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Throughput and Latency in Finite-Buffer
Line Networks
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Abstract—This work investigates the effect of finite buffer sizes
on the throughput capacity and packet delay of line networks
with packet erasure links that have perfect feedback. These
performance measures are shown to be linked to the stationary
distribution of an underlying irreducible Markov chain that
models the system exactly. Using simple strategies, bounds on
the throughput capacity are derived. The work then presents two
iterative schemes to approximate the steady-state distribution of
node occupancies by decoupling the chain to smaller queueing
blocks. These approximate solutions are used to understand the
effect of buffer sizes on throughput capacity and the distribution
of packet delay. Using the exact modeling for line networks, it is
shown that the throughput capacity is unaltered in the absence
of hop-by-hop feedback provided packet-level network coding
is allowed. Finally, using simulations, it is confirmed that the
proposed framework yields accurate estimates of the throughput
capacity and delay distribution and captures the vital trends and
tradeoffs in these networks.

Index Terms—Finite buffer, line network, Markov chain, net-
work coding, packet delay, throughput capacity.

I. INTRODUCTION

I N networks, packets have to be routed between nodes
through a series of intermediate relay nodes. Each interme-

diate node in the network may receive packets via multiple data
streams that are routed simultaneously from their source nodes
to their respective destinations. In such conditions, packets
may have to be stored at intermediate nodes for transmission
at a later time. If buffers are unlimited, intermediate nodes
need not have to reject or drop arriving packets. However, in
practice, buffers are limited in size. Although a large buffer
size is preferred to minimize packet drops, large buffers have
an adverse effect on the latency, i.e., the delay experienced by
packets stored in the network. Further, using larger buffer sizes
at intermediate nodes would also result in secondary practical
issues such as increased memory-access latency. Though our
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work is motivated by such concerns, our work is far from mod-
eling realistic conditions. This work modestly aims at providing
a theoretical framework to understand the fundamental limits
of single information flow in finite-buffer line networks and
investigates the tradeoffs between throughput, packet delay and
buffer size.

The problem of computing capacity1 and designing efficient
coding schemes for lossy wired and wireless networks has been
widely studied [1]–[5]. However, the study of capacity of net-
works with finite buffer sizes has been limited. This can be at-
tributed solely to the fact that analysis of finite buffer systems are
generally more challenging. With the advent of network coding
as an elegant and effective tool for attaining optimum network
performance, the interest in finite-buffer networks has increased
[5]–[8].

The problem of studying lossy networks with finite buffers
has been investigated in the area of queueing theory under a dif-
ferent but similar framework. The queueing theory framework
attempts to model packets in a network as customers, the delay
due to packet loss over links as service times in the nodes, and
the buffer size at intermediate nodes as the queue size. Further,
the phenomenon of packet overflow in communications net-
work is modeled by blocking (commonly known as type II or
blocking after service) in queueing networks [9]. However, this
packet-customer equivalence fails in general network topologies
due to the following reason. When the communications network
contains multiple disjoint paths from the source to the destina-
tion, the source node can choose to duplicate packets on mul-
tiple paths to minimize delay. This replicating strategy cannot be
captured directly in the customer-server based queueing model.
Therefore, the queueing framework cannot be directly applied to
study packet traffic in general communications networks. How-
ever, queueing theory offers solid foundation for studying buffer
occupancies and packet flow traffic in line networks. There has
been extensive study in queueing theory literature on the be-
havior of open tandem queues, which are analogous to line net-
works [10]–[15]. However, approaches from queueing theory
literature predominantly consider a continuous-time model for
arrival and departure of customers/packets. In this work, we
consider a discrete-time model for packet arrival and departure
processes by lumping time into epochs. This model is similar to
those in [16], [17].

The broad contributions of this paper can be summarized as
follows. The bulk of this work operates under the assumption of
perfect hop-by-hop feedback. We present a Markov-chain based
model for exact analysis of line networks. The capacity of a line

1In this work, we use capacity to refer to the throughput capacity, i.e., the
supremum of all rates of information flow achievable by any coding scheme.
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network is shown to be related to the steady-state distribution of
an underlying chain, whose state space grows exponentially in
the number of hops in the network. Simple assumptions of re-
newalness of intermediate packet processes are employed to es-
timate the capacity of such networks. The estimates are exact for
two-hop networks. However, the estimates extend the results of
[17] to networks of any number of hops and buffer sizes of inter-
mediate nodes. Using the estimates, the profile of packet delay
is derived and studied. Using the exact Markov chain model in
conjunction with network coding, it is shown that the throughput
capacity is not affected by the absence of feedback in line net-
works. This result is similar to the information-theoretic result
that feedback does not increase capacity of point-to-point chan-
nels [18]. Finally, simulations reveal that our estimates closely
predict the trends and tradeoffs between hop-length, buffer size,
latency, and throughput in these networks.

This paper is organized as follows. First, we present the
formal definition of the problem and the network model in
Section II. Next, we present our framework for analyzing ca-
pacity of finite-buffer line networks in Section III. The proposed
Markovian framework is then employed to investigate packet
delay in Section IV. We compare our analytical results with
simulations in Section V and conclude it with a brief discussion
on the interdependence of buffer usage, capacity and delay.
Finally, Section VI concludes the paper.

II. NETWORK MODEL AND PROBLEM STATEMENT

This work focuses on the class of line networks. As illustrated
in Fig. 1, denotes the number of hops in the network, and

and
to denote the set of nodes and the set of links in the network, re-
spectively. Such a network has intermediate nodes, which
are shown by black squares in the figure. Each intermediate node

is assumed to have a buffer of packets. Note that buffer
sizes of different nodes can be different. Without loss of gen-
erality, we assume and , for .
Further, it is assumed that the destination node has no buffer
constraints and that the source node possesses an infinitude of
innovative packets at all times. The system is analyzed using
a discrete-time model, where each node can transmit at most
one packet over a link in any epoch. Intermediate buffers are as-
sumed to be empty at epoch and the dynamics for
are steered by the loss processes on the edges of the network.
The loss process on each link is assumed to be memoryless and
statistically independent of the loss processes on other links.
We let to denote the erasure probability on the
link for . In this model, a node re-
ceives a packet on an incoming link when the neighboring up-
stream node transmits a packet and when the packet is not erased
over the link. The reader is directed to Appendix A for a discus-
sion on how the assumed discrete-time model relates to con-
tinuous-time exponential model that is commonly employed in
queueing theory.

For the bulk of this work, we assume that the network has
a perfect hop-by-hop feedback mechanism indicating the trans-
mitting node of the receipt and storage of the transmitted packet
by the receiving node. However, a subsequent section of this

Fig. 1. Illustration of the line network.

paper drops this assumption to study the capacity of line net-
works without feedback. It is also assumed in this work that
nodes operate in a transmit-first mode, i.e., each node first gen-
erates a packet (if it has a nonempty buffer) and transmits it on
the outgoing edge. The node then processes the buffer after re-
ceiving the acknowledgement from the next-hop node before
accepting/storing the packet on its incoming edge.2

For notational convenience, the random process on the
link is denoted by . if and
only if the packet transmitted at epoch is deleted by the
channel , and otherwise. For the sake
of succinctness, we let and buffer sizes

.
The focus of this paper is two-fold. The foremost aim is to

identify the supremum of all rates that are achievable by the use
of any coding strategy between the ends of a line network with
erasure probabilities and buffer sizes . In the line network
illustrated in Fig. 1, we first aim to identify the maximum rate
of information that the node can transmit to node , which
is denoted by . The next issue on which we focus is
the delay experienced by packets in intermediate node buffers
when the network operates near the throughput capacity.

