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Abstract—Many applications require data processing to be
performed on individual pieces of data which are of finite
sizes, e.g., files in cloud storage units and packets in data
networks. However, traditional universal compression solutions
would not perform well over the finite-length sequences. Recently,
we proposed a framework called memory-assisted universal
compression that holds a significant promise for reducing the
amount of redundant data from the finite-length sequences. The
proposed compression scheme is based on the observation that
it is possible to learn source statistics (by memorizing previous
sequences from the source) at some intermediate entities and
then leverage the memorized context to reduce redundancy of
the universal compression of finite-length sequences. We first
present the fundamental gain of the proposed memory-assisted
universal source coding over conventional universal compression
(without memorization) for a single parametric source. Then,
we extend and investigate the benefits of the memory-assisted
universal source coding when the data sequences are generated
by a compound source which is a mixture of parametric sources.
We further develop a clustering technique within the memory-
assisted compression framework to better utilize the memory
by classifying the observed data sequences from a mixture of
parametric sources. Finally, we demonstrate through computer
simulations that the proposed joint memorization and cluster-
ing technique can achieve up to 6-fold improvement over the
traditional universal compression technique when a mixture of
non-binary Markov sources is considered.

I. INTRODUCTION

Since Shannon’s seminal work on the analysis of commu-
nication systems, many researchers have contributed toward
the development of compression schemes with the average
code length as close as possible to the entropy. In practice,
we usually cannot assume a priori knowledge on the statistics
of the source although we still wish to compress the unknown
stationary ergodic source to its entropy rate. This is known as
the universal compression problem [1]–[3]. However, unfortu-
nately, universality imposes an inevitable redundancy depend-
ing on the richness of the class of the sources with respect
to which the code is universal [4]–[6]. While an entire library
of concatenated sequences from the same context (i.e., source
model) can usually be encoded to less than a tenth of the
original size using universal compression [5], [6], it is usually
not an option to concatenate and compress the entire library
at once. On the other hand, when an individual sequence
is universally compressed regardless of other sequences, the
performance is fundamentally limited [4], [5].

In [7], the authors observed that forming a statistical model
from a training data would improve the performance of
universal compression on finite-length sequences. In [8], we
introduced memory-assisted universal source coding, where

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1017234.

Fig. 1. Memory-assisted compression in a two-hop communication scenario.

we proposed memorization of the previously seen sequences
as a solution that can fundamentally improve the performance
of universal compression. As an application of memory-
assisted compression, we introduced the notion of network
compression in [9], [10]. It was shown that by deploying
memory in the network (i.e., enabling some nodes to memorize
source sequences), we may remove the redundancy in the
network traffic. In [9], [10], we assumed that memorization of
the previous sequences from the same source provides a fun-
damental gain g over and above the conventional compression
performance of the universal compression of a new sequence
from the same source. Given g, we derived the network-wide
memorization gain G on both a random network graph [9]
and a power-law network graph [10] when a small fraction
of the nodes in the network are capable of memorization.
However, [9], [10] did not explain as to how g is computed.

Although the memory-assisted universal source coding natu-
rally arises in a various set of problems, we define the problem
setup in the most basic network scenario depicted in Fig 1.
We assume that the network consists of the server S, the
intermediate (relay) node R, and the client C, where S wishes
to send the sequence xn to C. We assume that C does not have
any prior communication with the server, and hence, is not
capable of memorization of the source context. However, as an
intermediate node, R has observed several previous sequences
from S when forwarding them from S to clients other than
C (not shown in Fig. 1). Therefore, R has formed a memory
of the previous communications shared with S. Note that if
the intermediate node R was absent, the source could possibly
apply universal compression to xn and transmit to C whereas
the presence of the memorized sequences at R can potentially
reduce the communication overhead in the S-R link.

The objective of the present paper is to characterize the
fundamental gain g of memorization of the context from a
server’s previous sequences in the universal compression of
a new individual sequence from the same server. Clearly,
a single stationary ergodic source does not fully model a
real content generator server (for example the CNN news
website in the Internet). Instead, a better model is to view
every content generator server as a compound (mixture) of
several information sources whose true statistical models are
not readily available. In this work, we try to address this
issue and propose a memorization and clustering technique for
compression that is suitable for a compound source. Namely,
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we would like to answer the following questions in the above
setup: 1) Would the deployment of memory in the encoder
(S) and the decoder (R) provide any fundamental benefit in
the universal compression? 2) If so, how does this gain g
vary as the sequence length n and the memorized context
length m change? 3) How much performance improvement
should we expect from the joint memorization and clustering
versus the memorization without clustering? 4) How should
we realize the clustering scheme to achieve good performance
from compression with the joint memorization and clustering?

