
Content-Aware Network Data Compression

Using Joint Memorization and Clustering

Mohsen Sardari,† Ahmad Beirami,† Jun Zou, Faramarz Fekri

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Email:{mohsen.sardari, beirami, junzou, fekri}@ece.gatech.edu

Abstract—Recent studies have shown the existence of con-
siderable amount of packet-level redundancy in the network
flows. Since application-layer solutions cannot capture the packet-
level redundancy, development of new content-aware approaches
capable of redundancy elimination at the packet and sub-packet
levels is necessary. These requirements motivate the redundancy
elimination of packets from an information-theoretic point of
view. For efficient compression of packets, a new framework
called memory-assisted universal compression has been proposed.
This framework is based on learning the statistics of the source
generating the packets at some intermediate nodes and then
leveraging these statistics to effectively compress a new packet.
This paper investigates both theoretically and experimentally
the memory-assisted compression of network packets. Clearly, a
simple source cannot model the data traffic. Hence, we consider
traffic from a complex source that is consisted of a mixture of
simple information sources for our analytic study. We develop
a practical code for memory-assisted compression and combine
it with a proposed hierarchical clustering to better utilize the
memory. Finally, we validate our results via simulation on real
traffic traces. Memory-assisted compression combined with hier-
archical clustering method results in compression of packets close
to the fundamental limit. As a result, we report a factor of two
improvement over traditional end-to-end compression.

I. INTRODUCTION

To cope with the ever increasing amount of data transmitted

in the data networks we should either increase the backbone

capacity or find ways to improve link efficiency, i.e., decrease

the amount of transmitted data. The underlying fabric of the

networks perform very little, if any, memorization. The only

form of memorization commonly performed in the network

is application-layer caching used by solutions such as web-

caches, content-distribution networks (CDNs), and peer-to-peer

(P2P) applications. Recently, many researchers have rethought

this aspect of the networks by equipping some nodes in the

network with memorization capability in order to perform better

redundancy elimination via deduplication (cf. [1], [2]).

However, there is a lot to be gained beyond the simple

deduplication if we exploit the statistical redundancies within

a packet as well as significant dependencies that exist across

packets. These statistical redundancies can potentially be sup-

pressed using variable length compression techniques. However,

for an IP packet with a length only approximately 1500 bytes,

the traditional compression techniques [3], [4] are inefficient in

capturing the redundancy in data as compression performance

primarily depends on the sequence length (cf. [5] and the
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references therein). In other words, there is a significant penalty

with respect to what is fundamentally achievable when we

attempt to universally compress a finite-length packet [5].

Further, since each packet may be destined to a different user,

these packets cannot be effectively compressed with traditional

end-to-end compression techniques which cannot leverage the

cross packet dependencies. Therefore, it is very desirable to

encode and compress each individual packet more efficiently

by utilizing the dependency and side-information provided from

the rest of the packets (while we still deliver each packet sepa-

rately). In short, an investigation for a protocol-independent and

content-aware network packet compression scheme suitable for

removing redundancy within each packet and the dependency

across multiple packets is in order.

A new framework for compression of small sequences, called

memory-assisted compression, has been recently developed and

its potential application in network compression has been intro-

duced [6]–[8]. In memory-assisted framework, compression of

a sequence is performed using a memory of the previously seen

sequences. Consequently, every sequence can be compressed far

better compared to the case that the sequence is compressed by

its own without considering the memory.

One major challenge to analytically study the performance

of memory-assisted compression on real traffic traces is how

to model the content generator. Clearly, a single stationary

source1 does not fully model a real content generator, such

as a web-server, as it may contain text, html code, images and

video. Instead, a better model is to view every content generator

as a compound (mixture) of several stationary information

sources whose true statistical models are not available. As

shown in Fig. 1, a compound source can be thought of as a

set of K stationary sources S1, . . . , SK each having its own

statistical model. We assume that, metaphorically, the server is

communicating through a memory element M1 with the rest of

the network. In reality, M1 could be physically attached to the

server. Corresponding to M1 there is another memory element

M2 in the network that serves the clients denoted by C.

Memory element M2 could be a router or a gateway in

the network that is equipped with memory. The two memory

elements M1 and M2 have observed the past communication

packets from the server to the various clients and obtained a

common shared memory. We wish to characterize the memory-

assisted compression benefit provided in the M1-M2 link as

a function of the memory size shared between M1 and M2.

