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Abstract—In diffusion-based molecular communications, mes-
sages can be conveyed via the variation in the concentration of
molecules in the medium. In this paper, we intend to analyze
the achievable capacity in transmission of information from one
node to another in a diffusion channel. We observe that because
of the molecular diffusion in the medium, the channel possesses
memory. We then model the memory of the channel by a two-step
Markov chain and obtain the equations describing the capacity
of the diffusion channel. By performing a numerical analysis, we
obtain the maximum achievable rate for different levels of the
transmitter power, i.e., the molecule production rate.

I. INTRODUCTION

Our interest to study capacity of molecular diffusion chan-

nels is twofold. First, there has been numerous evidence of the

existence of different forms of communication in nature. Com-

munication enables single cells to process sensory information

about their environment (in a way similar to neural networks)

and evaluate and react to chemical stimuli. At the microor-

ganism scale, molecular signals are used for communication

and control among cells. For example, one of the well-known

communication primitives among cells is the phenomenon

called Quorum Sensing. Quorum sensing is a cell-to-cell

communication process in which bacteria use the production

and detection of molecules to monitor the population density

of the bacteria. Quorum sensing allows bacteria to synchronize

the behavior of the group, and thus act as a unit [1]–[4].

The communication can also appear in other forms such as

calcium signaling. Cells absorb calcium molecules in response

to various stimuli that open/close particular channels on the

cell membrane. The molecular information in the variation of

the calcium ions concentration is propagated both inside and

outside the cell, causing a variation in the electrical charge of

the cell membrane and, subsequently, the transduction of the

information into an electrical signal. Due to various limitations

such as size (size of a single cell or microorganism) and energy

in small scales, the dominant form of communication in such

scales is via molecular signals, which is fundamentally differ-

ent from conventional electromagnetic-based communication.

Secondly, recent advances in bio-nano technology has mo-

tivated research on designing nanoscale devices to perform

tasks similar to their biological counterparts [5]. There is a

large number of applications that nano-devices could apply

to. One may envision molecular based networks built using

these nanoscale devices that can be deployed over or inside

the human body to monitor glucose, sodium, and cholesterol

levels, to detect the presence of different infectious agents, or

to identify specific types of cancer. Such networks will also

enable new smart drug administrative systems to release spe-

cific drugs inside the body with great accuracy and in a timely

manner. To enable all such applications, the communication

among nano-devices is the key.

The above promising outlook has inspired development

of new theoretical frameworks for molecular communication

such as [6], [7]. These studies by Eckford, et. al. mostly

focused on molecular communication, with information con-

veyed by the time of the release of molecules while the prop-

agation between the transmitter and the receiver is governed

by Brownian motion (without drift [8] and with drift [7],

[9]). An alternative molecular communication system is the

one governed by diffusion process in the medium, called

diffusion channel. Arguably, the most dominating form of

the communication at the micrometer scale is diffusion based

molecular communication, i.e., embedding the information in

the alteration of the concentration of the molecules and rely

on diffusion to transfer the information to the destination. The

communication among bacteria, calcium signaling, pathogen

localization functionality of the immune system and many

others can be reduced to diffusion based molecular communi-

cation. Another body of work in this field involves the study

of the Quorum Sensing as a network and mapping the Quorum

Sensing to consensus problem under diffusion-based molecular

communication [10].

In this work, we study the diffusion channel. We consider

a communication scenario consisted of a transmitter and a

receiver communicating via the diffusion channel, as shown

in Fig. 1. In this context, we can think of the transmitter as

a nano-device or a bio-engineered cell capable of emitting

molecules and releasing them into the medium to change

their concentration according to information bits. Similarly,

the receiver is capable of absorbing the molecules or chemical

signals, for example, by using ligand-receptor binding which

is a transmembrane receptor protein on a receiving cell [11],

[12]. This ligand-receptor interaction creates peculiarities such

as non-Gaussian noise. The receiver has a large number of

binding places using which it can estimate the concentration

by averaging over all binding places. The diffusion process

has a profound impact on transmission of information that

makes the diffusion channel very different from the classical

models developed for electromagnetic-based communication.

