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Abstract—Enabling intermediate nodes in networks with the
capability of storing the past communication can offer several
benefits. Recently, we have shown that by utilizing memory
at intermediate nodes, one can compress the data stream sent
from the source node with superior performance compared to
the conventional end-to-end compression of individual sequences
destined to each client. In other words, memorization or learning
of past traffic at intermediate nodes provide extra compression
gain. This gain comes from the fact that utilizing previous traffic
shared between the source and intermediate nodes with memory
helps to close the gap between the compression performance of
universal compression techniques and entropy of each individual
sequence. The gain of data traffic reduction depends on the
number of memory units and their locations. Since in practical
scenarios only a select number of nodes have the storage and
computational capability to function as a memory unit, it is
important to find the optimal location for such nodes. Further-
more, memory placement in the network poses some challenges to
traditional shortest path routing algorithms, as the shortest path
is not necessarily minimum cost route in networks with memory.
In this paper, we investigate the memory placement problem
and routing algorithms for networks featuring memory units for
network compression. We derive the optimal memory placement
strategy on line and grid networks. We further demonstrate how
conventional routing algorithms should be modified when there
are memory units in the network.

I. INTRODUCTION

Recent studies have demonstrated that memory deployment

in the network can result in reduction of network traffic [1]–

[3]. Memory units are nodes in the network that can selectively

store parts of the previous traffic passing through them. The

memorized traffic can in turn help in the learning of the

statistics of the unknown source model that generated the data.

This learning of the statistics can be used in the memory-

assisted universal compression of individual packets in order

to suppress the redundancy in the universal compression [4].

In [5], we demonstrated that universal compression of finite

length sequences has significant gap from the entropy of the

sequence. However, using memory can significantly improve

the compression performance for finite-length sequences and

potentially close the gap. Motivated by this, in [4], [6], we

introduced memory-assisted universal source coding and stud-

ied the fundamental gain g (defined as the ratio of the average

codeword length resulting from the universal compression

without memory to that of with memory) of memory-assisted

source coding from an information-theoretic point of view
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where both the encoder and the decoder have access to shared

data (memory) of length m from the unknown source.

The deployment of memory units in the network gives rise

to a number of questions and also brings some new challenges.

In network compression, every traffic from source to the

memory node benefits from the gain g. Then, the first question

is how much gain in terms of reduction of the total traffic in the

network one should expect. In [7], we defined a network-wide

gain G for a general network topology as a function of the

number of memory units in the network, and the fundamental

gain g of memory-assisted source coding. We investigated the

scaling behavior of the network-wide gain with the number of

nodes in the network in a random graph, where we showed

significant improvement is achievable even when the number

of memory units is a small percentage of the total number of

nodes in the network. In [3], we extended our study to Internet-

like power-law network graphs and characterized the network-

wide gain. Our results indicate that significant improvement

can be obtained if one applies compression on the packets

traveling in the Internet today.

However, as mentioned above, introducing memory units

in the network brings some new challenges that need to be

addressed for them to be useful in practice. In this paper, we

try to address some of these challenges. In particular, we aim at

answering two fundamental (and related) questions regarding

memory-assisted network compression.

1) In practical scenarios where only a select number of

nodes are capable of memorization and data processing,

i.e., only certain number of nodes in the network are

memory units, what would be the best strategy to choose

the memory units? In other words, where should the

memory units be placed in the network?

2) After the locations of the memory units are fixed, what

would be the optimal routing algorithm for memory-

assisted universal source coding? In other words, what

is the best strategy to route packets between the source

and destination nodes given the network topology, the

location of the memories, and the fundamental gain g
of memorization?

We stress that this problem is different from the en-route

cache placement problem studied in the context of content

caching [8], as we study the optimal placement without the en-

route constraint and study the consequences of this extension.

The rest of this paper is organized as follows. In Section II,

we present the necessary notations and the problem setup for
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Fig. 1. The basic source, memory, destination configuration.

memory assisted source coding in network. In Section III, we

demonstrate the challenges of memory placement and routing

when certain number of nodes are capable of data processing

as well as memorization. In Section IV, we state the memory

placement problem for memory-assisted network compression

and present our results for the class of line and grid networks.