1The statistics of a stationary information source remain unchanged in time.
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Fig. 1. The basic memory-assisted compression scenario between two memory
elements Al} and A12 in the network. The compound source (i.e., the content
server) is shown as a set of multiple simple sources S}, ... ,SIC on the left.

This setup occurs in many applications, such as communication
in the Internet between two major hubs, communication in
enterprise networks, etc.

This paper is composed of two parts. In the first part, we
consider a set of sequences generated from a compound source
and we investigate the theoretical results on the performance
of memorization and clustering for compression of a newIy
generated sequence from the source. Specifically, we first find
that, without clustering of the sequences in the memory, mern­
orization of a compound source is not always beneficial and
it may even degrade the compression performance. Then, we
closely examine the theoretical gain of the joint memorization
and clustering for the compression of the compound source.

In the second part, we develop and study a content-aware
clustering algorithm which aims at utilizing the data in the
memory to better compress a new sequence from the compound
source. The main idea of the clustering is to group packets in
memory that can be compressed well together. Packets in the
same cluster would share similar statistical properties hence
improving the compression performance. A newIy generated
packet by the compound source is first classified into one of
the clusters and then the set of packets in the selected cluster is
used as the context memory for the compression of the packet.

II. RELATED WORK

The topic of redundancy elimination in network data traffic
has recently received a lot of attention [2], [9]-[12]. This series
of work is motivated by the observation that there exist a
considerable amount of duplicate strings within the network
packets. Since, by the design limitation, application and object­
level caching mechanisms cannot capture such duplicates within
packets, the redundancy elimination techniques operate below
the application layer at the packet level. Therefore, they can
suppress any duplicate strings of bytes that appear on a single
link. or they can be deployed on a wider scale across multi­
ple network routers enabling an IP-Iayer protocol-independent
redundancy elimination service.

In [6], we introduced the concept of network compression
(via network memory) and investigated its trade-offs in random
Erdds-Renyi graphs. In [6], we assumed a value for achievable
gain of memory-assisted compression on a single link (called
memorization gain g) and investigated the benefits of network
compression via memory. In [7], we obtained typical values
for 9 for a simple stationary information source, such as the
script files of a web-server and then extended the results
of [6] and evaluated network-wide gain of network compression
in an Internet-like random power-law graph as function of

Fig. 2. Network Compression architecture which includes the classifica-
tion/clustering module.

link compression gain. However, the typical values that the
gain 9 can assume on real-world data traces from complex
sources in the network remained unexplored. In this paper, we
both characterize the performance improvement achieved via
memory-assisted compression and devise practical algorithms
to achieve such improvement on every packet from real-world
traffic, on the fly with low complexity.

III. SETUP
The core to our approach for network data compression

is network memory. In a nutshell, memory enabled nodes in
network can learn the data statistics of traffic which can then
be used (as side information) in compression toward reducing
the cost of describing the information source generating the data
in compression. Therefore, network compression via memory
can be a new layer 3.5 in the network, as shown in Fig. 2. The
network compression layer may be present at any entity such
as the server or the router. Further, it should understand the
transport layer and network layer semantics. The sender-side
operations and the receiver-side operations are different in the
sense that the sender encodes the data and the receiver decodes
the data. However, the operations regarding the maintenance
of the memory should be the same on both sides to guarantee
that the side information needed to remove the redundancy in
the network traffic is the same at both ends. The architecture
in Fig. 2 also includes a clustering/classification module, the
introduction of which is motivated by the following.

A fundamental question is whether or not storing the previous
packets offers any benefit for the compression of a new data
packet. To answer this question, we did experiments with two
sets of data: Dataset 1, which is gathered from a mixture of data
packets from CNN and Apple websites, and Dataset 2, which
is merely script files gathered from CNN website. First, we
applied the memory-assisted compression techniques developed
in [7] for a stationary source on dataset 1, to which hereafter we
refer as naive memory-assisted compression, This naive scheme
does not take into account that the packets in memory are from
the compound source. Our initial assessments demonstrated
that, on the average, the naive memory-assisted compression
does not provide any compression benefit.

The results from this experiment in Table I show that the
compression without memory achieves an expected compres­
sion rate of about 5.41 bits/byte as compared with 8 bits/byte
required for the representation of each data byte when no com­
pression is in effect. Further, the naive memory-assisted com­
pression achieves a compression rate of around 5.32 bits/byte
and offers little compression benefit. On the other hand, when
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TABLE I
THE UNIVERSAL COMPRESSION RATE ON DATASET 1 WITH DIFFERENT

CODING STRATEGIES: MEMORY-ASSISTED CTW AND LZW ALGORITHMS.

