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Abstract—In this paper, we consider the compression of
a sequence from a mixture of K parametric sources. Each
parametric source is represented by a d-dimensional parameter
vector that is drawn from Jeffreys’ prior. The output of the
mixture source is a sequence of length n whose parameter is
chosen from one of the K source parameter vectors uniformly at
random. We are interested in the scenario in which the encoder
and the decoder have a common side information of T sequences
generated independently by the mixture source (which we
refer to as memory-assisted universal compression problem).
We derive the minimum average redundancy of the memory-
assisted universal compression of a new random sequence from

the mixture source and prove that when K = O

(

n
d

2
(1−ǫ)

)

for some ǫ > 0, the side information provided by the previous
sequences results in significant improvement over the universal
compression without side information that is a function of
n, T , and d. On the other hand, as K grows, the impact
of the side information becomes negligible. Specifically, when

K = Ω

(

n
d

2
(1+ǫ)

)

for some ǫ > 0, optimal memory-assisted

universal compression almost surely offers negligible improve-
ment over the universal compression without side information.

Index Terms—Universal Lossless Compression; Side Informa-
tion; Redundancy-Capacity Theorem; Mixture Source.

I. INTRODUCTION

The recent rapid growth in the network traffic has mo-

tivated new research directions that target to leverage the

existing correlations in the sequences (network packets) in

order to reduce the traffic. These solutions must be trans-

parent to the user and the application and hence must per-

form on the network layer, where sequences in the network

are present. The state-of-the-art solutions in network layer

traffic reduction are based on deduplication and compres-

sion. Deduplication based solutions work well when there

are exact retransmissions of duplicates of a data chunk in

the network [1]–[3]. However, a great fraction of network

traffic consists of data that are statistically correlated but

not exact duplicates of each other, and hence, not exploited

by deduplication mechanisms. On the other hand, although

universal compression captures the statistical correlations be-

tween the data, compression based traffic reduction solutions

usually need to observe a long sequence before they can

effectively learn the existing patterns in the sequence for
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efficient compression. Therefore, the universal compression

based solutions perform poorly on small sequences [4], [5]

(which is the case for the network data packets), where

sufficient training data is not available.

We investigate the problem of packet-level network traffic

compression from an information-theoretic point of view.

As shown in Fig. 1, we assume that each network packet

is a sequence (sample) of length n from a mixture of

K parametric sources with parameter vectors θ(1), . . . , θ(K)

such that θ(i) is drawn independently from Jeffreys’ prior. We

assume that each output sequence from this mixture source is

chosen from θ(S), where the index S of the source is chosen

uniformly at random from {1, . . .K}. Please note that as

M1 and M2 are two routers inside the Internet, they observe

several sequences from different servers in the network,

and hence, the mixture number K may be indeed very

large. We consider the scenario where T sequences from the

mixture source are memorized and shared as side information

between the encoder (at the sender router M1 in Fig. 1) and

the decoder (at the receiver router M2) as a result of the prior

communication between the two intermediate nodes. We

refer to this setup as memory-assisted universal compression

problem, where we wish to derive the average redundancy

of the optimal memory-assisted universal compression where

optimality is defined in the sense of minimizing the average

redundancy as a function of n, K , and T .

In [6]–[8], we derived the optimal memory-assisted com-

pression performance for a single source, i.e., K = 1,

and proved that significant improvement is obtained by ap-

plying the memory-assisted universal compression on small

sequences with sufficient number of side information se-

quences. In [9], we extended the setup to fixed finite K

which is known to the encoder and the decoder a priori.

We further assumed that the indices S(1), . . . , S(T ) of the

sources that generated the T side information sequences

are also known to both the encoder and the decoder. The

latter makes sense as the source IP address is included in

the header of the IP packets. Under these assumptions, we

demonstrated that the memory-assisted compression using

clustering of the side information by the index S of the

sequence offers significant improvement over universal com-

pression without side information. Inspired from this, in [10],

we developed a clustering algorithm for memory-assisted
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Fig. 1. The basic scenario of memory-assisted universal compression for a mixture source.

universal compression and demonstrated its effectiveness on

real packets gathered from Internet. However, it remained an

open problem what would be the performance of the optimal

memory-assisted universal compression strategy in the sense

that, given the side information, it achieves the minimum

codeword length in the compression of a new sequence from

the mixture source.