Finally, Section V concludes this paper.

II. PROBLEM SETUP

The basic scenario for the memory-assisted universal com-

pression is illustrated in Fig. 1. The source S (content server)

is assumed to be a parametric information source [5] that

generates sequences xn of length n. Assume that client C1

requests a set of finite-length sequences from the content

server. Due to finite-length nature of the compression problem,

traditional universal compression techniques (when applied to

individual sequences) would achieve a compression rate which

can be significantly larger than the entropy of the sequence [5].

However, if the node μ chooses to memorize the sequences

destined to C1 and accumulate a memory of total length m,

this memory can be used for more effective compression of

a new (unseen) sequence xn that is to be transmitted to C2.

Denote Eln|m(Xn) as the expected code length for a sequence

of length n when both encoder (S) and the decoder (μ) have

access to a memorized sequence of length m. Let Eln(X
n)

be the expected code length without memory. Then, we define

the fundamental gain of memorization as the following [4],

[6]:

g(n,m) �
Eln(X

n)

Eln|m(Xn)
. (1)

In [4], we further characterized g(n,m) for different sources as

a function of the sequence length n and the memory length m
and derived a closed form lower bound on g(n,m). We clarify

that there are two phases in the memory-assisted compression.

The first is the memorization phase in which we may assume

all memory units have accumulated some sufficiently long

sequence from the source. This phase is realized in actual

communication networks by observing the fact that a sufficient

number of clients may have previously retrieved finite-length

sequences from the server such that, via their routing, each of

the memory units has been able to memorize the source. The

compression happens in the second phase where, knowledge

of the previous sequences helps for better compression of the

new sequences. In this paper, we assume all memories have

observed a total of m symbols from the source and hence we

treat g(n,m) as a given fixed constant. Thus, we focus on

solving the memory placement and routing for a given fixed

g = g(n,m).
We represent a network by a connected graph G(V,E)

where V is the set of N nodes (vertices) and E = {uv : u, v ∈
V } is the set of edges connecting nodes u and v. Associated

with each edge uv is a cost (or length) cuv , which is the cost

of transferring one unit of flow along that edge. A simplified

bit×hop measure is equivalent to the case where cuv = 1 for

all edges. We consider a single source S which is the content

server, and a set of memories η = {μi}Mi=1 chosen out of the

N nodes.

In a network with source S and a set of destinations

D = {Di}Ni=1, let fD be the flow destined to D ∈ D. The

distance between any two nodes u and v is shown by d(u, v).
The distance is measured as the sum of the costs of the edges

in the shortest path between two nodes. As we will see later,

introducing memories to the network will change the lowest

cost paths from the source to destinations, as there is a gain

associated with the S − μ portion of the path. Therefore, we

have to modify paths accounting for the gain of memories.

Accordingly, for each destination D, we define effective walk,

denoted by WD = {S, u1, . . . , D}, which is the ordered set of

nodes in the modified (lowest cost) walk between the source

and D. We define μ
Di

= argminμ∈η{d(S,μ)g
+ d(μ,Di)}.

Then, we partition the set of destinations as D = D1 ∪D2,

where D1 = {Di : ∃μ
Di
∈ WDi

} is the set of destinations

observing a memory in their effective walk. The total flow F
is then defined as

F =
∑

Di∈D1

(
fDi

g
d(S, μ

Di
) + fDi

d(μ
Di
,Di)

)
+∑

Dj∈D2
fDj

d(S,Dj)
.

(2)

For simplicity, we assume fD = 1 for all destinations.

In other words, we assume that after traditional end-to-end

compression, the length of the data to be transmitted is one

bit. This has no consequence on our analysis but simplifies

the notation.

In a general network where every node can be a destina-

tion, we define a generalized network-wide gain of memory

deployment as a function of memorization gain g, as follows:

G(g) = F0

F , (3)

where F0 is the total flow in the network with end-to-end

universal compression of sequence without using memory, i.e.,

F0 =
∑
D∈D

d(S,D).