In our analysis, we employ the following notations. Vectors
will be denoted by boldface letters, eg., . The indicator func-
tion for the set is represented by . For any

. The convolution operator is denoted
by and is used as a shorthand for the -fold convolu-
tion of with itself. For denotes the proba-
bility mass function of a positive random variable that is geo-
metric with mean . For a discrete random variable with
probability mass function and are both used to de-
note the mean of the random variable . Lastly, for appropriate

denotes the Galois field of size .

III. CAPACITY OF LINE NETWORKS

In this section, we investigate the effect of finite buffers on
the capacity of line networks. First, we present a framework for
exact computation of the capacity of line networks that have
perfect hop-by-hop feedback. We then present bounds on the
capacity using techniques from queueing theory. Subsequently,
we present our approaches to approximate the capacity of a
line network. In the concluding subsection, we illustrate that the
throughput capacity remains unaltered when feedback is absent
provided packet-level network coding is allowed.

A. Exact Computation of Capacity

The problem of identifying capacity is related to the problem
of identifying schemes that are rate-optimal. In the presence of

2Note that the need for such an ordering arises due to the discrete nature of
time assumed in this work.
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lossless hop-by-hop feedback, the scheme performing the fol-
lowing steps in the given order is rate-optimal.

1. If the buffer of a node is not empty at an epoch, then it must
transmit one of the stored packets at that time.

2. A node deletes the packet transmitted at an epoch if it
receives an acknowledgement of packet storage from the
next-hop node at that epoch.

3. After performing 1 and 2, a node accepts an arriving packet
if it has space in its buffer and sends an acknowledgment
of packet storage to the previous node.

Notice that in the above scheme, at each epoch, the buffer of the
last intermediate node is updated first, and the buffer of the first
intermediate node is updated last. To determine the throughput
capacity of the network, we need to track the number of packets
that each node possesses at every instant of time by using the
rules of buffer update under the above optimal scheme. Let

be the vector whose th compo-
nent denotes the number of packets possesses at time . The
variation of state at the th epoch can be tracked using auxiliary
random variables defined by

(1)

From the definition of the auxiliary binary random variables
in (1), we see that only if all the following three
conditions are met:

1. Node has a packet to transmit to .
2. The link does not erase the packet at the th

epoch, i.e., , and
3. Node is not full after its buffer update due to its trans-

mission over at the th epoch.
The changes in the buffer states can then by seen to be given by
the following.

(2)

Note that since is a function of
and depends only on its
previous state and the channel conditions at the th
epoch. Hence, forms a Markov chain. The number
of states corresponds to the number of possible assignments to

, which amounts to possibilities. However,
since at each time instant the number of packets that can be
transmitted over any link is bounded by unity, we see that for
every and

and (3)

Therefore, the number of nonzero entries in each row of
the probability transition matrix3 representing
the transitions in the occupancy is bounded above by

.
A detailed categorization of the states that enables further

understanding can be performed thus. We can order the states

3The ��th term of the matrix � ����� represents the probability that the next
state is � given that state is presently �.

Fig. 2. Markov chain for the dynamics of occupancy in a line network.

of the chain in such a way that the state
corresponds to the row index
in the matrix . Denote to be the set of states that
have for . Let represent
the transition matrices for transitions from states in to those in

, respectively. Then, it can be shown that
, and for (see

Lemma 1). Therefore, the transition matrix of the chain can be
structurally represented as follows:

...

The dynamics given by the above equation can be depicted
pictorially by the chain in Fig. 2. Note that due to the finite buffer
condition and the non-negativity of occupancy, the transitions
from the first block and from the last block differ from the tran-
sitions from the blocks between them. Further, the states within
each , can be organized into
sets in a similar fashion. In addition to this structural prop-
erty, the transition sub-matrices satisfy the following algebraic
properties.

Lemma 1: In a generic line network, the following hold.
a. , and for

.
b. For is nonsingular and upper triangular for

.
c. For is singular and lower triangular for

.
d. is nonsingular .

Proof: See Appendix B.

To illustrate the implications of the above lemma, consider the
Markov chain for a three-hop line network with erasure proba-
bilities , and with buffer sizes pre-
sented in Fig. 3. For this network, the algebraic properties of
Lemma 1 can be understood as follows.

1. Any transition involving a decrease in the second compo-
nent involves a non-negative change in the magnitude of
the first component.

2. Any horizontal transition involving a decrease in the
second component is always feasible (provided the second
component of the starting state is positive).

3. Any transition involving an increase in the second compo-
nent involves a nonpositive change in the magnitude of the
first component.
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Fig. 3. Markov chain for a line network of three hops with erasure probabilities � � � � � and intermediate nodes having a buffer size of two packets each.

4. Not all horizontal transitions involving an increase in the
second component are feasible. For example, the transi-
tions from the state to and from the state
to are infeasible, and hence, .

While the first two facts relate to the upper triangular structure
and nonsingularity of , the latter two relate to the lower tri-
angular and singularity properties of . This Markov chain for
the dynamics of the state of a line network with perfect feedback
is irreducible, aperiodic, positive-recurrent, and ergodic [19],
[20]. By ergodicity, we can obtain temporal averages by statis-
tical averages. Therefore, the throughput capacity
can be identified by appropriately scaling the likelihood of the
event that the system is in a state wherein the last node buffer is
nonempty. This quantity is given by

(4)

Notice that packets are not erased from the buffers without a
receipt of acknowledgement of storage from the next-hop node.
Therefore, the packet-flow rate is conserved. Therefore, for

, the throughput capacity can also be identified from

(5)

Thus, the problem of identifying the capacity of line networks is
reduced to the problem of computing the steady-state probabil-
ities of the aforementioned Markov chain. However, due to the
size of the Markov chain and its transition matrix, and the pres-
ence of multiple reflections due to the limited buffers at interme-
diate nodes, the problem of computing the steady-state distribu-
tion and capacity is computationally tedious even for networks
of reasonable hop-lengths and buffer sizes.

As the first step towards estimation, we can define a finite
sequence of matrices by

Note that these matrices relate the steady-state distribution
of the states in by . Using
these relations, we can, in theory, estimate the capacity by

(6)

However, this matrix-norm approach does not provide insight
into occupancy statistics of various nodes. Therefore, we focus
on an approximations-based approach to capacity estimation in
the remainder of this work.

B. Bounds on the Capacity of Line Networks

In queueing theory, problems of identifying the steady-state
probability of stochastic networks have often been dealt with
approximations. Most approaches to problems in this area have
been to approximate the dynamics of the network by focussing
on local dynamics of the network around each node and the
edges incident with it. The key idea in this section is to modify
the exact Markov chain to derive bounds on throughput ca-
pacity. To do so, notice that the main reason for intractability of
the exact system is the strong dependence of on not only

, but also . This dependence translates to a strong
dependence of on both and . Relaxation of
this strong dependence will be a step towards possible decou-
pling of the system, and a deeper understanding of the tradeoffs
in such networks.