The molecules that are produced by the transmitter stay

in the medium and affect the later transmissions. Our goal

is to compute the maximum achievable rate of information

exchange (hereafter referred to as capacity) in such a diffusion

based molecular communication channel. Analogous to the

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0595-3/11/$26.00 ©2011 IEEE 723



Fig. 1. Scheme of the model for molecular communication

early studies of communication systems, we avoid some of

the peculiarities of the system in our first step and we focus

on studying the simpler and more practical discrete noiseless
systems. According to Shannon, in a discrete communication

system, a sequence of choices from a finite set of elementary

symbols S can be transmitted from transmitter T to receiver R.

Each symbol si is assumed to have duration Tsi . As it it will

be discussed later, it is important to notice that the symbols

have different durations imposed by the diffusion process.

Therefore, to compute the capacity, we first characterize,

the duration of each symbol by a careful study of diffusion.

In Sec. II we review some results about diffusion process. In

Sec. III we introduce the communication model and investigate

the problem under study in more detail. Our main results are

discussed in Sec. IV.

II. BACKGROUND

The first step is to characterize the temporal and spatial

variations of molecules in the channel which follows the

general diffusion equations. According to Fick’s second law

of diffusion the concentration of molecules c(x, t) at position

x at time t is computed using the molecule production rate

r(x, t), as follows:

∂c(x, t)

∂t
= D∇2c(x, t) + r(x, t), (1)

Here, x is the distance of any point in the environment from the

source and D is the diffusion coefficient of the medium. The

impulse response of (1), corresponding to r(x, t) = δ(x)δ(t),
is the Green’s function gd(x, t) whose expression is as follows:

gd(x, t) =
1

4πDt
exp

(
− |x|2
4Dt

)
. (2)

This impulse response is given for the 2-D medium but

can be extended to a general 3-dimensional case, using the

observation that n-dimensional diffusion is equivalent to n
separate (simultaneous) 1-D diffusions. Since the diffusion

equation is a linear equation, the solution to (1) for an

arbitrary input r(x, t), denoted by c∗(x, t), can be obtained

using

c∗(x, t) = gd(x, t)⊗ r(x, t), (3)

where ⊗ denotes a multi-dimensional convolution operation

on x and t.
In our setup, we assume that there is only one transmitter

emitting molecules. Therefore, in (3), we have r(x, t) =
F (t)δ(x), where F (t) is the input signal. Hence, we will have

c∗(x, t) =
∫ ∞

0

F (τ)
1

4πD(t− τ)
exp

(
− x2

4D(t− τ)

)
dτ.

(4)

This response is valid for open free media in which the

only boundary conditions are at the transmitter. Note that in

this model, we do not consider the delay due to the travel

time of molecules between the transmitter and the receiver.

That is we assume molecules reach the receivers instantly.

This assumption, however, does not affect our analysis of the

capacity because it only shifts the time that molecules are

arrived at the receiver.

III. MODEL

We consider the case of a single transmitter and a single

receiver in a 2-D environment. This model can be extended

to a network of transmitters and receivers in which each

transmitter intends to communicate with a specific receiver

when interference among these communications is negligible.

We consider a discrete-time model for the communication in

which an arbitrary string of binary information is given to the

transmitter. This string is to be conveyed to the receiver at

distance r from the transmitter.

The transmitter encodes the information bits into the proper

concentration of molecules and releases them for some specific

durations, discussed later. These molecules diffuse in the

medium. The receiver compares the concentration of received

molecules with a specific threshold and decides whether the

concentration in the environment is low or high. This threshold

depends on the characteristics of the environment. It can nei-

ther be arbitrarily small because of the noise and interference

in the environment nor be arbitrarily large because of the

limited capability of the transmitter for molecule production.

In the latter case, either the concentration may not reach the

threshold or it would take a long time.

The main difference here with a typical paradigm of com-

munication is the memory which essentially exists in the diffu-

sion channel and influences the communication dramatically.