Note that with the above definition, the gain G(g) is the benefit

offered by the memory-assisted compression over the end-to-

end universal compression without memory.

III. HARDNESS OF OPTIMAL DEPLOYMENT OF MEMORY

AND ROUTING IN NETWORK COMPRESSION

Let the total number of memory units be M . The goal of

the memory deployment is to find the best set of M out of
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N vertices in the network such that G(g), i.e., the network-

wide gain of memory, is maximized. In general, this is a hard

problem as we summarize below.

A. Hardness of Memory Deployment

It can be shown that the memory placement is equivalent

to the well-known k-median problem. Hence, the memory

deployment problem on a general graph is an NP-hard prob-

lem. However, a solution to the deployment problem can

be obtained for certain network topologies, which can be

helpful in finding approximate solutions for general networks.

In this section, we demonstrate the challenges of the memory

deployment problem by considering the class of line networks.

Another challenge in finding the gain G(g) comes from the

difficulty of finding minimum cost paths in a network. Below

we summarize these challenges and introduce a modified

routing algorithm that can help finding the effective walks in

a network and hence calculating G(g).
B. Modified Shortest Path Routing for Memory-Assisted Com-

pression

In a regular network without memory nodes, the shortest

path problem can be solved using the well-known Bellman-

Ford algorithm which relies on the so-called principle of

optimality: if a shortest path from u to v passes through a node

w, then the portion of the path from w to v is also a shortest

path. It is important to note that, there is another statement for

principle of optimality as follows: if w is a node on the shortest

path from u to v, this knowledge implies the knowledge of

the shortest path from u to w. This latter statement only holds

in networks without memory and in general is not true for

networks with memory (Fig. 2). Therefore, the shortest path

problem requires more attention in networks with memory.

The well-known routing algorithms like Dijkstra’s algorithm,

in their original form are not applicable to networks with

memory. This limitation is due to the fact that when the

algorithm runs into a memory node on the path, all the

previous edges’ costs along the path should be divided by

g, and hence needs to recalculate the whole path.

Although, having memory units in a network changes the

shortest paths dramatically (an example is shown in Fig. 2),

the principle of optimality sill holds and this will enable us

to find the shortest path using the well-known Bellman-Ford

algorithm which is in effect the repeated application of the

principle of optimality. The Bellman-Ford algorithm is used

in distance-vector routing protocols. The distributed version of

the algorithm is used within an Autonomous System (AS), a

collection of IP networks typically owned by an ISP. While

Bellman-Ford algorithm solves the shortest path problem in

networks with memory and the solution for routing within an

AS is readily provided by this algorithm, the more efficient

Dijkstra’s algorithm is more used in practice. The Dijkstra’s

Algorithm is widely used in network routing protocols, most

notably IS-IS and OSPF (Open Shortest Path First) and hence

it is important to visit the challenges of finding the shortest

paths in networks with memory using the Dijkstra’s algorithm.

S

C2 μ

C1

Fig. 2. Routing in networks featuring memory. Memories change the shortest
paths dramatically but the principle of optimality sill holds.

Here, we present a modified version of Dijkstra’s algorithm

that finds the effective walk from all the nodes in a network to

a destination D, in a network with a single memory. Iterating

over all nodes will provide the effective walk between every

pair of nodes in the network. To handle the memory node, we

define a node-marking convention by defining a set M which

contains the marked nodes. We say that a node is marked if

it is either itself a memory node, or a node through which a

compressed flow is routed. The modified Dijkstra’s algorithm

starts with finding a node ν closest to node D. Then, we

iteratively update the effective distance of the nodes to D. For

nodes not directly connected to D, the distance is initialized to

infinity and then iteratively updated as in Dijkstra’s algorithm.

After finding the effective distance between every pair of

vertices via the modified Dijkstra algorithm, we can calculate

F and then G.

