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Abstract—We consider disruption tolerant networks (DTNs)
wherein a direct communication path from a source to a
destination via multiple hops does not exist due to both mobility
and sparseness of the nodes. Hence, mobile nodes will deliver
messages from source to destination using a “store, carry, and
forward” strategy. In this paper, our goal is to analytically
study the packet latency in such networks for a two-hop unicast
scenario with Bernoulli packet arrivals at the source. We exploit
an embedded Markov chain approach combined with our novel
iterative estimation technique to study both network delay and
queuing delay. Constraints posed by both the limited node buffer
size and contention between nodes for wireless channel are also
considered to obtain a more realistic model. Finally, our results
are validated using simulations for a random-walk on a two-
dimensional grid mobility model.

I. INTRODUCTION

Disruption tolerant networks (DTNs), also referred to as

delay-tolerant networks, is an special type of mobile ad-hoc

networks. They often used when there is no backbone in-

frastructure and hence have applications in military networks,

vehicular networks, and providing basic network services to

rural areas.

Conventional Mobile Ad-hoc Networks (MANETs) rely

on the existence of end-to-end paths between source and

destination nodes regardless of node mobility. However in

DTNs simultaneous end-to-end connectivity is very rare be-

cause of the sparseness of nodes in the network. Hence,

communication protocols for MANETs perform inefficiently

for DTNs. Most of the efficient DTN-based schemes [1], [2],

use the “store, carry, and forward” paradigm for message

delivery, wherein a source node opportunistically transmits

packets upon contacting any other node, and relies on the

mobility of these “relay” nodes to deliver the message to a

certain destination.

Analytical performance modeling of DTNs has recently

drawn a considerable amount of attention [3]–[8]. In many

cases, the performance of DTNs have been modeled using

Poisson process approximations [5]–[7]. Investigated in [9],

a major drawback of this approximation is that assuming

Poisson process for contact times does not incorporate the

spatial-temporal dependence between contact times of any

pair of nodes which is not a realistic assumption in general.

Inspired by such shortcomings, in [9], Subramanian et al.
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proposed a generalized framework for throughput analysis

of finite-buffer DTNs. The framework uses the embedded

Markov chain approach using which the throughput of such

networks can be identified by computing certain well-defined

characteristic parameters from the mobility model. Further, the

problem of throughput analysis in DTNs has been considered

for many different communication scenarios and mobility

models in [9]–[11], and hence, is well-motivated. However,

despite the usefulness and value of such a framework for

throughput analysis, it is insufficient for modeling the per-

formance of such networks under different types of traffic,

for the following reasons:

• To identify throughput in the previous model, it is as-

sumed that source is always backlogged, i.e., it possesses

infinitely many information packets. Consequently, all

relay nodes will be as congested as possible. Thus, such

an assumption for the source node leads to finding the

maximum average “network delay” only.

• Since the source is constantly backlogged, it eliminates

the necessity of defining queueing delay at the source

despite being an important performance parameter.

• The problem of performance analysis of multiple unicast

sessions [10] can be useful only when various sources

could own different traffic characteristics. In other words,

resource sharing protocols will not have a great impact

on the performance of the network if all the flow sources

are backlogged, and share the network resources such as

memory or bandwidth equally.

In this paper, we address the problem of delay analysis

for a single unicast session, where a single source node is

trying to transmit packets to a single destination using mobile

relays. Further, a dynamic queue is assumed for the source

with exogenous Bernoulli arrivals of packets. Practical issues

such as finite storage space for relays, random contact times,

and contention between nodes to access the channel are also

considered to make the analysis more realistic. We will use

analytical tools such as embedded Markov chain and chain-

collapsing idea combined with our novel iterative estimation

technique to estimate the steady-state distributions of buffer

occupancies for relays and the source. We then illustrate the

framework in detail for a random-walk on a grid mobility

model and, finally, validate the analysis using simulations.
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II. NETWORK MODEL

We consider n identical nodes, referred to as “relay” nodes,

and two other nodes, referred to as “source” and “destination”

nodes. The nodes are located randomly in grid and moving

independently according to the mobility model specified in

Section II-B. The relay nodes have the same buffer size of

B packets where each packet have a fixed length. However,

source and destination nodes have unlimited storage capacity.

A discrete-time model is used where at each time epoch, only

one packet may be transmitted/received by any node. Further,

communication is assumed to be error-free. Addressing this

problem in presence of channel erasure can be shown to be a

straightforward extension of the current framework, and will

not be discussed in this paper.

