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Abstract-Recently, we proposed a framework called 
memory-assisted compression that learns the statistical proper
ties of the sequence-generating server at intermediate network 
nodes and then leverages the learnt models to overcome the 
inevitable redundancy (overhead) in the universal compression 
of the payloads of the short-length network packets. In this 
paper, we prove that when the content-generating server is 
comprised of a mixture of parametric sources, label-based 
clustering of the data to their original sequence-generating 
models from the mixture is optimal almost surely as it 
achieves the mixture entropy (which is the lower bound on 
the average codeword length). Motivated by this result, we 
present a K-means clustering technique as the proof of concept 
to demonstrate the benefits of memory-assisted compression 
performance. Simulation results confirm the effectiveness of the 
proposed approach by matching the expected improvements 
predicted by theory on man-made mixture sources. Finally, the 
benefits of the cluster-based memory-assisted compression are 
validated on real data traflic traces demonstrating more than 
50% traffic reduction on average in data gathered from wireless 
users. 

Index Terms-Memory-Assisted Compression; Wireless Net
works; Redundancy Elimination; K-Means Clustering. 

I. INTRODUCTION 

The data explosion calls for new techniques to utilize the 

considerable amount of correlation in the data to reduce 

the costs for numerous applications that require process

ing/transmission of individual small pieces of data, e.g., data 

storage and data transmission. Recently, many researchers 

have observed considerable correlation at the packet level 

(network layer) and investigated the opportunities for elim

inating them by equipping some nodes in the network with 

memorization capability in order to perform better packet

level correlation elimination via deduplication (cf. [1]-[5] 

and the references therein). 

However, there is a lot to be gained beyond the simple 

deduplication if we exploit the statistical redundancies within 

a packet as well as significant dependencies that exist across 

packets. These statistical redundancies can potentially be 

suppressed using statistical compression techniques. On the 

other hand, for an IP packet with a length in the order of 

several kilobytes, the state-of-the-art compression techniques 

(e.g., context tree weighting [6]) are inefficient in capturing 

the redundancy in data as compression performance primarily 

depends on the sequence length (cf. [7]-[9] and the refer

ences therein). In other words, there is a significant penalty 
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with respect to what is asymptotically achievable when we 

attempt to universally compress a finite-length packet [9]. 

Further, since each packet may be destined to a different 

user, these packets cannot be effectively compressed with 

traditional end-to-end compression techniques which cannot 

leverage the cross packet dependencies. 

While the individual packets cannot be compressed well, 

many of them share common contexts and hence are expected 

to be compressed more effectively if the common context 

between them is utilized in compression [9]-[13]. Therefore, 

it is desirable to encode and compress each individual packet 

more efficiently by utilizing the side information provided 

by the rest of the packets (while we still deliver each 

packet separately). In short, an investigation for a protocol

independent and content-aware network packet compression 

scheme suitable for removing redundancy within each packet 

and the dependency across multiple packets is in order. 

In [11], [12], we developed a framework for compression 

of small sequences, called memory-assisted compression and 

introduced its potential application in compression of net

work packets. In memory-assisted framework, compression 
of a sequence is performed using a memory of the pre

viously seen sequences. Consequently, every sequence can 

be compressed far better compared to the case that the 

sequence is compressed on its own right without considering 

the memory. To realize memory-assisted compression in 

the network, in [14], we investigated clustering for data 

compression and proposed a clustering algorithm based on 

Hellinger distance metric in the context of memory-assisted 

compression that grouped sequences with similar statistics for 

better compression. However, it remained open to identify the 

optimal strategy for the compression of network packets and 

verify it over data from real network traces. 

In this paper, we first prove that label-based clustering 

of the data to their original sequence-generating models is 

optimal for memory-assisted compression of mixture sources. 

We further present an etfective (yet tractable) algorithm for 

memory-assisted compression with clustering and achieve 

significant performance improvement on every packet from 

real-world traffic, on the fly with low complexity. Finally, we 

validate the effectiveness of the presented approach on man

made data (for which theoretical limits are known) as well 

as real packet-level data from wireless network users proving 

the usefulness of cluster-based memory-assisted compression 

in practice. 