IV. OPTIMAL DEPLOYMENT OF MEMORY ON LINE AND

GRID NETWORKS

A. Memory Deployment on Line Networks

Consider a line network with the source node S placed at

one end of the line and the destinations placed along the line

as shown in Fig. 3. Therefore, we have a total number of

N nodes on the line and the total length of the line is N
hops. As mentioned before, we assume traditional universal

compression would give one unit of flow, to be sent to each

destination. We consider the deployment of M memory units

on the line such that the memory μi is placed at ti from the

source, as shown in Fig. 3. We find ti’s such that total flow

F is minimized (or equivalently, G(g) is maximized). The

solution to the special case of “en-route” memory deployment

on line networks is studied in [8]. En-route memories are

those which are only located along routes from source to

receivers. An en-route memory intercepts any request that

passes through it along the regular routing path. The solution

to the en-route memory placement problem as discussed in [8]

is ti =
1
M

∀μi.
However, the memory deployment problem for network

compression on a line network is more challenging. The

difficulty comes from the fact that each memory can serve

some of the destinations closer to source than the memory

itself. In other words, the shortest effective walk from source

to the destinations is not necessarily the same as the shortest
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Fig. 3. The placement of memory units on a line network: the source node
S is placed at one end of the line and the i-th memory is placed at ti from
the source and τ i is its left-coverage.

hop distance. As shown in Fig. 3, for a memory μi located

at ti, there is a left-coverage hop-length of τ i towards the

source to cover the destinations on the left side of the memory.

The following lemma shows how t and τ change for different

values of g.

Lemma 1 For the simple case of M = 1 and a line of hop-

length N , the optimal memory location t and coverage τ is

given by

t =
2g

3g + 1
N +O(1),

τ =
g − 1

3g + 1
N +O(1). (4)

As shown in Fig. 4, as the gain g increases, the memory is

placed on 2/3 distance from the source and the left coverage

approaches 1/3.

Lemma 2 The gain of single memory placement on line is

G(g) = (3g+1)2

3g2+10g+3 , and for g � 1 we have

G ≈ 3. (5)

Proof: The proof is immediate from Lemma 1 and the

fact that for line F0 = 1/2.

Following the results of deployment of a single memory

on line, we can extend the result and solve for the general

problem of deployment of M memory nodes.

Theorem 3 Consider deployment of M memories on a line

where memory μi is placed at ti with τ i left-coverage. Then,{
ti ≈ m

M
N +O(1)

τ i ≈ g−1
2gMN +O(1)

. (6)

By definition, t0 = τ0 = 0. Furthermore, G(g) =
2g2M

2g(M+1)+g2+1 , and for g � 1 we have

G ≈ 2M. (7)

Proof: Proof is provided in the appendix.

Next, we extend the result of memory deployment for a line

network to grid topologies.
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Fig. 4. Variations of t and τ vs. g for a line network.

B. Memory Deployment on a Grid Network

In this section, we extend our study to the analysis of mem-

ory placement in grid networks. Let G be a (2L+1)×(2L+1)
grid network with a single source placed at (0, 0), as shown

in Fig. 5. Again, the goal is to obtain the optimal placement

of M memories in this topology and derive the corresponding

network-wide memorization gain, defined in Sec. II. Note that

in this topology, since the cost is measured in bit×hop, the

geometry of the problem implies that �1 distance would be

the proper interpretation of the distance metric. Therefore,

for example, in Fig. 5, all the nodes located on the diamond

square share the same distance from the source S located at

the center point. We look at two memory placement strategies

on the grid. First, we consider the scaling of the gain under

a uniform memory placement. Then, we look at a case where

all the memories are placed at distance t from th source.

Now, consider the uniform placement of the memory units

on the grid. For simplicity let the number of memories be

M = k2. Note that since our goal is to obtain the scaling

behavior of the gain with the number of memories, as the

grid size and M grow large, this assumption is not restrictive.

The memories could be placed uniformly on the grid being

at distance L
k+1 hops from each other. Note that the uniform

memory placement provides a lower bound on the network-

wide gain since it is not the optimal placement strategy. It

is straightforward to demonstrate that in this case, due to

symmetry, the problem breaks down to solving the routing

problem in a square whose corner points are all memory units.