Compression Scheme
compression rate (bits/byte)
CTW LZW

No Compression 8 8

No Memorization (Ucomp) 5.41 6.27

Naive Memorization (UcompM) 5.32 5.01

This Work (UcompH) 2.80 3.63

memory-assisted compression is applied only on the script

files (i.e., dataset 2) significant compression enhancement was

reported in [7]. Note that the dataset 2 may be considered as

a single stationary source; the statistics between the script files

does not undergo significant variation. Hence, this discrepancy

in the compression benefit from memorization between these

two datasets can only be attributed to the compound nature

of the memorized packets in dataset 1. Therefore, to achieve

compression benefit, we may have to properly partition dataset

1 before extracting the side information.

This observation motivated us to further study the joint

memorization and clustering for a compound source, where

the memorized packets are partitioned into several clusters

for better compression performance. The result is reported

in Table I as UcompH. In the rest of this paper, we first

theoretically study the clustering problem. Then, we develop

an efficient clustering algorithm for compression.

IV. THEORETICAL ANALYSIS

For analytical study, our model of content generator for the

traffic is a mixture of several stationary (parametric) sources

which is expected to model the complex nature of the content

generator. Let A be a finite alphabet and let the parametric

source be defined using a d-dimensional parameter vector

θ = (θ1, ..., θd), where d denotes the number of the source

parameters. For example, if the alphabet size is ||A|| = 256, for

a first-order Markov source the number of source parameters

is 256 × 255 which is equal to the number of independent

transition probabilities. Denote μθ as the probability measure

defined by the parameter vector θ on sequences (packets) of

length n. We also use the notation μθ to refer to the parametric

source itself. We assume that the d parameters are unknown.

We use the notation xn = (x1, ..., xn) ∈ A
n to present a packet

of length n from the alphabet A, i.e., a packet contains n bytes.

For our analysis, we assume that, in Fig. 1, both the encoder

(at M1) and the decoder (at M2) have access to a common

memory of the previous T packets (each of size n) from

the compound source. In other words, the memory size is

m = nT . Further, denote y as the concatenation of the

previous T packets shared between M1 and M2. Consider the

communication scenario in Fig. 1. The presence of the shared

memory y at M1 and M2 can be used by the encoder at M1 to

compress (via memory-assisted source coding) the packet xn

which is requested by client C. The compression can reduce the

transmission cost on the M1-M2 link while being transparent

to the client, i.e., M2 decodes the memory-assisted code, then

applies conventional compression on xn and forwards to C.

To investigate whether or not memorization provides com-

pression benefit for the compound source, we compare the

following three schemes:

• Ucomp (Universal compression): a simple compression is

applied on the packet xn without considering y.
• UcompM (Universal compression with naive context mem-

orization): the encoder at M1 and the decoder at M2 both

have access to packets y from the compound source; they

use y for the compression of xn, but without considering

which source has generated the packets.
• UcompCM (Universal compression with source-defined

clustering of the memory): assumes that the memory y

is shared between M1 and M2. Further, both M1 and M2

know the index of the source (in the compound source)

that has generated the memorized packets.

Next, we provide qualitative discussion on the performance

of the different packet coding strategies introduced above by

the analysis of the average minimax redundancy. The formal

analysis and the proof sketches are omitted. The performance

of traditional universal compression has been extensively stud-

ied in the literature (cf. [5] and the references therein). It

is concluded that the performance of universal compression

on finite-length packets, with size similar to IP packets, is

fundamentally limited by the inevitable compression overhead

(code redundancy) imposed by universal compression [5].

In the rest of this section, we present theoretical results on

the performance of UcompM and UcompCM coding strategies.

The case K = 1 is the special case where all of the packets are

from a single stationary source model, which also theoretically

quantifies our previous results in [7].

Case K = 1: In this case, there is no distinction between

UcompM and UcompCM. It can be shown that when the mem-

ory size is large enough, i.e., sufficient number of packets from

previous communication have been stored, the compression

overhead becomes negligibly small [8].