The concentration of molecules cannot change momentarily

and unlike the typical binary symmetric channel, previously

sent symbols affect the new ones. For example, suppose the

concentration of molecules in the channel is in the high state

and the transmitter intends to send “0” through the channel.

However, molecules from the previous state still exist in the

environment and cannot be removed suddenly. Hence, the

transmitter has to wait a specific amount of time to send the

new bit. Note that we do not assume existence of negative rates

because it is unrealistic to assume as such for the molecular

communication. We also do not consider any noise to simplify

the study.

Based on the previous discussion, we observe that each bit

depends only on the last bit that was transmitted and it is
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Fig. 2. Two states of the channel and possible inputs in each state.

independent of the other previously transmitted bits. Therefore,

a Markov chain can be used to model the communication in

the diffusion channel. In such a model, the state of the channel

is set by the last transmitted bit: the channel state is “H” if the

last transmitted bit was “1”, and it is “L” otherwise. Hence,

there are two states in the channel, as shown in Fig. 2. In the

low state, we can either stay in this state by sending “0” or

go to high state by sending “1”. In the high state, however,

for sending the bit “1” again, it is not efficient to wait for the

channel to reset to “L” state. Instead, the transmitter can send

“1” which is shorter in time duration and needs less molecules

or equivalently less energy. To send “0” when channel is

at state “H”, it suffices that the transmitter waits a specific

amount of time such that the channel clears itself from the

molecules; returning to “L” state.

The above discussion implies that depending on the channel

state, duration of bit “0” is different. Likewise, the duration for

which the transmitter emits molecules for bit “1” depends on

the channel state. Therefore, effectively, we can think of four

different symbols sent by the transmitter, namely, s0 =“00”,

s1 =“01‘”, s2 =“10‘”, and s3 =“11‘”. The first bit in each

symbol indicates the previous bit which was already sent (and

hence the channel state), and the second bit is the one to

be transmitted next. Assuming a binary symmetric source,

all these four symbols are equiprobable. However, a different

transmission time is associated with each, as we explained.

Since our model involves symbols with various time dura-

tion, we adapt the method by Shannon in [13] to compute the

capacity of a discrete noiseless channel as

C = lim
T→∞

logN(T )

T
, (5)

where N(T ) is the number of allowed blocks of duration T .

Let T
(s)
ij be the duration of s-th symbol which is allowable in

state i and leads to state j. Then Nj(T ), the number of blocks

of length T ending in state j is given by

Nj(T ) =
∑
i,s

Ni(T − T
(s)
ij ). (6)

The asymptotic solution for these difference equations

would be in the form Nj = AjW
T where Aj is a con-

stant [13]. By substituting this form in (6), the possible number

of blocks would be equal to
∑

j AjW
T where W can be

found by solving the equation (7) below. We define a matrix

M = [
∑

s W
−T

(s)
ij − δij ]; W is the largest real root of the

determinant equation |M | = 0, i.e.,

|M | =
∣∣∣∣∣
∑
s

W−T
(s)
ij − δij

∣∣∣∣∣ = 0. (7)

Here, δij = 1 if i = j and is zero otherwise. Hence,

following (5), the channel capacity C is obtained as

C = lim
T→∞

log
(∑

j AjW
T
)

T

= lim
T→∞

(
logWT

T
+

log
∑

j Aj

T

)

= logW.

Rewriting (7) for the diffusion channel described above results

in ∣∣∣∣ W−T00 − 1 W−T01

W−T10 W−T11 − 1

∣∣∣∣ = 0. (8)

Here, Ts where s ∈ {00, 01, 10, 11} is the duration of the

symbols. This leads to

W−(T01+T10) +W−T00 +W−T11 −W−(T00+T11) = 1. (9)

By solving (9) with respect to Ts for s ∈ 00, 01, 10, 11, we

obtain the capacity of the channel in bits per second. In the

next section, we use the diffusion channel property to solve

for Ts.