We need to determine which of the corner-point memory units

would be the best choice for serving the node inside the square

given that one of the corner points are closest to the source

with distance r hops, two located at distance r + k from the

source, and another corner at distance r+2k from the source

depending on which quarter the corners are located at. Our

main result on uniform placement on the grid is the following

theorem.

Theorem 4 In a grid network, where the number of the

memory units is M , as the total number of nodes grows, i.e.,
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S

Fig. 5. Grid Network with the source S is placed at (0, 0). All the nodes
located on the diamond square have the same distance from S.

N →∞, the network-wide gain is lower bounded by

G ≥ g

√
M√

M + 2(g − 1)
. (8)

According to this result, even with a finite number of memory

units, a non-vanishing network-wide gain is obtained even

as the total number of nodes grows large. Further, note that

when the number of memory elements also grows large (i.e.,

M → ∞), the network-wide gain approaches its upper limit

g. Thus, for large M , the uniform memory deployment on a

grid network is near-optimal.

Next, we analyze a different strategy. We assume that all

memories are uniformly at distance t hops from the source.

Again, similar to the analysis of the line network in the

previous section, define τ to be the distance (in bit×hops)

that a memory serves backward as discussed in the previous

section. Our goal is to obtain the optimal placement under this

assumption, i.e., to find the optimal t and τ . Intuitively, based

on the geometry of the problem along with the symmetry of

the memory placement, this placement is near optimal when

the number of memory units is very small. From Thm. 4, when

the number of the memory units grows, the uniform placement

of memories will be optimal.

As shown in Fig. 5, the number of nodes at distance h hops

from the source is 4h. Therefore, we can extend the analysis

for the line networks with the difference that the density of the

nodes at distance h being 4h instead of 1 in the line networks.

When there is no memory unit, we have F0 =
∫ 1

0
4x2 dx = 4

3 .
By placing memories at distance t from the source we have

F =

∫ t−τ

0

4x2 dx

+

∫ 1−t

0

4(t+ x)x dx+
t

g

∫ 1

t

4x dx

+

∫ τ

0

4(t− x)x dx+
t

g

∫ τ

0

4(t− x) dx. (9)

To find the optimal t and τ , we take the derivative of F with

respect to t and τ and equate that to zero. In a result similar to

Lemma 2, for g � 1 we have that G ≈ 3.3. As we mentioned

before, when the number of memories can grow large, the

uniform placement is a better strategy.

V. CONCLUSION

In this paper, we investigated the memory placement and

routing algorithms for networks where intermediate nodes are

capable of the memorization of the past communication. While

the placement problem is hard in general, we derived the

optimal memory placement strategy on line networks and also

presented results for grid topologies. We further demonstrated

how routing should be modified when there are nodes that

memorize the past traffic.

APPENDIX

Sketch of Proof of Lemma 1: By approximating Fig. 3

with a continuous line and normalizing the length, we have

F =

∫ t−τ

0

x dx +

(
t(1− t)

g
+

∫ 1−t

0

x dx

)

+

(
tτ

g
+

∫ τ

0

x dx

)
(10)

The first term in (10) is the flow to all points on the line not

covered by memory. The second term is for the right coverage

of memory and the third term accounts for the left coverage of

memory (τ ). The result in (4) follows by taking the derivative

of F and equating to zero, i.e., ∂
∂t
F = 0 and ∂

∂τ
F = 0.

Sketch of Proof of Thm. 3: Similar to the proof of

Lemma 1, we can write

F =

M∑
m=1

[
ti
g
τ i +

∫ τ i

0

x dx

+
ti
g
(tm+1 − τm+1 − ti) +

∫ tm+1−τm+1−ti

0

x dx

]
.

Again, by taking the derivative of F with respect to ti and τ i
and solving the system of equations we arrive at{

ti ≈ ti+1+ti−1

2

τ i = g−1
2g (ti − ti−1)

, (11)

where (11) results in a tridiagonal matrix which in turn results

in (6) for large M . Further, (7) follows from (6) and F0 = 1/2
for line networks.
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