II. BACKGROUND REVIEW AND MOTIVATION

In this section, we motivate the context memorization prob-
lem by demonstrating the significance of redundancy in the
universal compression of small to moderate length sequences.
Let A be a finite alphabet. Let the parametric source be defined
using a d-dimensional parameter vector θ = (θ1, ..., θd), where
d denotes the number of the source parameters. Denote μθ

as the probability measure defined by the parameter vector
θ on sequences of length n. We also use the notation μθ to
refer to the parametric source itself. We assume that the d
parameters are unknown. Denote Pd as the family of sources
with d-dimensional unknown parameter vector θ. We use the
notation xn = (x1, ..., xn) ∈ An to present a sequence of
length n from the alphabet A.

Let Hn(θ) be the source entropy given θ, i.e.,

Hn(θ)=E log

(
1

μθ(Xn)

)
=
∑
xn

μθ(x
n) log

(
1

μθ(xn)

)
.1 (1)

In this paper log(·) always denotes the logarithm in base 2. Let
cn : An → {0, 1}∗ be an injective mapping from the set An of
the sequences of length n over A to the set {0, 1}∗ of binary
sequences. Further, let ln(xn) denote a universal length func-
tion for the codeword associated with the sequence xn. Denote
Rn(ln, θ) as the expected redundancy of the code with length
function ln(·), defined as Rn(ln, θ) = Eln(X

n)−Hn(θ). Note
that the expected redundancy is always non-negative.

Let In(θ) be the Fisher information matrix, i.e.,

In(θ)= {Iijn (θ)}= 1

n log e
E

{
∂2

∂θi∂θj
log

(
1

μθ(Xn)

)}
. (2)

Fisher information matrix quantifies the amount of informa-
tion, on the average, that each symbol in a sample sequence
xn from the source conveys about the source parameters.
Let Jeffreys’ prior on the parameter vector θ be denoted by

ωJ(θ) � |I(θ)|12
∫ |I(λ)| 12 dλ

. Jeffreys’ prior is optimal in the sense

that the average minimax redundancy is achieved when the
parameter vector θ is assumed to follow Jeffreys’ prior [11].
Further, let R̄n be the average minimax redundancy given
by [11], [12]

R̄n =
d

2
log

( n

2πe

)
+ log

∫
|In(θ)| 12 dθ +O

(
1

n

)
. (3)

In [5], we obtained a lower bound on the average re-
dundancy of the universal compression for the family of
conditional two–stage codes, where the unknown parameter is
first estimated and the sequence is encoded using the estimated
parameter, as the following [5]:

1Throughout this paper expectations are taken over the random sequence
Xn with respect to the probability measure μθ unless otherwise stated.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 

 

n

E
{l

n
(X

n
)}

H
n
(θ

)

Hn(θ)/n = 1
2

Hn(θ)/n = 1

Hn(θ)/n = 2

Hn(θ)/n = 4

256kB 1MB 4MB 16MB 64MB
Fig. 2. The Lower bound on compression for at least 95% of the sources as
a function of sequence length n for different values of entropy rate Hn(θ)/n.

Theorem 1 Assume that the parameter vector θ follows Jef-
freys’ prior in the universal compression of the family of
parametric sources Pd. Let δ be a real number. Then,

P

[
Rn(ln, θ)
d
2 logn

≥ 1− δ

]
≥ 1− 1∫ |I(λ)| 12 dλ

(
2πe

nδ

) d
2

.

Theorem 1 can be viewed as a tighter variant of Theorem 1
of Merhav and Feder in [4] for parametric sources.