UcompM: Case K ≥ 2: As stated in the problem setup, the

packets in the memory are from a compound source. Results in

Table I, suggest that naive memorization does not offer much

improvement in compression performance. This observation

is analytically justified in [8], where we show that the naive

memorization of the previous packets using UcompM without

regard to which source parameter has indeed generated the

packet would not suffice to achieve the memorization gain. In

fact, the redundancy of UcompM is worse than the redundancy

of Ucomp, for large n. Therefore, the naive memorization

of the context by node M2 in Fig. 1 from the previous

communications not only does not improve the compression

performance but also asymptotically makes it worse. Next, we

look at the compression performance in an ideal case where we

know the source of each packet.

UcompCM: Case K ≥ 2: Thus far, we learned that the

naive memorization in the memory element is not beneficial

when a compound source is present. This necessitates to first

appropriately cluster the packets in the memory. Then, based

on the criterion as to which cluster the new packet xn belongs

to, we utilize the corresponding memorized context for the

compression. In source-defined clustering, we assume both M1

and M2 (in Fig. 1) exactly know the index i ∈ [K] and hence all

the packets that belong to the same source θ(i) in the compound
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Fig. 3. Network packet compression flowchart. The modules in the dashed
box are the components of the K-means clustering using Hellinger distance.

source are assigned to the same cluster (for all i ∈ [K]). In [8],

we theoretically justified that if sufficient memory of the past

is present at the memory element, the compression overhead

(redundancy) may be eliminated via joint memorization and

clustering, hence improved compression performance. This re-

sult motivates the investigation of memorization and clustering

approach in real-world scenarios. In Sec. V, we will further

relax the source-defined clustering assumptions and study the

impact of clustering in practice.

V. HIERARCHICAL CONTENT-AWARE CLUSTERING

In this section, we try to answer the main question in the

memory-assisted compression setup we introduced: “How do

we utilize the available memory to better compress a packet

generated by a real-world content server?” In Sec. IV, it was

shown theoretically that clustering is necessary to effectively

utilize the memory in the proposed memory-assisted com-

pression. Within this framework, we identify two interrelated

problems: 1) How do we perform clustering of memorized

packets to improve the memory-assisted compression in real-

world traffic? 2) Given a set of clustered packets, how do we

classify an incoming new packet (to be encoded) into one of

the clusters in the memory using which the performance of

memory-assisted compression is optimized?

In the sequel, we describe a hierarchical clustering algorithm

that proves to be useful for compression. The proposed hierar-

chy for the content-aware joint memorization and clustering for

network packet compression is shown in Fig. 3. As shown, we

first identify whether or not an incoming packet is compress-

ible. If the packet is determined incompressible, it is neither

compressed nor stored in the memory. On the other hand, if a

packet is determined compressible, it is passed to the clustering

unit which operates based on the Hellinger distance metric.

Compressibility Determination: The compressibility deter-

mination is performed based on the empirical entropy of the

data packet. The packets in memory may be divided into

two categories: one category contains packets with very high

entropy rate (close to 8 bits per byte) and hence these packets

are incompressible. The other category contains packets whose

empirical entropy rate is estimated to be much less than 8,

and hence, these packets are compressible. Therefore, as the

first step, the packets are partitioned into compressible and

incompressible. After the partitioning step, the packets in the

resulting memory are all compressible. Then, we will perform

a clustering of the resulting memory based on the Hellinger

distance metric between the packets.

A. Content-Aware Clustering Using Hellinger Distance Metric

The Hellinger distance is a metric to quantify the similarity

between two probability distributions (cf. [13]). For two prob-

ability distributions p(x) and q(x), the Hellinger distance is

defined as

dH(p, q) =
1

2

√ ∑
xi∈A

(√
p(xi)−

√
q(xi)

)2

. (1)

In our setup, we calculate the Hellinger distance of two packets

using the empirical distribution of symbols for each packet.

Recall that a packet xn ∈ An is a vector of n symbols xi ∈ A.

1) Clustering: A good clustering is such that the packets

clustered together should share similar statistical properties.

Thus, they compress well together. Suppose the total number of

clusters is given by K, and each packet in the memory needs to

be assigned to one of the clusters. We use the binary indicator

c
j
t to denote the cluster assignment for the t-th packet yn(t).