In this paper, we generalize the setting of [9] by letting

K grow with n and drop the assumption that the indices

S(1), . . . , S(T ) are known. We further relax the assumption

that K is known to both the encoder and the decoder. Please

note that K can grow very large as a router in the Internet

may communicate with several different servers. Further,

as our experiments in [10] suggest, the mere clustering of

packets based on the sender IP address is not a good job

since there are several packets with high correlations sent

from different IP addresses and several packets with the same

sender IP address do not demonstrate much correlation to

be leveraged. In this scenario, we formally characterize the

average redundancy incurred in the optimal memory-assisted

compression of a new sequence given that the encoder and

the decoder have access to a shared memorized content

of T sequences (each of length n from the mixture of K

parametric sources) from the previous communication and

compare with that of the universal compression without side

information.

The rest of this paper is organized as follows. In Sec-

tion II, we review the necessary background on universal

compression. In Section III, we present the formal definition

of the problem. In Section IV, we provide the main results

and discuss their implications. In Section V, we provide the

technical analysis of the results. Finally, Section VI concludes

this paper.

II. BACKGROUND ON UNIVERSAL SOURCE CODING

In this section, we briefly review the necessary background

on the universal compression of parametric sources. We let a

parametric source be defined using a d-dimensional param-

eter vector θ = (θ1, ..., θd) ∈ Λ that is a priori unknown,

where d denotes the number of the source parameters and

Λ ⊂ R
d is the space of d-dimensional parameter vectors

of interest. Denote µθ as the parametric source (i.e., the

probability measure defined by the parameter vector θ on

sequences of length n).

Let A denote a finite alphabet. Let Xn denote a sample

(random variable) from the probability measure µθ . We

further denote xn = (x1, ..., xn) ∈ An as a realization of

the random variable Xn. Then, define Hn(θ) , H(Xn|θ) as

the source entropy given the parameter vector θ, i.e.,

Hn(θ)=E log

(

1

µθ(Xn)

)

=
∑

xn

µθ(x
n) log

(

1

µθ(xn)

)

.

(1)

Please note that throughout this paper log(·) always denotes

the logarithm in base 2 and expectations are taken over the

random sequence Xn with respect to the probability measure

µθ unless otherwise stated.

In this paper, we focus on the class of strictly lossless

uniquely decodable fixed-to-variable codes defined as the

following. The code cn : An → {0, 1}∗ is called strictly

lossless (also called zero-error) on sequences of length n

if there exists a reverse mapping dn : {0, 1}∗ → An

such that ∀xn ∈ An, we have dn(cn(x
n)) = xn. Further,

let ln : An → R denote the universal strictly lossless

length function for the codeword cn(x
n) associated with

the sequence xn such that ln(·) satisfies Kraft’s inequality

to ensure unique decodability. In this paper, we ignore the

integer constraint on the length function, which results in a

negligible O(1) redundancy analyzed in [11], [12].

Denote Rn(ln, θ) as the expected redundancy of the code

cn with length function ln on a sequence of length n for the

parameter vector θ, defined as

Rn(ln, θ) = Eln(X
n)−Hn(θ). (2)

Note that the expected (average) redundancy is always non-

negative. Further, a code is called universal if it unifor-

maly achieves the source entropy rate asymptotically, i.e.,

limn→∞
1
n
Rn(ln, θ) = 0 for all θ ∈ Λ.

Let I(θ) be the Fisher information matrix, i.e.,

I(θ), lim
n→∞

1

n log e
E

{

∂2

∂θi∂θj
log

(

1

µθ(Xn)

)}

. (3)

Fisher information matrix quantifies the amount of informa-

tion, on the average, that each symbol in a sample sequence
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xn from the source conveys about the source parameters. Let

Jeffreys’ prior on the parameter vector θ be denoted by

pJ (θ) ,
|I(θ)| 12

∫

|I(λ)| 12 dλ
. (4)

Jeffreys’ prior is optimal in the sense that the average

minimax redundancy is asymptotically achieved when the

parameter vector θ is assumed to follow Jeffreys’ prior [13].