To demonstrate the significance of the above theorem, we
consider an example using a first-order Markov source with
alphabet size k = 256. This source may be represented using
d = 256× 255 = 62580 parameters. Fig. 2 shows the average
number of bits per symbol required to compress the class of
the first-order Markov sources normalized to the entropy of the
sequence for different values of entropy rates in bits per source
symbol (per byte). In this figure, the curves demonstrate the
lower bound on the compression rate achievable for at least
95% of sources , i.e., the probability measure of the sources
from this class that may be compressed with a redundancy
smaller than the curve is at most ε = 0.05. As can be seen,
if the source entropy rate is 1 bit per byte (Hn(θ)/n = 1),
the compression overhead is 38%, 16%, 5.5%, 1.7%, and
0.5% for sequences of lengths 256kB, 1MB, 4MB, 16MB,
and 64MB, respectively. Hence, we conclude that redundancy
is significant in the compression of finite-length low-entropy
sequences, such as the Internet traffic. It is this redundancy
that we hope to remove using the memorization technique.

III. FUNDAMENTAL GAIN OF CONTEXT MEMORIZATION

In this section, we present the problem setup and define
the context memorization gain. We assume that the compound
source comprises of a mixture of K information sources.
Denote [K] as the set {1, ...,K}. As the first step, in this paper,
we assume that K is finite and fixed. We consider parametric
sources with θ(i) as the parameter vector for the source i

(i ∈ [K]). As in [5], we assume that θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
d )

follows Jeffreys’ prior for all i ∈ [K]. We consider the
following scenario. We assume that, in Fig. 1, both the encoder
(at S) and the decoder (at R) have access to a memory of
the previous T sequences from the compound source. Let
m = (n0, . . . , nT−1) denote the lengths of the previous T
sequences generated by S. Further, denote y = {ynj (j)}T−1

j=0

as the previous T sequences from S visited by the memory
unit R. Note that each of these sequences might be from a
different source model. We denote p = (p1, ..., pK), where∑K

i=1 pi = 1, as the probability distribution according to
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which the information sources in the compound source are se-
lected for sequence generation, i.e., the source i is picked with
probability pi. Let the random variable Zj denote the index of
the source that has generated the sequence ynj (j), and hence,
Zj follows the distribution p over [K]. Therefore, at time step
j, sequence ynj (j) is generated using the parameter vector
θ(Zj). Further, denote Z as the vector Z = (Z0, ..., ZT−1). We
wish to compress the sequence xn with source index ZT , when
both the encoder and the decoder have access to a realization
y of the random vector Y. This setup, although very generic,
can incur in many applications. As the most basic example,
consider the communication scenario in Fig. 1. The presence
of memory y at R can be used by S to compress (via memory-
assisted source coding) the sequence xn which is requested by
client C from S. The compression can reduce the transmission
cost on the S−R link while being transparent to the client, i.e.,
R decodes the memory-assisted source code and then applies
conventional universal compression to xn and transmits to C.

In order to investigate the fundamental gain of the context
memorization in the memory-assisted universal compression
of the sequence xn over conventional universal source coding,
we compare the following three schemes.
• Ucomp (Universal compression), in which a sole univer-

sal compression is applied on the sequence xn without
regard to the memorized sequence y.

• UcompM (Universal compression with context memo-
rization), in which the encoder S and the decoder R
both have access to the memorized sequence y from the
compound source, and they use y to learn the statistics
of the source for the compression of the sequence xn.

• UcompCM (Universal compression with source-defined
clustering of the memory), which assumes that the mem-
ory y is shared between the encoder S and the decoder
R (i.e., the memory unit). Further, the source defined
clustering of memory implies that both S and R exactly
know the index Z of the memorized sequences.

The performance of Ucomp is characterized using the expected
redundancy Rn(ln, θ), which is discussed in Sec. II. Let
Q(ln, l̂n, θ) be defined as the ratio of the expected codeword
length with length function ln to that of l̂n, i.e.,

Q(ln, l̂n, θ) �
Eln(X

n)

El̂n(Xn)
=

Hn(θ) +Rn(ln, θ)

Hn(θ) +Rn(l̂n, θ)
. (4)

Further, let ε be such that 0 < ε < 1. We define g(ln, l̂n, ε) as
the gain of the length function l̂n as compared to ln. That is

g(ln, l̂n, θ, ε) = sup
z∈R

{
z : P

[
Q(ln, l̂n, θ) ≥ z

]
≥ 1− ε

}
. (5)