Consider a network operation mode where each intermediate
note transmits an acknowledgement whenever it receives a
packet (as opposed to the rate-optimal setting where it sends
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an acknowledgement whenever it receives and stores a packet
successfully). Under this new mode of operation, we notice that
the dependence of the state of th node on that of nodes further
downstream is eliminated. This mode of operation is equivalent
to assuming that a packet that arrives at a node whose buffer
is full gets lost/dropped unlike the optimal mode of operation
where it gets re-serviced. In this mode, the state updates are
given by a simplified Markov chain that is generated by the
following rule for all and

(7)

where

(8)

To avoid confusion, we appellate the chain that is obtained by
the dynamics defined by (1) and (2) as the Exact Markov Chain
(EMC) and the one defined by (7) and (8) as the Approximate
Markov Chain (AMC). Also, we allow and to always
denote the state of an instance of the process generated by the
EMC and the AMC, respectively. Then, the following property
holds.

Theorem 1: (Temporal Boundedness Property of the AMC)
Consider a line network with hops and an instance of channel
realizations . Suppose we track the
variation of the states of the EMC and the AMC using this in-
stance of channel realizations with the same initial state

. Then, for any and , the following
holds:

(9)

Proof: The proof is detailed in Appendix C.

The Temporal Boundedness Property guarantees that statisti-
cally, the probability that a node has an empty buffer is overes-
timated by the AMC. In fact, if we can identify the steady-state
distribution of the states of AMC, we can provide a lower bound
for the steady-state probability of any subset of states
that have the form

(10)

where for . Using the Temporal
Boundedness property in conjunction with (4), we can provide a
lower bound for the capacity of the line network by
underestimating the probability in (4) by using the steady-state
distribution of the AMC instead of that of the EMC. Equiva-
lently, the capacity of the line network is at least that of the
throughput achievable by the AMC. This above idea of lower
bound extends easily to an upper bound using the following re-
sult. The fundamental idea behind the following bound is to ma-
nipulate the buffer sizes at each node so that the packet drop in
the modified network is provably infrequent than in the actual
network.

Theorem 2: Let the operator be defined by
�

. For a given network with distinct
erasure probabilities and buffer sizes , denote
to be the throughput computed from the steady-state distribution

of the AMC defined by (7) and (8) with erasure probabilities
and buffer sizes , i.e., .

Then

(11)

Proof: A detailed proof is presented in Appendix D.

Thus, the problem of bounding capacity is reduced to identi-
fying the steady-state probability of the AMC. Notice that the
above bounds are not in a computable form, since they still
involve identifying the steady-state distribution of the AMC.
Even though the AMC is significantly simpler than the EMC,
the output process from each intermediate node is not renewal
[15]. Therefore, the distribution of interdeparture times from
each intermediate node is insufficient to completely describe
the arrival process at intermediate nodes for .
Therefore, a straightforward hop-by-hop analysis (without fur-
ther assumptions) seems insufficient to identify the capacity of
such networks.

C. Iterative Estimation of the Capacity of Line Networks

In this section, we present two iterative estimates for the ca-
pacity of line networks that is based on certain simplifying as-
sumptions regarding the EMC. We notice that the difficulty of
exactly identifying the steady-state probabilities of the EMC
stems from the finite buffer condition that is assumed. The finite
buffer condition introduces a strong dependency of state update
at a node on the state of the node that is downstream. This ef-
fect is caused by blocking when the state of a node is forced to
remain unchanged because the packet that it transmitted is suc-
cessfully delivered to the next-hop node, but the latter is unable
to store the packet due to lack of space in its buffer. Addition-
ally, the nontractability of the EMC is compounded by a non-
renewal packet departure process from each intermediate node.
In this section, we ignore some of these issues to develop itera-
tive methods for estimation. Fig. 4 encapsulates the assumptions
made in both estimation approaches. While both approaches ig-
nore the nonrenewal nature of packet arrival process at each
node, the first approach makes an additional memoryless as-
sumption on the arrival process. Additionally, both approaches
model the effect of blocking by the introduction of a single pa-
rameter that represents the probability that an arriving inno-
vative packet will be blocked.

1) Rate-Based Iterative Estimate: This estimate makes the
following assumptions to decouple the dynamics of the system
and enable capacity estimation.

A1. The packet departure process at each intermediate
node is memoryless. In other words, each node sees a
packet arrival process that is memoryless with (average)
rate packets/epoch. This assumption allows us to track
information rates over links while simplifying the higher
order statistics.
A2. Any packet that is transmitted unerased by the
channel is blocked independently with a proba-
bility . That is, for any
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Fig. 4. Illustration of the assumptions in iterative estimation.

Fig. 5. Markov chain for � under the simplifying assumptions.

Here, denotes the blocking probability due to full
buffer state at . This assumption allows us to track the
blocking probability ignoring higher order statistics of the
blocking process.
A3. For each node and epoch , the event of packet ar-
rival and the event of blocking from are independent
of each other.

The above assumptions are valid in the limiting case of large
buffers provided the system corresponds to a stable queueing
configuration. By assuming that they hold in general, the effect
of blocking is spread equally over all nonzero states of occu-
pancy at each node. Similarly, the assumptions also spread the
arrival rate equally among all occupancy states. Given that the
arrival rate of packets at the node is packets/epoch, and
the blocking probability of the next node is , the local dy-
namics of the state change for the node under assumptions
A1–A3 is given by the Markov chain of Fig. 5 with the param-
eters set to the following:

(12)

Using these parameters, the steady-state distribution4

of the chain of Fig. 5
can be computed to be

(13)

Assuming that observes a packet arrival rate of from
and a blocking probability of from , the blocking
probability that the node perceives from the node

4If � � �, then we set ��� �� � � � � � � �.

and the arrival rate that observes can be computed via
(13) using the following equations:

(14)

(15)

Note that the blocking probability is computed using the full
occupancy probability of the node . While in reality, a packet
is blocked by only if at the arriving instant, the node has full
occupancy, A2 models any arriving packet to be blocked with
the above probability irrespective of the occupancy of . Also,
in (14) and (15) the arrival rate from the node is and
the blocking probability .

Given two vectors and
, we term as a rate-approximate

solution to EMC, if they satisfy the (14) and (15) in addition to
having and . Since these relations were ob-
tained from making assumptions on the EMC, it is a priori un-
clear if there exist rate-approximate solutions for a given system

. Fortunately, the following result guarantees both the
uniqueness and an algorithm for identifying the rate-approxi-
mate solution to the EMC.

Theorem 3: Given a line network with link erasures
and intermediate node buffer sizes

, there is exactly one rate-approxi-
mate solution to the EMC. Further, the
rate-approximate solution satisfies flow conservation. That is

Proof: The proof is detailed in Appendix E.

Finally, the estimate of the capacity can be obtained from
the rate-approximate solution by computing the average rate of
packet storage at each node using

(16)



3628 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

Note that by the conservation of flow, any can
be used in the above equation to identify capacity.