The indicator c
j
t = 1 if yn(t) is assigned to cluster j ∈ [K],

otherwise c
j
t = 0. Then, the objective function for clustering is

given by

J =

T∑
t=1

K∑
j=1

c
j
tdH(qt, uj), (2)

where qt is the distribution on the symbols obtained from yn(t)
and uj is the probability distribution vector on the symbols

associated with the packets in cluster j. The goal of the

clustering algorithm is to find the assignment c
j
t for j ∈ [K]

and t ∈ [T ] such that J is minimized.

The problem setup suggests that the K-means clustering

algorithm [14] is very suitable for our purpose. It is an

iterative algorithm which consists of two steps for successive

optimization of c
j
t (and hence uj). Given cluster center uj , the

optimal c
j
t can be easily determined by assigning the packet

yn(t) to the closest cluster with minimum Hellinger distance

dH(qt, uj). Then, we fix c
j
t and update uj .

2) Classification: Once the clustering of memory is per-

formed, to compress a new packet xn, we first decide which

cluster should be used as the side information to compress xn.

Therefore, we classify the packet xn by assigning it to a proper

cluster. The classification algorithm is as follows. Let c be the

cluster label of xn to be determined. We compute Hellinger

distance between the symbol distribution q of xn and the cluster

uj . Then xn is assigned to the closest cluster by

c = argmin
1≤j≤K

dH(q, uj). (3)

VI. SIMULATION RESULTS

We demonstrate the effectiveness of the content-aware joint

memorization and clustering proposed in this work through

computer simulations. We apply our algorithm to real-world

packets captured from CNN and Apple websites. To capture

the packets, we have used wget and wireshark [15] open-source

packet analyser together and stored the IP packets. We captured

8100 data packets, all with the size of 1434 bytes from each

website for our experiment. One hundred packets are randomly

selected from each website as test packets to measure the
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Fig. 4. Empirical symbol distribution of cluster centers.

Fig. 5. Results of various memorization and clustering schemes on compress­
ible packets after entropy classification.

compression performance. The remaining 16000 packets are
then used to construct memory and the clustering algorithm is
performed on these packets.

Fig. 4 demonstrates the probability distribution associated
with each of the obtained clusters after the convergence of the
clustering algorithm. As can be seen, clusters have significant
amount of English alphabet as well as special characters that are
attributed to either text or scripts. To illustrate the importance
of clustering, we have evaluated the compression rate for the
following cases after the entropy classification is performed. 1)
Ucornp (Universal compression), 2) Ucomplvl (Universal com­
pression with naive memorization), and 3) Ucompl-l (Universal
compression with memorization and Kvmeans clustering using
Hellinger distance).

The simulation results are shown in Fig. 5. The compression
rate on the compressible packets is plotted for the different
packet coding strategies. As can be seen, our proposed cluster­
ing scheme based on the Hellinger distance metric achieves su­
perior performance over the traditional universal compression.
Note that these results do not demonstrate the impact of the
incompressible packets. This is due to the fact that the number
of incompressible packets may vary in different websites as
some traffic traces contain nlore images and some contain nlore
text/scripts. However, the trend shown here for the compressible
sequences would remain intact for different traces. Furthermore,
if we also consider the incompressible part of the data, the
resulting compression rate would be slightly worse, but still
considerably better than Ucomp and Ucomplvl. This is indeed
demonstrated in Table. I.

VII. CONCLUDING REMARKS

This work was motivated by our recent result that memo­
rization can help to improve the compression performance of

universal coding techniques for stationary sources. We extended
the memory-assisted compression framework to accommodate
the compound information sources, i.e., a mixture of stationary
information sources behaving collectively as a content gen­
erator in the network. Our results indicate that by clustering
the memorized packets from a compound source considerable
performance improvement is achievable. We also presented a
fast clustering algorithm tailored for the compression problem
at hand. The memory-assisted compression has a complexity
linear in the packet size, and hence, can be implemented
real-time. The compressibility determination based on entropy
estimation is also a linear operation in size of packets as it only
entails the computation of empirical entropy of each packet.

The clustering algorithm applies the well-known Kvmeans
algorithm using the Hellinger distance metric. The Kvmeans
clustering is a nlore complex operation that needs to be per­
formed offline. After the cluster centers are determined, which
can be done every once in a while, the classification can also
be done efficiently in linear complexity with the packet size.

Finally, we verified our theoretical results as well as the
clustering algorithm via simulation of real Internet traffic from
a mixture of CNN and Apple data servers. We observed that a
factor of 2 improvement in compression is achieved over tra­
ditional compression using joint memorization and clustering.
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