Jeffreys’ prior is particularly interesting because it also

corresponds to the worst-case compression performance for

the best compression scheme (called the capacity achieving

prior). Define R̄n as the minimum average redundancy when

θ is chosen using Jeffreys’ prior, i.e.,

R̄n = min
ln

∫

θ∈Λ

Rn(ln, θ)pJ(θ)dθ. (5)

It is evident that R̄n is the average maximin redundancy since

θ is chosen to follow Jeffreys’ prior in our setup (i.e., the

capacity achieving prior). Therefore, we have

R̄n = I(Xn; θ) = H(Xn)−Hn(θ), (6)

Furthermore, the average maximin redundancy is equal to

the average minimax redundancy for the case of parametric

sources studied in this paper (cf. [5] and the references

therein). The average minimax redundancy was characterized

by Clarke and Barron for memoryless sources [13] and later

generalized for Markov sources by Atteson [14] as given by

R̄n =
d

2
log

( n

2πe

)

+log

∫

θ∈Λ

|In(θ)|
1
2 dθ+O

(

1

n

)

.1 (7)

III. PROBLEM SETUP

In this section, we present the problem setup. We as-

sume that each sequence of length n is generated using

the parameter vector θ, which is supported on a countable

support set ∆ of K , |∆| points on the space Λ of

parameter vectors. Let ∆ denote the set of all the parameter

vectors in the support set, i.e., ∆ ,
{

θ(i)
}K

i=1
. Note that

we let K deterministically scale with n. Denote [K] as

the set {1, ...,K}. We assume that ∀i ∈ [K], we have

θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
d ) is chosen at random according to

the Jeffreys’ prior on the d-dimensional parameter space Λ.

Further, for the generation of each sequence, the generator

source is selected uniformly at random from the mixture.

In other words, p(θ|∆) = 1
K

∑K

i=1 δ(θ − θ(i)), where θ(i)

follows Jeffreys’ prior on Λ and 1
K

is the probability that the

sequence is generated by source θ(i) in the mixture. Please

note that the random set ∆ (which is unknown a priori) is

randomly generated once according to Jeffreys’ prior and is

used thereafter for the generation of all packets at all times.

In this setup, as in Fig. 1, the source is a mixture of K para-

metric sources µθ(1) , . . . , µθ(K) with d-dimensional unknown

parameter vectors θ(1), . . . , θ(K). Let S be a random variable

that determines the source index, and hence is uniform over

1f(n) = O(g(n)) if and only if lim supn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
< ∞.

[K], i.e., P[S = i] = 1
K

. Then, by definition, we have

θ = θ(S) given ∆. Unlike ∆ that is generated once, S is

uniformly selected from [K] every time a new sequence is

generated.

We consider the following scenario. We assume that, in

Fig. 1, both the encoder (at M1) and the decoder (at M2) have

previously communicated T previous sequences (indexed by

[T ]) from the mixture of K parametric sources, where each

of the sequences is independently generated according to the

above procedure. Let m , nT denote the total length of

the previous T sequences from the mixture source.2 Further,

denote yn,T = {yn(t)}Tt=1 as the set of previous T sequences

from shared between M1 and M2, where yn(t) is a sequence

of length n generated from the source θS(t) and S(t) follows

a uniform distribution over [K]. In other words, yn(t) ∼
µθ(S(t)) . Further, denote S as the vector S = (S(1), ..., S(T )),
which contains the index of the source that generated the T

previous side information sequences.

The objective is to analyze the average redundancy in the

compression of a new sequence xn that is independently

generated by the same mixture source with source index Z

(which is also uniformly chosen over [K]). We investigate

the fundamental limits of the memory-assisted universal com-

pression when both the encoder and the decoder have access

to the side information sequence yn,T and compare with

that of the universal compression without side information

of the previous sequences. It is straightforward to verify that

this problem is equivalent to the analysis of H(Xn|Yn,T )
and H(Xn) for different values of the sequence length n,

memory (side information) size m = nT , and number of

sources in the mixture K . In other words, we are seeking

the minimum number of bits that is required for representing

a random sequence Xn when Yn,T is present (at both the

encoder and the decoder) or not.

IV. MAIN RESULTS

Before we state the main results of this paper, we need

to introduce a fundamental quantity that will be used in the

derivations.