In the case of UcompM, let ln|m be the length function
with context memorization, where the encoder S and the
decoder R have access to sequences y with lengths m. Let
m � |m| = ∑T−1

j=0 nj denote the total length of memory.2

Further, let φ � θ(ZT ). Denote Rn(ln|m, φ) as the expected
redundancy of encoding a sequence of length n form the para-
metric source μφ using the length function ln|m. We denote
gM(n,m, φ, ε,p) � EZg(ln, ln|m, φ, ε) as the fundamental
gain of the context memorization on the family of parametric

2We assume that nj � h, where h is the height of the tree of the class
Pd, and hence, the impact of the concatenation of the sequences is negligible.

sources Pd on a sequence of length n using context memory
lengths m for a fraction (1−ε) of the sources. In other words,
context memorization provides a gain at least gM(n,m, φ, ε,p)
for a fraction (1− ε) of the sources in the family.

Similarly in the case of UcompCM, let ln|m,Z denote the
length function for the universal compression of a sequence of
length n with memorized sequences y, where the vector Z of
the source indices is known. We denote gCM(n,m, φ, ε,p) �
EZg(ln, ln|m,Z, φ, ε) as the fundamental gain of the context
memorization in UcompCM. The following is a trivial lower
bound on the context memorization gain in UcompCM.
Fact 2 The fundamental gain of context memorization is:
gCM(n,m, φ, ε,p) ≥ 1.

Fact 2 simply states that the context memorization with source
defined clustering does not worsen the performance of the
universal compression. We stress again that the saving of
memory-assisted compression in terms of flow reduction is
only obtained in the S-R link. For example, for the given
memorization gain gCM(n,m, φ, ε,p) = g0, the expected
number of bits needed to transfer xn to R is reduced from
Eln(X

n) in Ucomp to 1
g0
Eln(X

n) in UcompCM.

IV. RESULTS ON THE MEMORIZATION GAIN

In this section, we present our main results on the mem-
orization gain with and without clustering. The proofs are
omitted due to the lack of space. We give further consideration
to the case K = 1 since it represents the memorization gain
when all of the memorized sequences are from a single fixed
source model.

A. Case K = 1
In this case, since p = 1 and Z = 1 is known, there is no

distinction between UcompM and UcompCM, and hence, we
drop the subscript of g. The next theorem characterizes the
fundamental gain of memory-assisted source coding:
Theorem 3 Assume that the parameter vector θ follows Jef-
freys’ prior in the universal compression of the family of
parametric sources Pd. Then,

g(n,m, φ, ε, 1) ≥ 1+
R̄n + log(ε)− R̂1(n,m)

Hn(φ) + R̂1(n,m)
+O

(
1

n
√
m

)
,

where R̂1(n,m) � d
2 log

(
1 + n

m

)
+ 2.

Further, let g(n,∞, φ, ε,p) be defined as the achievable gain
of memorization where there is no constraint on the length of
the memory, i.e, g(n,∞, φ, ε,p) � limm→∞ g(n,m, φ, ε,p).
The following Corollary quantifies the memorization gain for
unbounded memory size.
Corollary 4 Assume that the parameter vector θ follows
Jeffreys’ prior in the universal compression of the family of
parametric sources Pd. Then,

g(n,∞, φ, ε, 1) ≥ 1 +
R̄n + log(ε)− 2

Hn(φ) + 2
.

Next, we consider the case where the sequence length n grows
to infinity. Intuitively, we would expect that the memorization
gain become negligible for the compression of long sequences.
Let g(∞,m, φ, ε,p) � limn→∞ g(n,m, φ, ε,p). In the fol-
lowing, we claim that memorization does not provide any
benefit when n→∞:
Proposition 5 g(n,m, φ, ε, 1) approaches 1 as the length of
the sequence xn grows, i.e., g(∞,m, φ, ε, 1) = 1.
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B. UcompM: Case K ≥ 2

As stated in the problem setup, the sequences in the memory
may be from various sources. This raises the question that
whether a naive memorization of the previous sequences
using UcompM without regard to which source parameter has
indeed generated the sequence would suffice to achieve the
memorization gain. Let D be an upper bound on the size
of the context tree used in compression. Denote μ̄Dθ as the
probability measure that is defined on the tree of depth D
from the mixture of the sources. Further, let Dn(μφ||μθ̄) =∑

xn μφ(x
n) log

(
μφ(x

n)
μθ̄(x

n)

)
. The following proposition char-

acterizes the performance of UcompM when applied to a
compound source for K ≥ 2.
Proposition 6 Let θ(i) (i ∈ [K]) follow Jeffreys’ prior. Then,
the memorization gain in UcompM as m → ∞ is upper
bounded by

gM(n,∞, φ, ε,p) ≤ Hn(φ) + R̄n

Hn(φ) +Dn(μφ||μ̄Dθ )
+O

(
1

n

)
.