As an illustration, consider a simple four-hop network with
erasures and buffer sizes

. From the above estimation method, we arrive at

(17)

(18)

(19)

From simulations, the throughput capacity was found to be
0.43501 packets/epoch for the same network.

2) Distribution-Based Iterative Estimate: In this section, we
assume that the given line network satisfies for

. Since the capacity of a line network is a continuous func-
tion of the system parameters, this assumption is not restrictive.
A system with nondistinct erasure parameters can be approxi-
mated to any degree of precision by a system with distinct era-
sure probabilities.

Before we introduce the second approach for estimation, we
present the following technical result5 wherein we denote to
be the identity distribution for the convolution operator.

Theorem 4: Consider a tandem queueing system of two
nodes where the first node possessing buffer slots is fed
by a renewal process whose interarrival time distribution is

with and
for . Suppose that the distribution of
service time is , where for .
Further, suppose that the second node blocks an arriving packet
memorylessly with probability , and that any blocked
packet gets re-serviced. Then, the distribution of interarrival
times as seen by the second node is given by

(20)

where for some
and , with .

Proof: A detailed analysis including the means of identi-
fying is given in Appendix F.

Just as in the Rate-Based Iterative Estimate, this estimate also
makes three assumptions to simplify the EMC. While the Dis-
tribution-Based Iterative Estimate makes assumptions A2 and
A3, it relaxes assumption A1 to the following:

A1 . The packet departure process at each intermediate
node is renewal.

Note that Assumption A1 allows for tracking only the average
rate of information flow on edges whereas A1 allows tracking
of the distribution of packet interarrival times. However, A1 ig-
nores the fact that the distribution of an interarrival time changes
with the knowledge of past interarrival times. To track the in-
terarrival distribution and blocking probabilities at each node,
the Distribution-Based Iterative Estimate uses Theorem 4 in a
hop-by-hop fashion. Assuming that the packet arrival process
at is renewal with an interarrival distribution , and that the

5For this theorem, note that we do not require that all � s or all � s be positive.
We only need that their sum be unity and that they generate a valid probability
distribution, respectively.

memoryless blocking from occurs with probability ,
we see that the packet interarrival distribution seen by is
given by

(21)

Notice that just like in (12), uses the effective erasure prob-
ability to incorporate the effect of blocking by . However,
this corrective term does not appear in term, because
represents the distribution of packet interarrival times at ,
and not the distribution of the time between two adjacent suc-
cessful packet storages at . Further, the blocking probability
of as perceived by is given by

(22)

(23)

Just as in the Rate-Based Iterative Estimate, we call a solu-
tion to (21) and (23) with boundary conditions and

as a distribution-approximate solution. Though the
existence and uniqueness of the distribution-approximate solu-
tion for a given system has eluded us, simulations reveal
that for each system, the solution is unique and can be found by
iteratively using the following algorithm.

Algorithm 1 Distribution-Based Iterative Estimate

1: and .
2: while do
3: , and .
4: while
5: Compute employing

(21) and (23) (that use )
6: .
7: end while
8: .
9: end while

Note that during any round of in the above algorithm,
(21) can be iteratively used to identify in Step 5 only
if the output distribution of interdeparture times from each node
is a weighted sum of geometric distributions. This is, however,
guaranteed if the erasure probabilities of no two links are equal.
Alternately, Step 2 can be replaced by a convergence-type cri-
terion instead of the criterion. After sufficiently large
number of iterations, the distributions and blocking probabili-
ties usually converge (to and ), and upon convergence the
capacity can be estimated via

(24)

Using the above approach for the four-hop example network at
the end of Section III-C1, we have

(25)

(26)
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D. Capacity of Line Networks Without Feedback

Feedback from next-hop node provides a natural means of
buffer update and packet deletion. In the absence of feedback,
due to the finiteness of buffers, each intermediate node must
have a local rule for buffer update to accept packets that ar-
rive. A rule for packet deletion or update must be maintained
at each node so that the buffers are used efficiently. A net-
work coded-scheme based on random linear combinations over
a large finite field of size as is described in [21] presents an
effective means of buffer update and packet delivery. Consider
the following scheme based on network coding.

1. At each epoch, a node having a buffer size of packets
picks a vector uniformly at random to generate
a random linear combination in the following manner. For
each buffer slot , the packet stored in
that slot is represented as a vector over and the output
packet is generated by computing . This gener-
ated packet is then transmitted during the epoch.

2. If a packet is received by a node at an epoch, it first
generates the output packet at that instant and then up-
dates its buffer in the following manner. The node se-
lects a vector uniformly at random and for each

, adds the packet to the packet stored
in the buffer slot.

Note that in the network coding scheme described above,
after sufficient time after the commencement of packet transfer
from the source, all buffer slots of every intermediate node al-
most always have nontrivial contents unlike the scheme with
perfect feedback. However, it is not true that all of these packets
are innovative, i.e., packets may contain common information.6

Such a condition may occur when the packets are linearly de-
pendent in the algebraic sense. With this notion of informa-
tion, the rate of information received by the destination node
can be seen to be the asymptotic rate of arrival of innovative
packets. The following result characterizes these rates achieved
by the network coding scheme over the field and relates
it to throughput capacity in the presence of lossless feedback

.

Theorem 5: Let denote the rate of arrival of
innovative packets at the destination node of a line network
without feedback assuming that the aforementioned network
coding scheme over the field is employed. Then, for each
sequence of finite fields such that , we have

(28)

Proof: The proof is presented in Appendix G.

From (28), we observe that there is no loss in achievable rates
when feedback is absent and that the aforementioned network
coding scheme is rate-optimal for line networks without feed-
back, provided a large field size is employed.

6Here, we use information to represent the number of linearly independent
packets w.r.t. the chosen base field. A set � � �� � � � � � � � is said to contain
� packets of information if ������	
���� � �.

IV. PACKET DELAY DISTRIBUTION

In this section, we use the iterative estimates of Section III-C
to obtain estimates on the probability distribution of the delay
experienced by information packets in line networks with
perfect feedback under the optimal strategy of Section III-A.
We abstain from defining latency of data packets in networks
without feedback, since optimal schemes for such networks
involve packet-level coding.

When perfect feedback is available, we define the delay of
a packet as the time taken from the instant when the packet is
stored in the buffer of the first intermediate node to the instant
when the destination receives it. Since the delay statistics de-
pend on how the packets are handled in intermediate nodes, in
addition to the optimal scheme of Section III-A, we assume a
first-come first-serve treatment of packets at intermediate node
buffers. Note that this assumption is made only for the ease of
presentation. The framework permits the analysis of random-
ized schemes where each node after a successful transmission
selects a packet in its buffer randomly and memorylessly, and
transmits it repeatedly until it is stored at the next-hop node.

In order to compute the distribution of delay that a packet
experiences in the network, one can proceed in a hop-by-hop
fashion using two parameters: (1) , an estimate of blocking
probability at node , and (2) , an esti-
mate of the distribution of occupancy at node (for each

and ) just before packet arrival con-
ditioned on the event that the arriving packet is successfully
stored.