A. Packet Arrivals at Source

A crucial part in modeling latency would be to consider ex-

ogenous packet arrivals to the source. We assume, at each time

epoch, a single packet arrives at the source with probability

λ, i.e., the rate of arrival at the source is λ packets per epoch.

In this paper, we only consider mean arrival rates λ less than

the throughput capacity of the network. This will guarantee

that the queue length at the source remains bounded with high

probability, and hence, the network is stable1. Consequently,

such assumption leads to the boundedness of the average

queueing delay at the source. Note that, by choosing λ larger

than the throughput capacity, the queue at the source will grow

unboundedly, since the network fails to deliver packets with

such rate. In conclusion, without loss of generality, we assume

that λ is smaller than the network throughput capacity [9].

B. Mobility Model

Throughout this paper, we will consider the random walk on

a two-dimensional grid as the mobility model. In this model,

nodes are randomly moving on aM×M square grid as shown

in Fig. 1. At each time epoch, nodes may remain at the same

cell, or move to an adjacent cell with a certain probability. The

transition probabilities for the random walk are chosen so that

it results in a uniform steady-state spatial distribution, i.e., a

node is located in a specific cell with probability 1
M2 . Hence,

we choose the probability of transition to adjacent cells to

be 1
5 and the self-transition probability for each cell will be

1− No. of adj. cells
5 . As an example, for the cell in the corner,

the self-transition probability is equal to 3
5 .

C. Interference Model

The communication between two nodes is possible only if

they are at the same cell in the grid. All the other nodes in

that particular cell are assumed to be silent for the duration of

the communication (one epoch). This is to ensure that there

is no wireless interference issues such as hidden-terminal and

exposed-terminal situations. Moreover, the source/destination

node tries to establish a new link at each epoch, for which

1Note that, the queues at relays cannot grow to infinity since they have a
finite buffer size.

Fig. 1. Network Model

several relay nodes may contend. To be precise, in each

epoch, if the source and destination are at the same cell, they

will form a link, otherwise, if the source or destination and

multiple relays are located at a cell, a random relay is selected

to setup a link with source or destination, respectively. We

say that a “contact” occurs between two nodes whenever they

are in the same cell, though they may not communicate. If

two nodes win the channel contention, a “link” is said to be

established between the communicating nodes.

D. Two-hop Single-copy Routing

When a relay node with available space in its buffer

establishes a link with the source, it accepts a packet if the

source has at least one packet,i.e. it is non-empty, and retains

the packet until a link is established with the destination. As it

is shown in Fig. 1, no relay-to-relay communication occurs. In

addition, though very rarely, the source and destination may

establish a direct link.

III. MARKOV CHAIN ANALYSIS

Thoroughly investigated in [9], the full state-space des-

cription of finite-buffer DTNs is very large to work with.

It is shown that a complex multidimensional Markov chain

containing the states of all buffers and node locations has

to be analyzed to derive the throughput for such networks.

This further compounds with the introduction of new states

corresponding to the source queue. To reduce the state-space

and simplify the analysis, we will exploit the idea of chain-

collapsing as in [9]. Throughout this work, for any x ∈ [0, 1],
we define x , 1− x.

A. The Idea of Chain-Collapsing

To simplify the analysis, as a first step, we may try to

identify certain symmetries in the network that simplifies the

state space. For example, in a scenario where relay nodes

are identical, one can view the state of the network from

a single relay’s perspective. However, the state space still

remains very large. Next, we try to address the simplification

problem by deriving a new set of “desirable” states from

the original state space such that the steady-state probability

distributions are preserved. Then, for a particular relay node,

we identify all those “desirable” states in which one could

track how much time packets spend inside relays/source
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Fig. 2. The embedded Markov chain for a relay node (RMC)

together with certain additional “auxiliary” states to arrive at

an “embedded” Markov chain. The idea of chain collapsing

enables us to extract only the necessary information from

the original Markov chain. In particular, we first need to

reduce the performance computation problem to computing

the total steady-state probabilities of certain subsets of a

well-defined embedded Markov chain. Note that, we are not

interested to find individual steady-state probabilities of states

within one particular desired subset of states. After finding

the appropriate set of states, the rest of the analysis will only

include computation of the transition probabilities between the

desired subsets followed by computation of their steady-state

probabilities.