Note that since K ≥ 2, then Dn(μφ||μ̄Dθ ) = Θ(n),3(unless
θ(i) = θ(j) for all i, j ∈ [K], which occurs with zero probabil-
ity). Therefore, the redundancy of UcompM is Rn(ln|m, φ) =
Θ(n) with probability one. Proposition 6 states that when
the context is built using the mixture of the sources, with
probability one, the redundancy of UcompM is worse than the
redundancy of Ucomp for a sufficiently large sequence, i.e.,
the memorization gain becomes less than unity for sufficiently
large n. Therefore, the crude memorization of the context
by node R in Fig. 1 from the previous communications not
only does not improve the compression performance but also
asymptotically makes it worse. We shall see some discussion
on validation of this claim based on simulations in Sec. VI.

C. UcompCM: Case K ≥ 2
Thus far, we demonstrated in Proposition 6 that the crude

memorization in the memory unit is not beneficial when a
compound source is present. This necessitates to first appro-
priately cluster the sequences in the memory. Then, based on
the criteria as to which cluster the new sequence xn belongs
to, we utilize the corresponding memorized context for the
compression. In the following, we analyze the problem for
the source-defined clustering (defined in Sec. III). In this
clustering, we assume both S and R (in Fig. 1) can exactly
know the index i ∈ [K] and hence all the sequences that belong
to the same source θ(i) in the compound source are assigned
to the same cluster (for all i ∈ [K]). Further, we assume that
S can exactly classify the new sequence xn to the cluster
with parameter θ(ZT ). In Sec. V, however, we will relax these
assumptions and study the impact of clustering in practice.

Let H(p) = −∑K
i=1 pi log(pi) be the entropy of the source

model. The following proposition quantifies the achievable
redundancy and the memorization gain of UcompCM.
Theorem 7 Let θ(i) (i ∈ [K]) follow Jeffreys’ prior. Then, the
memorization gain of UcompCM is lower bounded by

gCM(n,m, φ, ε,p)≥1+
R̄n + log(ε)− R̂2(n,m)

Hn(φ) + R̂2(n,m)
+O

(
1

n
√
m

)
,

where R̂2(n,m) � d
2 log

(
1 + n

pZT
m

)
+ 3 +H(p).

3f(n) = Θ(g(n)) if and only if f(n) = O(g(n) and g(n) = O(f(n)).

V. CLUSTERING FOR MEMORY-ASSISTED COMPRESSION

In this section, we try to answer the main question in the
memory-assisted compression setup we introduced: “How do
we utilize the available memory to better compress a sequence
generated by a compound source?” It is obvious that the
performance of conventional universal compression schemes
(those without memory) cannot be improved by clustering
of the compound source as xn is encoded without regard
to y. However, because of a compound source, clustering is
necessary to effectively utilize the memory in the proposed
memory-assisted compression. Within this framework, we
identify two interrelated problems: 1) How do we perform
clustering of the memorized data to improve the performance
of memory-assisted compression? 2) Given a set of clustered
memory, how do we classify an incoming new sequence into
one of the clusters in the memory using which the performance
of memory-assisted compression is maximized? This relaxes
the assumption of knowing Z by the encoder and the decoder
in the analysis of Sec. IV.

As one approach, it is natural to adapt a clustering algo-
rithm, among the many, that has the codelength minimization
as its principle criterion. Thus, the goal of the clustering is to
group the sequences in the memory such that the total length
of all the encoded sequences is minimized (i.e., the sequences
are grouped such that they are compressed well together). We
employ a Minimum Description Length (MDL) [13] approach
suggested by [14]. The MDL model selection approach is
based on finding shortest description length of a given se-
quence relative to a model class. We do not have a proof that
the MDL clustering is necessarily optimal for our goal (for
all sequence lengths and memory sizes). However, as we will
see in Sec. VI, for the cases of interest where the length of
memory is larger than the length of the new sequence, the
MDL clustering demonstrates a very good performance close
to that of assuming to know Z (in source-defined clustering).