In the last relay node , the additional delay perceived by a
packet arriving at epoch depends on the occupancy
of the node and . Suppose at epoch , node has

packets excluding the arriving packet. Then,
the packet has to wait for the already-stored packets to leave
before it can be serviced. Since the services are memoryless,
the distribution of delay is given by a sum of independent
geometric distributions each with a mean interarrival time ,
i.e., . Hence, the distribution of additional delay in-
duced by waiting in the buffer of is

(29)

However, the situation is different for other intermediate delays
because of the effect of blocking. The additional delay incurred
while being stored in the node , is given by

(30)

since a packet is deleted from the buffer of only if the channel
successfully transmits it and does not block the arriving
packet, which by assumption A2 occurs memorylessly with a
probability . Assuming that the delays
incurred by waiting in the buffer of each node is independent of
each other, we obtain the total delay considering all hops to be

(31)
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Fig. 6. Capacity of line networks with � � � and varying hop-length �.

Note that in addition to the above delay, the source node at-
tempts to transmit the packet multiple times before the packet
is successfully accepted at the first intermediate node. The
distribution of this time spent in this is approximately given
by a random variable whose distribution is . Thus, the
iterative estimation technique provides us with a framework to
approximately but analytically compute the delay profile using
an estimate of distribution of packets seen by an arriving packet
that is successfully stored, and an estimate of the blocking
probabilities.

Finally, the pair of estimates can be obtained
from the rate-approximate solution by using

(32)

(33)

Similarly, another pair of estimates can be obtained using the
Distribution-Based Iterative Estimate by

(34)

(35)

where is the eigenvector of the (59) upon convergence.
Combining the above equations, two estimates for the delay pro-
file for line networks with feedback can be obtained.

V. RESULTS OF SIMULATION

In this section we present the results of simulation comparing
our analytic results to simulations of line networks with perfect

feedback. First, the simulations for the capacity are presented,
and then the simulations for delay profiles are presented. This
section ends with a discussion on the efficient usage of buffers
and the interplay of buffer size, capacity and delay.

In our model, a line network is completely defined by the
number of hops, the erasure probability for each link and the
buffer size at each intermediate node. To study the accuracy of
our bounds and estimates, we vary one of these three parame-
ters while keeping the remaining two fixed. In each of the fig-
ures, the actual capacity and bounds obtained via simulations
are presented in addition to our estimates. Further, for the sake
of brevity, we abbreviate Distribution-Based Iterative Estimate
(Algorithm 1)), Rate-Based Iterative Estimates (Algorithm 2),
Lower Bound (Thm. 1), and Upper Bound (Thm. 2) to DbIE,
RbIE, LB, and UB, respectively.

Fig. 6 presents the variation of the capacity with the number
of hops of line networks when each intermediate node possesses
a buffer size of five packets. The figure presents simulations for
networks when the probability of erasure on each link is set to
either 0.25 or 0.5. First, it is noticed that the bounds and iterative
estimates agree with the actual capacity for two-hop networks.
Second, it is noticed that the bounds and estimates capture the
variation of the actual capacity of the network. However, the es-
timates are more accurate. For both choices of channel parame-
ters, both estimates predict throughput capacity within an error
of 1%. Further, it is also noticed from the figures that the inde-
pendence assumptions of the estimates generally over-estimate
the actual capacity of the network.

In order to study the effect of buffer size on capacity, we simu-
lated a five-hop line network with each link having erasure prob-
abilities just as in the previous setting. Fig. 7 presents the vari-
ation of our results and the actual capacity as the buffer size of
the intermediate node is varied. It can be seen that as the buffer
size is increased, all curves approach the ideal min-cut capacity
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Fig. 7. Capacity of line networks with � � � with varying buffer size �.

Fig. 8. Capacity of line networks with � � ��� � � with varying erasure probability �.

of . Also, as is expected, the accuracy of the bounds im-
prove with the buffer size.

Finally, the effect of the channel conditions on the capacity
of a five-hop line network with intermediate buffer sizes of five
packets each is presented in Fig. 8. It is noticed that as the prob-
ability of erasure increases, the loss in capacity due to finite
buffer becomes more pronounced. For example, for the simu-

lation setting of Fig. 8, the loss in capacity varies from 3.85%
at to 16.1% at in a near-linear fashion. From
these figures, we infer that it is paramount that the effect of
blocking be considered as realistically as possible. Modeling
the effect of blocking as packet loss (as is done to derive our
bounds) only allows us to loosely bound the capacity of such
networks.



3632 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

Fig. 9. FCFS delay profiles in 8-hop line networks with different buffers.

Fig. 9 presents the variation of delay profile for the optimal
strategy in an eight-hop line network with the erasure proba-
bility on every link set to 0.25. The delay profiles were simulated
for three different buffer sizes. As in Section IV, the estimate
and simulations were performed for the first-come first-serve
strategy. From the first sub-plot, it is noticed that both mean
and variance of the delay distribution increase as buffer sizes
increase. While the mean delay obtained via simulations for
the three memory settings are 30.22, 55.18, and 81.29 epochs,
whereas the analytical result for the same using the Dist.-Based
Iterative Estimate are 30.09, 55.22, and 81.68 epochs, respec-
tively. Note that the analytical estimates for the mean delay

can be obtained without computing the delay profile
by the use of Little’s theorem [22] as follows.

(36)

where, as before, denotes the distribution of occupancy
of at steady state given by the Rate-Based Estimate. Note that
each term in the above sum can be viewed as the contribution of
the corresponding node to overall delay. It is noted that the ana-
lytic prediction of the delay profile is more conservative than the
actual delay profile in the sense that the estimate of the variance
is higher than the actual variance of packet delay. The second
sub-plot of the figure illustrates the difference in the cumulative
distribution of delay predicted by the two estimates. It is noticed
from all the above simulations that there is only a minor differ-
ence between the two estimation schemes if the parameters of
interest are either the throughput capacity or the delay profile.

Fig. 10 highlights the difference between the two estimates
when continuous-time models are emulated using discrete-time
epochs. Consider a three-hop line network where intermediate
nodes have a buffer of three packets and their packet service dis-
tributions are exponential with . Sup-
pose that the arrival process at the first node is renewal with

interarrival distribution being exponential with .
The following figure presents the distribution of interdeparture
duration from the second node. It is observed that by lumping

seconds into each epoch, the Distribution-Based
Iterative Estimate provides a near-accurate distribution of the
interdeparture durations. On the other hand, the Rate-Based It-
erative Estimate approximates the distribution as an exponen-
tial, which yields a less accurate estimate. Note that for this set-
ting packets/sec, and the Distribution-Based
and Rate-Based Estimates are 2.2447 and 2.2413 packets/sec,
respectively.

A. Buffer Allocation in Line Networks

In this section, we present a brief discussion on two questions
pertaining to efficient usage of buffers in intermediate nodes. Is
the use of more buffer slots, the merrier? and How to allocate
buffers to different nodes so that operation ensures near-min-cut
throughput and acceptable delay?

To address the first question, consider the eight-hop network
of Fig. 9. As the buffer size is varied from 10 to 15 packets,
the Rate-Based Estimate for capacity changes from 0.7135
to 0.7254 packets/epoch—a change of less than 1.5% (of the
min-cut bound). However, the mean latency changes from
55.18 to 81.29 epochs—a 47% change. Therefore, for each ,
it is likely that there is a critical buffer size for each node be-
yond which the throughput capacity improvement is marginal;
however, with increase in buffer sizes, the average time packets
spend in the network continues to grows significantly. One
must, therefore, identify the correct size of buffers to be used
so that both latency and throughput capacity are acceptable.