B. Embedded Markov Chain for a Relay Node

In this section, our objective is to define the states of

the embedded Markov chain for a single relay node so

that the resulting steady-state probabilities could provide us

with sufficient information to approach the problem of delay

analysis. Hence, we define the embedded Markov chain for a

relay node according to the following subsets of states:

• Let Si (1 ≤ i ≤ B) be the set of network states wherein

the most recent link that node v had was with a non-

empty source, resulting in i packets in the buffer after

receiving a packet.

• Similarly, let Dj (0 ≤ j ≤ B − 1) be the set of network
states wherein the most recent link that node v had was

with the destination, resulting in j packets in its buffer

after transmitting a packet.

• Let F be the set of network states wherein the most

recent link that node v had was with a non-empty source,

but v was unable to accept any packet due to lack of

buffer space (i.e., Full buffer state).

• Similarly, let E be the set of network states wherein the

most recent link that node v had was with the destination,

but v had no packet to transmit (i.e., Empty buffer state).

Given the state transition probabilities for the embedded

Markov chain in Fig. 2 (RMC), a closed-form expression for

its steady-state probabilities can be easily obtained using

Pr{F} =
(

αr

βr

)B
βr

αr
Pr{E},

Pr{Si+1} = Pr{Di} =
(

αr

βr

)i
βr

βr
Pr{E},

for i = 0, . . . , B − 1, and,

Pr{E} =











1
2

{

1 + βr

βr
B
}

−1

, if αr = βr

αr−βr

αr+βr

{

1− βr

αr

(

αr

βr

)B
}

−1

, if αr 6= βr

.

Further, the state transition probabilities for RMC can be

obtained using the following lemma.

Lemma 1 Let α0 be the probability that a node currently in

contact with the source (or destination) will have a contact

with the destination (or source) before coming in contact with

the former again. Also, let pc be the average probability that a

relay node loses contention on meeting the source/destination

node. Finally, let pe be the probability that source node is

empty,i.e. have no packets in its queue, when meeting a relay

or destination node. Then,

αr =
α0

pe(2α0pc + pc) + α0pe
, βr = peαr.

Proof: The proof is very similar to the proof of Lemma 4

(see Appendix).

The contention failure probability can be easily calculated

for the random-walk on a grid mobility model using the

following result [9].

Lemma 2 For a network with n relay nodes and a buffer size

of B with a random-walk mobility model which has uniform

spatial distribution, the probability that a relay node loses

contention when meeting the source/destination (pc) can be

derived from

pc = 1−
M2

n

(

1−

(

1−
1

M2

)n)

Finally, the parameter α0 in Lemma 1 is characterized for

a general mobility model in the following lemma.

Lemma 3 Let T0 be a random variable representing the

inter-contact duration, and let T∞ be the random variable

representing the waiting time until two nodes meet, given

that they are distributed according to the steady-state spatial

location distribution. Then we have

α0 =

∞
∑

τ=1

FT∞
(τ)PT0

(τ),

where PT0
(τ) and FT∞

(τ) are the probability density function
of T0 and the cumulative density function of T∞, respectively.

Proof: The proof is very similar to the proof of Lemma 5

(see Appendix).
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Fig. 3. The embedded Markov chain for the source node (SMC)

C. Embedded Markov Chain for the Source

In this section, our objective is to define the states of

the embedded Markov chain for the source node so that

the resulting steady-state probabilities could be helpful for

the problem of delay analysis. Hence, the embedded Markov

chain for the source node is defined according to the following

subsets of states:

• Let Ai (i = 1, 2, . . .) be the set of network states wherein
the most recent event at the source is an arrival of a

packet, resulting in i packets in the source buffer.

• Also, let Rj (j = 0, 1, . . .) be the set of network states
wherein the most recent event at the source is meeting

a non-full relay or the destination node, resulting in j

packets in the source buffer.

• Finally, let E be the set of network states wherein the

most recent event at the source is meeting a non-full relay

or the destination node while the source node is empty

and hence no packet is transmitted

Given the state transition probabilities for the embedded

Markov chain in Fig. 3 (SMC), a closed-form expression for

its steady-state probabilities can be easily obtained using

Pr{Ri} = Pr{Ai+1} =

(

αs

βs

)i
βs

βs

Pr{E}, i ≥ 0

Pr{E} =
αs − βs

αs + βs

.

Moreover, the state transition probabilities of SMC (αs, βs)

can be derived using the following lemma.