Now, we would like to find a proper class for a new
sequence xn generated by one of the K sources. Given a set
of T sequences taken from K different sources, we assume
those T sequences have already been clustered into K clusters
C1, . . . , CK. Then, the classification algorithm for xn is as
follows. We include the sequence xn in each cluster one at
a time and find the total description length of all sequences
in the K clusters. Then, we label xn with the cluster whose
resulting total description length is the minimum.

Next, we describe as to how we cluster the T sequences
in memory. A good clustering is such that it allows efficient
compression of the whole data set. Equivalently, the sequences
that are clustered together should also compress well together.
We start by an initial clustering of the data set in the memory.
Through experiments, we observed that this initial clustering
has a considerable impact on the convergence of the clustering
algorithm which is in accordance with the observation in [14].
We found that an initial clustering based on the estimated
entropy of the sequences greatly reduces the number of
iterations till convergence. The clustering is done iteratively
by surfing the data set and moving a sequence from cluster i
to cluster j if this swapping results in a shorter total description
length of the whole data set.
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Fig. 5. Theoretical and simulation results for
gM and gCM.

TABLE I
MEMORY-ASSISTED COMPRESSION GAIN UNDER MDL CLUSTERING

n = 10KB n = 100KB
gMDL (m = 1MB) 1.7308 1.0372
gMDL (m = 10MB) 1.8862 1.0939
gMDL/gCM (m = 1MB) 0.944 0.993
gMDL/gCM (m = 10MB) 0.939 0.998

VI. SIMULATION RESULTS AND CONCLUSION

In this section, we characterize the performance of the
proposed memorization scheme through computer simulations.
In order to illustrate the importance of clustering for effi-
cient use of memory, we have evaluated the memory-assisted
compression gain (over the performance of the conventional
universal compression) for three cases: gM, gCM, and gMDL.
Note that gMDL is defined as the gain of memorization with
MDL clustering in Sec. V. We demonstrate the significance
of the memorization through an example, where we again
consider K first-order Markov sources with alphabet size
k = 256, source entropy Hn(φ)

n = 1 bit per byte, and ε = 0.05.
Fig. 3 considers the single source case (i.e., K = 1). The

lower bound on the memorization gain is demonstrated as
a function of the sequence length n for different values of
the memory size m. As can be seen, significant improvement
in the compression may be achieved using memorization. As
demonstrated in Fig. 3, the memorization gain for a memory
of length m = 8MB is very close to g(n,∞, φ, 0.05, 1), and
hence, increasing the memory size beyond 8MB does not
result in the substantial increase of the memorization gain. We
observe that more than 50% improvement is achieved in the
compression performance of a sequence of length n = 128kB
with a memory of m = 8MB. On the other hand, as n→∞,
the memorization gain becomes negligible as expected.

For the rest of the experiments, we fixed the length of the
sequences generated by the source, i.e., nj = n for all j.
We used K = 10 with uniform distribution, i.e., pi = 1

10 for
i ∈ [K]. Further, we performed compression using Context
Tree Weighting (CTW) [3] and averaged the simulation results
over multiple runs of the experiment. Fig. 4 depicts gCM. As
can be seen, joint memorization and clustering achieves up to
6-fold improvement over the traditional universal compression.
Fig. 5 depicts the experimental gCM using CTW, the theoretical
lower bound on gCM derived in Sec. IV, and the experimental
gM for memory m = 10MB. As we expected, with no
clustering, the memory-assisted compression may result in a
worse compression rate than compression with no memory

validating our theoretical result in Sec. IV-B. Finally, the
experimental results of memory-assisted compression gain
gMDL under MDL clustering, summarized in Table I, show
that gMDL is close to gCM, demonstrating the effectiveness of
MDL clustering for compression.

In conclusion, this paper demonstrated that memorization
(i.e., learning the source statistics) can lead to a fundamental
performance improvement over the traditional universal com-
pression. This was presented for both single and compound
sources. We derived theoretical results on the achievable gains
of memory-assisted source coding for a compound (mixture)
source and argued that clustering is necessary to obtain mem-
orization gain for compound sources. We also presented a fast
MDL clustering algorithm tailored for the compression prob-
lem at hand and demonstrated its effectiveness for memory-
assisted compression of finite-length sequences.
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