IV. MAIN RESULTS

Consider the scenario in which for symbol s, the transmitter

sends a pulse-shaped rate of molecules with amplitude Fs to

the receiver for duration Ts. It is clear that Fs is zero for

symbols s1 = 00 and s2 = 10 because the transmitter does

not need to emit any molecules. Instead, it must wait specific

amounts of time. We assume F01 (for s1) to be equal to F , the

maximum rate that the transmitter can produce. For s3 = 11,

there is no need for the transmitter to send as many molecules

as for s1. Hence, we assume F11 = αF . Thus a fraction α of

the maximum rate is allocated to s3. We denote by cs(r, t)
the response at the receiver, i.e. x = r, at time t due to

transmission of symbol s. Using (4), we have

c∗s(r, t) =
∫ Ts

0

Fs(τ)
1

4πD(t− τ)
exp

(
− x2

4D(t− τ)

)
dτ.

(10)

The diffusion equations of the channel do not set any limits

on T00. It depends on the receiver sensitivity, the distance

r between the transmitter and receiver and the diffusion

coefficient D. Specifically, T00 can be considered as the time

sensitivity that the receiver can sense the medium. Hence, T00

is the fundamental time. The other Ts for s ∈ {01, 10, 11} can

be considered as a multiple of T00. Based on the Markov chain

model, we derive the equations for Ts for s ∈ {01, 10, 11}
corresponding to different symbols.

Assume channel is in the low state. The transmitter may

send bit “0”, i.e s0 = 00, or change the channel state to high,

i.e. s1 = 01. In the former case, the transmitter must wait

for an interval of T00 but in the latter, it must emit molecules
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into the channel. Hence, for the s1 = 01, we will have (for

0 ≤ t ≤ T01)

c∗(r, t) = c01(r, t). (11)

On the other hand, when the channel is in the high state,

we have to take into the account the effect of the existing

molecules in the channel, i.e. the memory of the channel. We

can replace the molecules in the channel by the source that

produces this concentration before the transmission of the next

symbol and is zero afterwards. Based on our model, we can

capture the memory of the channel by incorporating the effect

of the symbol s1 on the next symbol. In the case that the

transmitter wants to send “0” afterwards, i.e. s2 = 10, it must

wait for the channel to become low. Hence, we have (for 0 ≤
t ≤ T10)

c∗(r, t) = c01(r, t+ T01) + c10(r, t) = c01(r, t+ T01). (12)

where the first term corresponds to the effect of the memory.

The second term c10(r, t) is equal to zero which implies that

the transmitter does not need to send any molecules but has

to wait an appropriate amount of time. Finally in the case that

the transmitter wants to send “1” again, i.e. s3 = 11, we have

(for 0 ≤ t ≤ T11)

c∗(r, t) = c01(r, t+ T01) + c11(r, t). (13)

Here the first term in (13) corresponds to the effect of the

channel memory and the second term is due to the emission

of molecules for this symbol.

In the absence of noise, any intended concentration can

reach the receiver without any interference from the medium.

Therefore, the only limiting factor for capacity is the memory

of the channel imposed by diffusion transmission. Let S denote

the concentration sensitivity of the receiver. This implies

that the receiver cannot differentiate between the levels of

concentration that differ by less than S. We map the low

concentration on S and high concentration on 2S. We want

the concentration at the receiver to be equal to one of these

values at the end of each interval, i.e. t = Ts. Using (11), (12),

and (13), we have

c01(r, T01) = 2S,
c01(r, T01 + T10) = S,
c01(r, T01 + T11) + c11(r, T11) = 2S

. (14)

Note that in these equations the time delay between the

transmitter and the receiver is not considered. We can write the

solution for (14) based on the function Ei(x) defined as [14]

Ei(x) =

∫ ∞

x

exp(−y)

y
dy. (15)

Then expressions in (14) can be written as

Ei
(

R2

4DT01

)
= 8πDS

F ,

Ei
(

R2

4D(T01+T10)

)
− Ei

(
R2

4DT10

)
= 4πDS

F ,

Ei
(

R2

4D(T01+T11)

)
− (1− α)Ei

(
R2

4DT11

)
= 8πDS

F .

(16)
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Fig. 4. Impulse Response of the Diffusion Channel.