Definition. Let Hn(∆, Z) , H(Xn|∆, Z) be defined as the

entropy of a random sequence Xn from the mixture source

given that the source parameters are known (∆ is known) and

the index of the source that has generated the sequence (i.e.,

Z) is also known. In other words, the parameter vector θ(Z)

associated with sequence Xn is known. Then, it is simply

shown in this case that

Hn(∆, Z) =
1

K

K
∑

i=1

Hn(θ
(i)), (8)

where Hn(θ
(i)) is the entropy of source µθ(i) given θ(i) de-

fined in (1). Please note that Hn(∆, Z) is not the achievable

2For simplicity of the discussion we consider the length of all sequences
to be equal to n. However, most of the results are readily extendible to the
case where the sequences are not necessarily equal in length.

892



performance of compression. It is merely introduced so as to

make the presentation convenient.

In the sequel, we first state the compression performance

in the case of known source parameters. Then, we derive the

impact of universality (i.e., the source parameter being un-

known) on the universal compression without side informa-

tion as well as the memory-assisted universal compression.

The sketches of the proofs are deferred to Section V.

A. Known Source Parameters

First, we derive the entropy of the mixture source (which

sets the asymptotic fundamental lower limit on the codeword

length) for the known source parameters case, i.e., ∆ is

known. Define Hn(∆) , H(Xn|∆).

Theorem 1. (a) If K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

Hn(∆) = Hn(∆, Z) + logK +O

(

1

n

)

a.s.3,4

(b) If K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0,5 then

Hn(∆) = Hn(∆, Z) + R̄n +O

(

1

n

)

a.s.,

where R̄n is given by (7).

Remark. Theorem 1 determines the minimum codeword

length when the parameter vectors are known. Please note

that Hn(∆) serves as a trivial lower bound on the code-

word length for the case of universal compression (un-

known parameter vectors) as well. According to Part (a),

for sufficiently small K , the codeword length in the opti-

mal compression converges to the entropy of the mixture

(i.e., H(Xn|Z,∆)) plus the average price logK required

to determine the respective source parameter in the encoder

(i.e., H(Z|∆)). Therefore, the optimal coding strategy when

the source parameters are known (almost surely) would be

to encode the source index Z and then use the optimal

code (e.g., Huffman code) associated with parameter θ(Z)

for sequences of length n to encode the sequence xn. In

fact, if limn→∞
logK
d

2 logn
< 1, then the cost of encoding the

parameter is asymptotically smaller than the universal coding

of the parameter and hence it is still beneficial to encode the

parameter using an average of logK bits. Further, if K = 1,

then ∆ = θ(1) and Z = 1 would be deterministic. Hence,

Hn(∆) = Hn(∆, Z) = Hn(θ
(1)), which was introduced

in (1) as the average compression limit for the single known

parameter case. The interesting phenomenon here is that

in Part (b) when all the (known) parameter vectors are

chosen from Jeffreys’ prior, the entropy converges to the

mixture entropy plus an extra term R̄n, which is exactly the

average minimax redundancy in the universal compression of

3An event A happens a.s. (almost surely) if and only if P[A] = 1.
4Please note that the sample space is the set of all source parameter vectors

∆ =
{

θ(i)
}K

i=1
such that θ(i) is drawn independently from Jeffreys’ prior.

5f(n) = Ω(g(n)) if and only if g(n) = O(f(n)).

parametric sources with d unknown parameters given in (7).

At first, it may seem odd that the codeword length in the

case that the source parameters are known incurs a term

that is associated with the universal compression of a source

with unknown parameters. However, in this case the cost of

encoding the source index surpasses the cost of universal

encoding of the source parameter. Hence, it no longer makes

sense to encode the parameter for the compression of the

sequence xn. More rigorously speaking, as will be shown

in Section V-A, the probability distribution of xn given ∆
would converge to the probability distribution of xn when

the source has one unknown parameter vector that follows

Jeffreys’ prior. This in turn results in the R̄n term in the

compression performance.

B. Unknown Source Parameters

In order to see the impact of the universality on the

compression performance, i.e., to investigate the impact of

∆ being unknown, we will analyze the redundancy for the

following two schemes.

Definition. We refer to Ucomp as the universal compression

without side information. We further refer to RUcomp(n,K)
as the average redundancy of the universal compression of

a sequence of length n (in our problem setup described in

Section III). In other words,

RUcomp(n,K) , H(Xn)−Hn(∆). (9)

Theorem 2. In the case of Ucomp,

(a) if K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

RUcomp(n,K) = R̄n − logK + O

(

1

n

)

a.s.

(b) If K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0, then

RUcomp(n,K) = O

(

1

n

)

a.s.

