk(β)





Γ (k/2)

Γ(1/2)k

k
∏

j=1

1√
βi





=
Γ
(

k
2

)

Γ
(

k+1
2

)

√

1

π

(

2δ

log e

)
k−1

2

. (32)

Since D(θ||β) ≈ L(θ, β), the volume defined by D(θ||β) <
δ is equal to the volume L(θ, β) < δ, which completes the
proof of the first claim. Although the volume of the ellipsoid
depends on the point β in the parameter space, the volume
of the ellipsoid defined by D(θ||β) < δ does not depend on
β.

For the second claim, there are 2m choices for φi. ∀i,
D(θ||φi) defines a measure that has the same upper bound.
Thus, the second claim follows directly from the first claim
using the union bound.
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