Lemma 4 Let α1 be the probability that the source node

with a packet currently arriving to its queue, will have a

contact with any other node (relay or destination) before

having another packet arriving to its queue. Further, let α2 be

the probability that the source node currently in contact with

a node (relay or destination) will have an arriving packet to

its queue before coming in contact with any other node in the

network. Finally, let pf be the probability that a relay node

is full when meeting with the source and is unable to accept

any packets. Then, we have

αs =
α1pb

α2pb + pb
, βs =

α2

α2pb + pb
,

where, pb =
n

n+1pf .

Proof: See Appendix for a brief sketch of the proof.

Finally, parameters α1 and α2 can be characterized for a

general mobility model using the following lemma.

Lemma 5 Let S0 be a random variable representing the

inter-arrival time duration of packets at source, and let

S∞ be the random variable representing the waiting time

until an arrival of a packet given no information about the

previous arrivals. Further, let T∞,n be a random variable

representing the waiting time until a contact with one of

n + 1 relays/destination occur for the source, given that the
nodes are distributed according to the steady-state spatial

location distribution (uniform for the case of random-walk

on grid).Also, let T0,n be a random variable representing

the waiting time until source makes contacts with one of the

n+ 1 relays/destination nodes, given that source is currently
in contact with a relay/destination and the other n nodes

are distributed according to the steady-state spatial location

distribution. Then,

α1 =

∞
∑

τ=1

FT∞,n
(τ)PS0

(τ)

α2 =

∞
∑

τ=1

FT0,n
(τ)PS∞

(τ),

Proof: See Appendix for a brief sketch of the proof.

D. Iterative Estimation

Thus far, we have developed two different collapsed

Markov chains, RMC and SMC, originated from the full state-

space of the entire network. In other words, we have observed

the desirable states of the network from the point of view of

both a single relay node and the source node. However, it

is notable that deriving the state transition probabilities for

RMC and SMC requires using Lemmas 1, and 4 in which

the parameters pf and pe are not known in advance. In this

section, we will see that these two Markov chains are not only

dependent on each other but also closely related. Further, their

dependency could lead us into solving both of them using an

iterative algorithm.

To find pf , we need to know the portion of relay-source

links during which the relay is full. Using steady-state prob-

abilities of RMC, the following can be shown

pf = α0 pc
Pr{F}+ Pr{SB}

Pr{F}+
∑B

i=1 Pr{Si}
. (1)

Further, obtaining the steady-state probabilities of RMC

requires having its state transition probabilities by using

Lemma 1. Hence, we need to find pe which is the portion

of source-relay/destination links during which the source is

empty. Using steady-state probabilities of SMC, the following

relation can be obtained

pe = α2
Pr{E}+ Pr{R0}

Pr{E}+
∑

∞

i=0 Pr{Ri}
. (2)

Finally, obtaining the steady-state probabilities of SMC

requires having its state transition probabilities by using
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Fig. 4. A graphical presentation of the iterative estimation algorithm

Lemma 4 and hence knowing pf . Interestingly, we are back to

the starting point which hints us that the problem tends to have

an iterative solution. In [12], we developed an iterative algo-

rithm for estimating the capacity of finite-buffer line networks.

Likewise, here, we present the iterative estimation algorithm

depicted in Fig. 4 to estimate the unknown parameters above,

starting from arbitrary initial values, e.g., pf = 0. The iteration
procedure will go on until convergence of the steady-state

probability vectors. One way to measure the convergence of

our method is to compare the Euclidean distance between the

vectors of each two consecutive iterations and stop the pro-

cedure when the distance becomes smaller than a previously

chosen threshold.

E. Delay Analysis

Using the iterative estimation algorithm of Section III-D,

the steady-state probabilities for RMC and SMC can be

obtained. Next, these results are used to find analytical ex-

pressions for the average packet latency in DTNs.

We divide the latency experienced by each packet to two

parts: “Network Delay” and “Queueing Delay”. The network

delay is defined as the total time spent by a packet inside the

buffer of a relay node which is the time it takes from the

instant when the packet leaves the source node until when it

reaches the destination node. The queueing delay is defined

as the time spent by a packet inside the queue of the source

node which is the time it takes from the instant when the

packet arrives at the source node until successfully leaving it.

The analytical expressions for both average network delay and

average queueing delay at the source are obtained by using

the following propositions. The total packet latency can be

derived by adding both the network delay and the queueing

delay.

Proposition 1 Let Pz be the portion of the packets that

experience zero network delay due to the event that a direct

link between the source and the destination is established.