Remark. According to Theorem 2, in the universal com-

pression of a sequence of length n from the mixture source

for sufficiently small K , the main term of the redundancy

is R̄n − logK which can be significantly large. Again, if

K = 1, then RUcomp(n, 1) = R̄n, which is exactly the

average minimax redundancy in the case of one unknown

source parameter described in (7). On the other hand, for

large K , we almost surely expect no extra redundancy

associated with universality. This is not surprising as even

in the known sources case, the performance converges to

that of the unknown source parameters that follow Jeffreys’

prior. Therefore, there is no extra penalty when the source

parameters are indeed unknown.

Theorem 2 also suggests that independent of K and logK ,

the price of universality is given by R̄n (which is defined as

the price of universal compression of a sequence of length n
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from a source with unknown parameter that follows Jeffreys’

prior) on top of Hn(∆, Z) (i.e., the entropy when ∆ and Z

are known).

Definition. We refer to UcompOM as the optimal memory-

assisted universal compression strategy in the sense that it

achieves the minimum average redundancy given the side

information. We further refer to RUcompOM(n,m,K) as the

average redundancy of the optimal memory-assisted universal

compression (with total available memory size m) in our

problem setup described in Section III, where T = m
n

sequences (samples) from the mixture source are observed

and are available to both the encoder and the decoder as side

information. In other words,

RUcompOM(n,m,K) , H(Xn|Yn,T )−Hn(∆). (10)

Theorem 3. In the case of UcompOM,

(a) if K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

RUcompOM(n,m,K) = R̂+O

(

1√
T

+
1

n

)

a.s.,

where

R̂ ,
d

2
log

(

1 +
n
1
K
m

)

. (11)

(b) If K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0, then

RUcompOM(n,m,K) = O

(

1

n

)

a.s.

Remark. Theorem 3 characterizes the redundancy of the op-

timal memory-assisted universal compression scheme, which

uses a memory of size m = nT (T sequences of size n)

in the compression of a new sequence of length n. It is

expected that memorization decreases the redundancy. As

suggested by Part (a) of the theorem, when logK or roughly

K is sufficiently small the redundancy of the UcompOM

decreases. As an important special case if K = 1, then

RUcompOM(n,m, 1) = d
2 log

(

1 + n
m

)

+O
(

1
n
+ 1√

T

)

, which

gives back Theorem 2 of [8] about the average minimax

redundancy of the single source. Further, it is deduced

from Theorem 3 that limT→∞ RUcompOM(n,m,K) = O
(

1
n

)

(regardless of K), i.e., the price of universality would be

negligible given that sufficiently large memory (side infor-

mation) is available. Thus, the benefits of optimal memory-

assisted universal compression would be substantial when

logK is sufficiently small. On the other hand, when logK
grows very large, there is no benefit obtained from the

memory-assisted universal compression and the performance

improvement becomes negligible. This is due to the fact that

in light of Theorem 2(b) the compression performance for the

known source parameters case is already that of the universal

compression.

Let B(n,m,K) , RUcomp(n,K) − RUcompOM(n,m,K)
denote the performance improvement of UcompOM over

Ucomp. The next corollary which is a direct consequence

of Theorems 2 and 3 characterizes B(n,m,K).

Corollary 4. (a) If K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

we have

B(n,m,K) = R̄n − logK − 1

K

K
∑

i=1

d

2
log

(

1 +
nK

m

)

+ O

(

1√
T

+
1

n

)

a.s.

(b) If K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0, then

B(n,m,K) = O

(

1

n

)

a.s.

Remark. In light of Corollary 4, it is relatively straight-

forward to see that if T is sufficiently large, we have

B(n,m,K) = Θ(logn).6 In particular, this implies that

the optimal memory-assisted universal compression partially

compensates the main extra term in universal compression

on top of Hn(∆, Z) (which is d
2 logn) for sufficiently

small K . Further, if T → ∞ and K is constant, then

B(n,m,K) = d
2 logn + O(1), which completely cancels

out the main extra redundancy term. In this case, UcompOM

achieves Hn(∆, Z) with a constant negligible extra term.

V. TECHNICAL ANALYSIS

In this section we provide the sketches of the proofs of

Theorems 1, 2, and 3.

A. Sketch of the Proof of Theorem 1

It is straightforward to show that

H(Xn|∆) = H(Xn|∆, Z) + I(Xn;Z|∆) (12)

Further, I(Xn;Z|∆) = H(Z|∆) − H(Z|Xn,∆). Clearly,

H(Z|∆) = logK by definition. For sufficiently small K ,

we have the following lemma.