To discuss the second issue, we illustrate with the
following example. Consider a four-hop network with

for which a good choice of buffer
allocation needs to be identified under the constraint that the
total number of buffers in the network must be no more than
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Fig. 10. Probability density of packet interarrival duration at the destination in a three-hop continuous-time line network.

Fig. 11. Throughput, and average delay contribution by each intermediate node with varying buffer size.

30 packets. To this end, we use the Rate-Based Estimate to study
the effect of individual buffer sizes on throughput and delay.
Fig. 11 shows the variation of the throughput and delay con-
tributed by each node when its memory is varied from 1 to
20 packets, while the buffer sizes of other intermediate nodes
are kept at 20 packets. In this example, it is noticed that max-
imum throughput estimate for all choices of memory estimates
is 0.4871 packets/epoch when . This setting of-

fers a mean packet delay of 32.24 epochs. However, minimum
delay configuration amongst those that offer a throughput more
than 0.485 packets/epoch is , which offers a
throughput of 0.4851 packets/epoch and a mean packet latency
of 28.46 epochs. The actual capacity and delay for these config-
urations were found to be packets/epoch,

epochs and packets/
epoch, epochs, respectively.
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Fig. 12. Estimated Buffer occupancy distribution in intermediate nodes.

To understand further these patterns, we present in Fig. 12
the steady-state occupancy of the three intermediate nodes when
buffer sizes are set to packets,
packets and packets, respectively. In all set-
tings, it is noted that the node is congested because the sub-
network from to has a min-cut capacity of 0.5, whereas
it receives packets at the rate of 0.7. Therefore, the steady-state
occupancy of the node for and are translates of that
of . Due to congestion, an arriving packet at such a node usu-
ally sees very high occupancy. Hence, in a first-come first-serve
mode of operation, the arriving packet has to wait long before
getting serviced. Therefore, it is critical that the buffer size of
congested nodes (such as ) be kept to absolute minimum to
minimize average packet delay. Similarly, can at most receive
packets at a rate of 0.5, however, the outgoing link can commu-
nicate packets at a much higher rate. Therefore, the buffer of

is never full as long as the buffer size is greater than five.
Nodes such as that are never congested contribute little to
the delay experienced by packets. Hence, limiting buffer sizes
of such nodes is not critical for delay as long as the sizes are
bigger than their threshold sizes (beyond which throughput in-
crease is marginal).

Occupancy in nodes like that are neither congested nor
starved undergo nontrivial changes with changes in buffer sizes.
These nodes contribute significantly to both the throughput and
average packet delay in the network. For example, in the ex-
ample network has a near-uniform distribution for both
and . Just like congested nodes, such nodes have to be allo-
cated buffer sizes so that the they neither block packets nor con-
tribute to delay significantly. Though the classification of nodes
as congested, starved or neither can usually be done by focusing
on , good memory allocation requires knowledge of trends of

latency and throughput with buffer sizes, which in turn require
the help of more sophisticated estimates such as those proposed
in this work.

As a second example, consider another four-hop network
with . In the infinite buffer setting,
the queueing system corresponding to this buffer configuration
is stable. Hence, no node can be classified a priori as congested.
Suppose that a throughput-optimal allocation of buffer sizes
for intermediate nodes is to be designed with the constraint
that the total number of packets in the network be limited to
60. Clearly, a naïve first guess is to assign .
However, notice that no matter how large the buffer sizes are,
the probability of blocking at any node is always nonzero.
Hence, the rate of arrival that and see is smaller than
that noticed by . Therefore, it is meaningful to assign a
larger buffer size to minimize blocking at and maximize
throughput. Although this intuition is correct, it is unclear as to
how to allocate buffers. The strength of the iterative technique
is in resolving exactly this issue by assigning estimates to
each buffer allocation configuration. By searching around the
neighborhood of , the maximum throughput configuration
is found to be .

As is illustrated by these examples, the proposed iterative es-
timation techniques presents a framework to identify nodes in
line networks that are either: (a) starved and, therefore, play an
insignificant role in capacity and packet delay (such as of
Fig. 12), or (b) congested and contribute significantly to packet
delay (such as of Fig. 12), or (c) contribute significantly to
both capacity and packet delay (such as of Fig. 12). On iden-
tifying these nodes, it is possible to identify configurations that
make efficient use of the buffers without severely compromising
on either throughput capacity or average packet delay.
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Fig. 13. Throughput of continuous and discrete systems for varying buffer sizes.

VI. CONCLUSION

This work focused on the effect of finite buffers on the
throughput capacity and packet delay profile in line networks
with packet erasure links. First, an exact Markovian frame-
work for modeling line networks with perfect feedback was
presented. The framework was simplified using independence
assumptions to derive iterative estimation techniques that yield
approximations of all marginal buffer statistics and also allow
to identify the packet delay profile in such networks. Further,
it was shown that the absence of feedback has no effect on
the throughput capacity of line networks provided packet-level
coding is permitted. Finally, via simulations, the proposed it-
erative techniques were noticed to be computationally-efficient
and near-accurate models to analyze and study the behavior of
line networks.

APPENDIX A
DISCRETE AND CONTINUOUS MODELS

In this section, we argue that the discrete model assumed in
the paper can be used to study the capacity of tandem queue
model with type II blocking (see [9]) and independent exponen-
tial service times at each node. Consider a tandem queue of
links and intermediate nodes. Suppose
denotes the parameters for the exponential service times at

, respectively. Assuming that each intermediate
node has buffers given by and that
denotes the number of packets collected by in the period

, the throughput capacity 7 of the system is defined
by

(37)

can be computed from a discrete model assumed in this paper.
For example, Fig. 13 considers a four-hop system with each

7Note that the definition of throughput using (37) hinges on the ergodicity of
the continuous-time system.

node having exponential processing times with parameter
s and compares it with four discretized models. Note that the
approximations become finer as smaller values of are chosen.
This fact can be formalized as follows.

Theorem 6:

(38)

where the right-hand side uses the discrete-time model of (4).
Proof: We begin by constructing the probability transi-

tion matrices for continuous and discrete chains that track the
state of the system just before a departure from the last inter-
mediate node. Note that both chains use the same state space

; however, their transition
probabilities are different.

Let denote the probability transition matrix for the con-
tinuous model. Let denote the transition matrix that effects
the change in states when a departure from the last interme-
diate node occurs and let denote the transition matrix corre-
sponding to changes in state over a duration of seconds given
that no departure occurs in that duration. Then

(39)

where denotes the cumulative density function of the expo-
nential RV with parameter . Notice that for any

. Therefore

(40)

where (a) follows since . Let denote the state
transition matrix for one time epoch of the discretized model
with . Then, we have

(41)
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Therefore, we have

(42)

where (a) follows from Fubini–Tonelli Theorem [23]. The dis-
crete equivalent of the above transition matrix that tracks the
state between departures for the corresponding time-discretized
system is given by

(43)

Let for any pair of
states . Then

(44)

Note that (b) follows since is a probability matrix, and
hence, each component is bounded above by unity, and (c) fol-
lows since for , it is true that

and (d) follows from for . Thus,
as . Let and be the eigenvectors of and ,
respectively. Then, since the steady-state distribution of a chain
is a continuous function of the transition matrix, it follows that

, as . However, the capacity computed using
continuous and discrete models are given by

Therefore, .