Further, let Pr{Si} is known for i = 1, 2, . . . , B from the
steady-state analysis of RMC. Then, the average network
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Fig. 5. Variations of average network delay and average queueing delay at
the source with mean arrival rate λ for a random walk on a grid mobility
model

delay is obtained from

Dnet =
Pz

pc

B
∑

i=1

Pr{Si}
∑B

j=1 Pr{Sj}
(E[T∞] + (i − 1)E[T0]) ,

where the random variables T0 and T∞ are defined in

Lemma 3, the parameter pc is derived in Lemma 2 and

Pz = 1

1 + (1−(1− 1

M2 )
n
)(M2

−1) pf

.

Proposition 2 Let Pr{Ai} is known for i = 1, 2, . . . by
the steady-state analysis of SMC.Then, the average queueing

delay at the source is derived using

Dqueue =
1

pb

∞
∑

i=1

Pr{Ai}
∑

∞

j=1 Pr{Aj}
(E[T∞,n] + (i − 1)E[T0,n]) ,

where the random variables T0,n and T∞,n are defined in

Lemma 5 and the parameter pb is defined in Lemma 4.

IV. SIMULATION RESULTS

In this section, we present the simulation results for vali-

dation of our analytical framework. Our analytical results are

compared to simulations of a sparse mobile ad-hoc network

with random walk on a grid mobility model.

A mobile network exhibiting random-walk mobility with

real time packet transmissions were simulated in MATLAB.

The node buffer sizes are chosen to be 10 packets, while
the number of relay nodes is kept at 10 and the grid size
is 8 × 8. The mobility parameters needed for Lemmas 1, 4
have not been obtained in closed form in the literature, to

the best of our knowledge. However, some approximations

are available in [9]. Here, we have obtained the mentioned

mobility parameters numerically by a quick simulation of the

mobility of two nodes only.

The accuracy of our iterative estimation method is shown

in Fig. 5 for average queueing delay at the source and average

network delay (in epochs). As stated before, validation of our

iterative estimation algorithm is performed for arrival rates

λ smaller than the throughput of the network. By increasing
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Fig. 6. Three state MC for obtaining αs and βs

λ to the values close to the network throughput, the average

queueing delay at the source goes to infinity. However, average

network delay will remain bounded since all the relays have

finite buffer size. In other words, by approaching Λ more and
more to the network throughput, queueing delay at the source

becomes the dominant term comparing to the network delay.

APPENDIX

TECHNICAL ANALYSIS

A. Sketch of the Proof of Lemma 4

Consider the following subsets of states in the original state-

space description of the network.

• A: The most recent event at the source is arrival of a

new packet.

• R: The most recent event at the source is meeting a non-

full relay or the destination node.

• RF : The most recent event at the source is meeting a

full relay node.

Here, we collapse these subsets into just three states, resulting

in the new Markov chain shown in Fig. 6. Clearly, αs from

the original chain in Fig. 3 is given by the probability that

the chain in Fig. 6, starting from state A, visits state R before

coming back to state A again. Similarly, βs is given by the

probability that the chain in Fig. 6, starting from state R,

visits state A before coming back to state R again. Such

probabilities can be obtained from the fundamental matrix

of the ergodic Markov chain (see chapter 2 of [13] for a
discussion on the fundamental Matrix of an ergodic chain)

in Fig. 6. Let Z be the fundamental matrix for this chain. The

probabilities αs and βs can be derived using

αs =
πR

πA {ZRR − ZAR}+ πR {ZAA − ZRA}
,

βs =
πA

πA {ZRR − ZAR}+ πR {ZAA − ZRA}
.

The results will follow after performing the necessary com-

putation which would be computing the fundamental matrix

Z for Markov chain shown in Fig. 6.

B. Sketch of the Proof of Lemma 5

Considering the network at steady-state, S0 is the random

variable representing the time until the next arrival at the

source, given a packet arrival at time τ = 0. At this point,
the random location of the other n + 1 nodes follows the
steady-state spatial distribution of the mobility model. Hence,

T∞,n is the random variable representing the waiting time

until the source comes in contact with one of the n+1 nodes.
Further, S0 and T∞,n are independent since the arrival process

is independent of the mobility. Therefore, the parameter α1

can be expressed as

α1 = Pr{T∞,n < S0}

=

∞
∑

τ=1

Pr{S0 = τ}Pr{T∞,n < τ |S0 = τ}

=

∞
∑

τ=1

FT∞,n
(τ)PS0

(τ).

The results for the parameter α2 can be proved in a similar

fashion.
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