Since finding closed form formula for (16) is not possible,

in the following we solve for (16) numerically to obtain T01,

T10, and T11 in terms of F . The parameter F indicates the

maximum power used by the transmitter which controls the

capacity. We solve (16) based on the normalized parameter

F̃ = F
4πDS and obtain Ts for s ∈ {01, 10, 11} as multiples of

R2

4D . As discussed before, T00 depends on r and D. Therefore,

we may assume T00 = kR2

D where k is a constant. We

arbitrarily choose k = 1, although our analysis holds for any

other values of k.

It can be shown that T11 is smaller, by orders of magnitude,

than both T01 and T10. Intuitively, this is due to the fact

that producing a high state needs much more molecules than

maintaining it. Further, as indicated in the following, T01 and

T10 are in the same order of magnitude for typical values of

F . Hence, for simplicity, we assume T11 to be equal to T00,

and perform our numerical analysis only on T01 and T10. The

numerical results for T̃01 = T01

T00
and T̃10 = T10

T00
are shown in

Fig. 3(a) and 3(b) respectively.

Fig. 3 shows the plots of transition time versus the normal-

ized maximum rate of the molecule production F̃ . We observe

that the transition time from low to high T̃01 is monotonically

decreasing with respect to F̃ , and approaches to infinity when

F̃ is close to zero. In Fig. 3(b), the normalized transition time

from high to low state T̃10 is presented. It has a minimum

around F̃ = 2. This behavior can be explained by the diffusion

equation as following. Using (2), the impulse response of

the diffusion channel is shown in Fig. 4. As we see in this

plot, the impulse response increases to a maximum and then

falls lower. To obtain the response to the transmitter, a pulsed

shape signal in time has to be convolved with the impulse

response. When we increase the F̃ (or equivalently decrease

T̃01), at some point the threshold 2S is reached before the

maximum of impulse response. Since the tail of the impulse

response decreases slowly, in order to send the symbol “10”,

the transmitter has to wait until the pulse is slided to the right

side of the maximum. When F̃ is smaller and T̃01 is larger,

we will not face this problem. Therefore, using Fig. 3(b), we

conclude that increasing the rate of production F̃ does not

always result in smaller T̃10. Although larger F̃ results in

smaller T̃01, it makes T̃10 to grow larger, and hence has a
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10−1 100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Production Rate

C
a
p
a
ci

ty

Fig. 5. Capacity vs Production Rate.

negative effect on the capacity. Hence, the optimum value for

the production rate can be found by trade-off between T̃01 and

T̃10.
Using (9) and the assumption that T11 = T00, the capacity

of the channel can then be obtained by solving for W in the

following equations.

W T̃01+T̃10 − 2W T̃01+T̃10−1 +W T̃01+T̃10−2 = 1, (17)

and using it in C = logW . The capacity, logW , is in “bits

per an interval of T00”. We note that maximum capacity

is achieved when T̃01 + T̃10 is minimized. The plot of the

resulting capacity is shown in Fig. 5 with respect to F̃ . As

shown in the figure, the maximum capacity is approximately

0.5 (bit/T00) which is achieved when choosing F̃ = 3.9 (units)

and corresponds to the minimum value of T̃01 + T̃10 which

is approximately 7 (time units). The left tail of the graph

converges to zero which corresponds to the no production

rate. The right tail of the graph converges to zero as well

but at a slower pace. In this case, symbols “00”, “11”, and

“01” can be transmitted assuming the channel is in the proper

state. However, since T̃10 becomes very large, the transition

between the channel states takes a long time, leading to zero

capacity.
V. CONCLUSION

In this paper, we used the discrete noiseless channel model

to obtain the capacity of the diffusion channel. The inherent

memory in the diffusion channel distinguishes it from typical

wireless channels, making the capacity analysis more challeng-

ing. For a binary input, we considered four different symbols

to take into account the effect of the channel state on the

next transmitted bit. With a numerical analysis, we showed

that beyond a threshold, increasing the level of power has a

negative effect on the capacity, which was explained by the

physical characteristics of the diffusion channel.
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