APPENDIX B
PROOF OF LEMMA 1

(a) Suppose that the state of the system is
with ,

then from (1), we notice that and
. Hence, given the event

depends
only on and and not
on . This guarantees that
for .

(b) First suppose . Consider for some and the
state of the system at some time . represents transitions
from states that have the form
to states of the form

. Since , it must be that
and that the channel must have erased the packet transmitted by

. Denote for and .
Then, it is seen that for any realization of , it is true
that the state transition must obey

However, is the index
of the row corresponding to the state within and

is the index of
the column corresponding to within . Therefore, all
possible transitions in correspond to transitions from states
to other state that involve a nonpositive change in the row-index.
Therefore, is upper triangular. Finally, since each diagonal
term of is bounded below by , we conclude
that

(45)

Finally, if , it is easy to see that .
(c) Consider a transition under for from a state

that has the form to another
that has the form
after an epoch. Since , it must
be that the packet transmitted during this epoch on the link

must have reached successfully, i.e., .
By an argument similar to the above one, we can show that

is lower triangular. However, certain diagonal terms
are zero. In specific, consider the transition from state

to the state
which cor-

responds to the . However, this transition is impossible
when , since the node has no packets to send during
this epoch. Thus, if .

(d) The nonsingularity of follows from the fact that
is diagonal dominant [24], since

. On the other hand, since , there exists at
least one for which the inequality is strict, which guarantees
the nonsingularity of these matrices.
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APPENDIX C
PROOF OF THEOREM 1

We proceed by mathematical induction on the time index .
Clearly, the condition holds for . Suppose that the claim is
true for all nodes and for times for some .
Consider the states of the node for some
in both chains at time instant . One of the two following cases
must apply.

1. : In this case, we note that

If , then and

Thus, .
Now, if , it is seen from (1) and (8)
that . Further, if , then
clearly, and . If

, then and
follows since

Now, if , then (1)
and (8) again imply and

,
and hence, follows.

2. : Assume let . Then

Lastly, if , then the claim can be violated only if
and , which can happen only

if . However, under this channel
instance, . Thus, .

Thus, we have the following:

(46)

The proof is then complete by following the above argument for
and interpreting , since the source

always possesses innovative packets.

APPENDIX D
PROOF OF THEOREM 2

If comparing (1) and (8), we see that the AMC and the
EMC are identical. Hence, we may assume . The proof in
this case is based on mathematical induction on the time index
. At each time, we compare the state of the EMC with that of

the modified AMC. Let the extended state of the EMC at an
instant be denoted by ,
where the notation is identical to that of Section III with the

addition that denotes the number of packets that the des-
tination has received by the th epoch. Similarly define the ex-
tended state of the AMC with modified buffer sizes at an instant

by . Define a partial ordering of vectors of
in the following manner. For two vectors

if for each . We track the
system starting from initial rest (all buffers being empty) using
an instance of channel realizations. Clearly .

Suppose that for . Consider
. One of the following two situations may arise.8

1. : In this case, no
node is saturated in the AMC, and hence, every node
can potentially accept packets provided both the node
preceding it has packets to send and the channel allows it.
Consider the number of packets that are in the buffers of
nodes for some in both chains.
(i) If or if both and

are true, then

(ii) If and
then

Therefore

(iii) Finally, if and
then

Since was arbitrary, it follows that .
2. : Then, let

. In this
case, nodes are not saturated and can accept
packets. The argument for
follows for is similar to the previous
case. Notice that since the occupancy of nodes
are not full

(47)

8For convenience, we set � ��� � � ��� �� � � � in this proof.
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Now, for , two cases may occur.
(i) If , then by (47)

(48)

(i) If , and then

However, if and , then

(49)

Thus, the claim holds for . The claim
is then complete if . Therefore, in what follows, we
may assume .
Finally, for , one of the following cases must
hold.
(i) If , then

(ii) If then and

(50)

Thus, the claim is true for all indices and
. Here, it must be noted that if the buffer

sizes for the nodes of AMC are not modified as in the hy-
pothesis, (47) will not hold.

Finally, the upper bound follows since

APPENDIX E
PROOF OF THEOREM 3

Consider two rate-approximate solutions and
such that with . Notice that

is a strictly decreasing function of when
is kept fixed. This follows from the fact that

(51)

An easy way to understand this behavior is to notice that
increase with , while decreases with . Therefore,
from (15), it follows that

(52)

Now, from (52) and (14) guarantee . We then
use the monotonicity of in conjunction
with already shown results to show that and

. Extending this inductively, we have
and . Therefore, for each , there is at most one
solution satisfying .

Now, consider two rate-approximate solutions and
such that . By mono-

tonicity of , we have . From (14),
we notice that is also a strictly increasing function in both
its variables and . Therefore, . Again,
proceeding inductively from the last node to the first each time
noticing the monotonic growth of (14) and (15), we conclude
that

(53)
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However, since and are both rate-approximate
solutions, we have , which contradicts (53). There-
fore, there is at most one solution to the system of equations.

To identify the unique solution, we construct a sequence of
tuples as described in Algorithm 2. Note that
Step 2 of the algorithm can be replaced by a convergence-type
step that halts if is smaller than a chosen
threshold.

Algorithm 2 Rate-Based Iterative Estimate

1: and .
2: while do
3: , and .
4: while do
5: Compute employing

(15) and (14) (that use )
6: .
7: end while
8: .
9: end while

By the monotonic property of the nonlinear system of equa-
tions, the following results can be established

(54)

However, each component of and is individually bounded
by unity. Therefore, the sequence of numbers for each compo-
nent of these vectors must converge. Denote the component-
wise limit as . Denote

to be the following map. For each
, denote to be the pair, whose first component

is the vector of rates computed from (15) and the second com-
ponent is the vector of blocking probabilities computed from
(14). Then, is a continuous map and

for each . Also, for this sequence of rates
and blocking probabilities, we note that

(55)

However, the right-hand side of (55) is true for any . By
allowing , the three limits vanish, and hence, we see
that is a fixed point of the map, and hence, the
unique solution to the system of nonlinear equations.

Finally, to see the conservation of flow, notice that the Rate-
Based Iterative Estimate models the system using a discrete-
time M/M/1/ system by the introduction of additional assump-
tions and parameters. In the model, the number of innovative
packets that are successfully stored by as the system pro-
gresses from to is given by

(56)

Fig. 14. Section of interarrival periods at the first server (assuming it possesses
five customer slots).

Similarly, the number of packets successfully output by is
given by

(57)

Since the M/M/1/ system is lossless, all stored packets even-
tually leave the system. Thus, the average rate of packet storage
at a node must match the average rate of packets output from
that node. Comparing (56) with (57), the conservation of packet
flow for the rate-approximate solution follows.