Lemma 1. If K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

H(Z|Xn,∆) = O
(

1
n

)

.

Therefore, I(Xn;Z|∆) = logK + O
(

1
n

)

which completes

the proof of Part (a).

Lemma 1 states that when the number of the source

parameters is sufficiently small, the Maximum-Likelihood

(ML) estimate of the parameter obtained from sequence Xn

with high probability will determine the true unknown source

parameter. It is proved by showing that the ML estimate

is with high probability closest to the true unknown source

parameter vector with high probability.

The following lemma is the key to the proof of Part (b)

for sufficiently large K .

6f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and g(n) = O(f(n)).
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Lemma 2. If K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0, then

1

K

K
∑

i=1

µθ(i)(xn) ∼
∫

θ∈Λ

µθ(x
n)pJ(θ)dθ a.s.7

Lemma 2 states that the probability measure induced on

a random sequence Xn for sufficiently large K converges

to that of the universal measure induced by one unknown

parameter that follows Jeffreys’ prior, completing the proof

of Part (b). Lemma 2 is proved by showing that when K

is sufficiently large there are almost surely ω(1) source

parameter vectors in the vicinity of the ML estimate.

B. Sketch of the Proof of Theorem 2

It is straightforward that

H(Xn) = H(Xn|∆, Z) + I(Xn; ∆, Z) (13)

Lemma 3. We have I(Xn; ∆, Z) = I(Xn; θ(Z)|Z).

According to Lemma 3, all the information that Xn carries

about the set ∆ of the unknown parameter vectors and

index Z is contained in I(Xn; θ(Z)|Z). Since each of the

unknown parameter vectors follow Jeffreys’ prior, we have

I(Xn; θ(Z)|Z = z) is equal to the average minimax redun-

dancy [5]. Thus,

I(Xn; θ(Z)|Z) =
1

K

K
∑

i=1

I(Xn; θ(Z)|Z = z) = R̄n, (14)

which completes the proof if combined with Theorem 1.

C. Sketch of the Proof of Theorem 3

In the case of UcompOM, we have

H(Xn|Yn,T )=H(Xn|Yn,T ,S, Z)+ I(S, Z;Xn|Yn,T ).
(15)

On the other hand, we also have

H(Xn|Yn,T,S,Z) = Hn(∆, Z)+ I(Xn; θ(Z)|Yn,T,S,Z).
(16)

We need the following lemmas to complete the proof of Part

(a).

Lemma 4. If K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

I(Xn; θ(Z)|Yn,T ,S, Z) = R̂+O(T− 1
2 ),

where R̂ is defined in (11).

The proof of Lemma 4 is carried out by rewriting the LHS

as I(Xn,Yn,T ; θ(Z)|S, Z) − I(Yn,T ; θ(Z)|S, Z). Then, the

first term is shown to converge to R̂ whilst the second term

is asymptotically vanishing.

Lemma 5. If K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, then

I(S, Z;Xn|Yn,T ) = logK +O

(

1

n
+

1

T

)

.

7f(n) ∼ g(n) if and only if limn→∞

f(n)
g(n)

= 1.

The proof of Lemma 5 is carried out by rewriting the

LHS as H(Z|Yn,T ,S) +H(S|Yn,T )−H(S, Z|Yn,T , Xn)
and demonstrating that the last two terms asymptotically

vanish. Part (a) is proved by combining Lemmas 4 and 5.

For Part (b), when K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0,

we have RUcomp(n,K) = O
(

1
n

)

a.s. On the other hand,

RUcompOM(n) ≤ RUcomp(n,K), which completes the proof.

VI. CONCLUSION

In this paper, we derived the fundamental limits of optimal

memory-assisted universal compression for a mixture of

K parametric sources. Our results demonstrated that when

K = O
(

n
d

2 (1−ǫ)
)

for some ǫ > 0, there is significant

improvement offered by the memory-assisted universal com-

pression. On the other hand, as K grows the benefits of

memory-assisted universal compression vanish to the extent

that when K = Ω
(

n
d

2 (1+ǫ)
)

for some ǫ > 0 the performance

of optimal memory-assisted universal compression almost

surely becomes that of the universal compression without

side information.
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