APPENDIX F
PROOF OF THEOREM 4

The proof elaborates the behavior of a tandem system via a
formal setup for the discrete-time equivalent of the
queue [25]. To illustrate the complications in the setup, Fig. 14
presents a section of an interarrival period for the first node. The
number of customers in the queue of the node just before an
arrival or a departure is presented on the axis. The arrival and
departure of customers is marked by incoming and outgoing ar-
rows, respectively. In Scenario A, we see that the queue is never
starved and as a result all the interdeparture times are instances
of the service process.

However, in Scenario B, we notice that all the five customers
that are in the queue after the arrival are serviced much ahead of
the next arrival, and hence, there is a period of time during which
the queue is starved. If the queue were not starved, it could have
possibly serviced a customer at the instance marked by the out-
going dotted arrow. Hence, this duration of time denoted by
in the figure, adds a delay to the interdeparture time. Thus, if we
are able to extract the distribution of this duration,
we can identify the interarrival distribution as seen by the
second node to be a weighted sum of and .

In order to identify the distribution , we need to identify the
probability distribution of the number of customers in the first
node’s buffer just after an arrival. The first step in identifying
from the imbedded Markov chain for the occupancy of the first
node is to construct the distribution of the number
of packets that could be potentially transmitted during an inter-
arrival duration provided the queue were infinite. This distri-
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bution can be computed from the arrival and departure processes
in the following manner:

(58)

where in the above, we use to incorpo-
rate the actual parameter of the memoryless service time, and

in (a), we use . For

each , the th entry of the probability tran-
sition matrix for the imbedded Markov chain that tracks the
number of customers just after an arrival can be computed by

(59)

Note that in (59), we set when . The distribution
can then be solved from the eigenvector relation .
Note that a packet arriving at the first node will not be accepted if
the node is in full buffer and no packet had left in the preceding
interarrival duration. The probability of this blocking event at
the first node is given by

(60)

Finally, we can identify the distribution of by conditioning
on the number of customers just after a customer arrival. It
is seen that for

(61)

From (61), we notice that the distribution of conditioned on
is a weighted sum of geometric distributions. The dis-

tribution of can then be computed as follows:

Also, we notice that the distribution of interarrival times as
seen by the second node is either an instance of or
that of , and hence, can be written as

(62)

for some . The last step in constructing the interde-
parture distribution is to identify . This is done by noticing
the mean duration between departures. Over a large duration

, the number of packets that are accepted at the first node
is given by . The number
of packets that are accepted by the second node is given by

. Since the system has finite buffer

size and no loss, the rates must match. Therefore, one can iden-
tify using the following:

(63)

Finally, notice that if , we have

(64)

Using the above we can see that

(65)

which is also a weighted sum of geometric distributions.

APPENDIX G
PROOF OF THEOREM 5

We present below a fundamental result that will be used in
various stages of the proof.

Lemma 2: Let be a vector space over a finite field and
let for any . Let and

be two subsets such that .
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Then, let be selected uniformly at random from and set
. Then

(66)

Proof: Let be the set of all vectors such that
. Then forms a commutative group under

componentwise addition. Similarly, let for each , let
be the set of vectors such that . It is

follows that , i.e., they are the coset
translates of the subgroup . Therefore, uniform selection of
the coefficients to perform a linear combination results in the
selection of a vector in uniformly at random. Notice that

if and only if
. Note that the occurrence of this event is improbable for

large fields, since

Corollary 1: Let be a matrix with entries from
such that . Let be selected uniformly at
random. Then

(67)

The basic idea of the proof is to construct a chain for the
setting without feedback that is similar to the EMC. Once the
chain is identified, the proof will be completed by showing that
the transition probabilities of each transition approaches that
of the EMC as the field size is made large. To this end, allow

to be the packet received by the node at the epoch.
Set if the channel erases the transmitted
packet at the th epoch. For the sake of proof, each epoch is
divided into sub-epochs. Since the network is assumed to
work in a transmit-first mode, the network updates the buffers
in a reverse-hop fashion, i.e., at the th sub-epoch, the mes-
sage generated by is used to update that of . Define

to be the set of packets
in the buffer of after the th sub-epoch of the th epoch.
For notational ease, let for

and . Note that the system is
uniquely described by the dynamics of the nested vector spaces

. Define occupancy for this coded setting as

(68)

Notice that this notion of occupancy denotes the number of addi-
tional innovative packets that is housed by at the th epoch that
has not been conveyed to downstream nodes. Also note that at
the th sub-epoch of the th epoch, the only buffer that changes
is that of due to the receipt of . Thus

To investigate the change of occupancy9 after the th sub-epoch
of the th epoch for nodes and , we have to consider
the following cases.

1. If , then by Lemma 2, we see
that

with probability at least . Therefore, it follows that
with high probability.10 If

on the other hand , then
and .

2. In this case,
and there is no update at the buffers of the node .
Therefore

(69)

3. and
Notice that in this case, since the oc-

cupancy of before the update is not full, there exists
such that

(70)

Suppose that is used to update
with the message . Then

Now, note that the vector is not unique and that the set of
all vectors that relate the contents of form a vector
space over of dimension . Let

be the matrix generated by enlisting all the vectors in this
space as rows. Then

and by Cor. 1, .
Therefore, by choosing a large field size, the probability
of the event can be made
arbitrarily close to unity. Finally from Lemma 2, we see
that if , then is innova-
tive w.h.p. It is straightforward to see that in this setting,

9In accordance with the notation of (2) and (7), occupancies � �� � �� and
�� �� � �� correspond to � ��� �� in this setup.

10Throughout this section, by ‘with high probability’ we mean that we can
guarantee any probability close to unity by choosing a large field size �.
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if , an innovative packet is conveyed
w.h.p. from to and

(71)

Finally, if , we notice that both occu-
pancies remain unaltered w.h.p.

4. and
: Suppose that by updating the buffers

of with (using a randomly selected
), we introduce a linear dependency in the newly formed

buffer entries. That is, such that

However, from Lemma 2 and Cor. 1,
and .

Therefore, w.h.p. there is no linear dependency introduced
after update and the occupancy is unaltered in this case.

5. and
: Just like before, the aim here is

to show that there will be no change in occupancy.
Since in this case, has no innovative packets,
the message it generates will be a linear combina-
tion of packets in . Therefore, we can
write ,
where and . Let

be used to update the buffer of and
let , then

Note that the above is true if only if
for , since .
Therefore, a linear dependency of stored packets
arises if and only if there is a nontrivial solution for

, where , and
. However, this occurs if and only

if . Finally, note that this determinant
is zero if and only if . However, this event
occurs with probability , since the vector is chosen
uniformly at random from . Therefore, w.h.p.
there is no linear dependency induced in the contents of

and the occupancy of remains .

To summarize:
a. Although the dynamics of the system are driven by the

spaces , the transitions and their probabili-
ties depend only on

, and not the spaces as such. Therefore, the system
can be equivalently modeled using just these occupancy
vectors as states.

b. The transition probabilities for the chain given by occu-
pancies approach that of
the EMC as the field size is made large.

Finally, since the steady-state probability is a continuous
function of the probability transition matrix, the steady-state
probabilities of the chain for networks without feedback
approaches that of the EMC, thereby guaranteeing that the
throughput achieved by the random coding scheme over a line
network without feedback is asymptotically the same as that of
a line network with identical parameters and perfect feedback.
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