The rest of this paper is organized as follows. In Section II, 
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Fig. 1. The basic scenario of universal compression with side information 
for a mixture source. 

we present the necessary background on universal compres

sion as well as the setup of the problem. In Section III, 

we compare different possible schemes for memory-assisted 

compression of mixture sources and prove the optimality 

of the cluster-based memory-assisted compression. In Sec

tion IV, we briefly describe memory-assisted compression of 

network packets with K-means clustering. In Section V, we 

provide simulation results on both man-made data as well 

as real network traces demonstrating the effectiveness of the 

clustering for memory-assisted of network packets. Finally, 
Section VI concludes this paper. 

II. PROBLEM DEFINITION 

In this section, we first briefly review the necessary 

background on the universal compression. Let a parametric 

source be defined using a d-dimensional parameter vector 

e = (el, . . . , ed) E Ad that is a priori unknown, where d 

denotes the number of the source parameters and Ad C IRd 
is the space of d-dimensional parameter vectors of interest. 

Denote fLO as the parametric source (i.e., the probability 

measure defined by the parameter vector e on sequences of 

length n). 
Let A denote a finite alphabet. Let xn denote a sample 

(random vector of length n) from the probability measure fJO. 
We further denote xn = (Xl, . . . , Xn) E An as a realization 

of the random vector xn. Then, define Hn(e) � H(xnle) 
as the source entropy given the parameter vector e, i.e., 

Hn(e) = E 10g (fLo(�n) ) = � fLO (xn) 10g (fLo(�n) ) ' x 
(1) 

Please note that throughout this paper logO always denotes 

the logarithm in base 2 and expectations are taken over the 

random sequence xn with respect to the probability measure 

fJO unless otherwise stated. 
In this paper, we focus on the class of strictly lossless 

uniquely decodable fixed-to-variable codes defined as the 

following. The code Cn : An -+ {O, I} * is called strictly 
lossless (also called zero-error) on sequences of length n 
if there exists a reverse mapping dn : {O, I} * -+ An 
such that Vxn E An, we have dn(cn(xn)) = xn. Further, 
let In : An -+ IR denote the universal strictly lossless 

length function for the codeword Cn (xn) associated with the 
sequence xn such that InO satisfies Kraft's inequality to 

ensure unique decodability. That is LxnEAn 2-l,,(x") � 1. 
Denote Rn,d(ln, e) as the average redundancy of the code 

Cn with length function In on a sequence of length n for the 

d-dimensional parameter vector e, defined as 

(2) 

Note that the average redundancy is non-negative. Further, 

a code is called universal if its average codeword length 

normalized to the sequence length uniformly converges to 

the source entropy rate, i.e., limn-+oo �Rn,d(ln, e) = 0 for 

all e E Ad. 
Next, we present the setup of the universal compression 

with common side information at the encoder and the de

coder. Let � � {e(i)}:l denote the set of K � I�I 
parameter vectors of interest where e(i) E Adi is a di-

dimensional parameter vector. Note that we let K determin

istically scale with n. Let dmax � limn-+oo sup{ dl, . . .  , dK} 
denote the maximum dimension of the parameter vectors, 

where we assume that dmax exists and is finite. Further, let 

d � {dl, . . .  , dK}. We assume that for any d < d', we have 

Ad CAd" and hence, � consists of K points on the space 

Admax• 
In this setup, we assume that Vi E [K], we have e(i) = 

(eii) , e�i), . . .  , e�:») are iid and chosen at random according 

to the least favorable prior on the di-dimensional parameter 

space Adi. This is to ensure that the analysis holds for 

the prior that maximizes the average redundancy. In this 

setup, as in Fig. 1, the source is a mixture of K parametric 

sources fLO(1) , . . .  ,fLO(K), where for all i E [K], e(i) is a di-

dimensional unknown parameter vector. For the generation of 

each sequence of length n, the generator source is selected 

according to the probability law w = (WI, . . .  , W K ) from the 

mixture, i.e., �. In other words, p(el�) = L�l WiO(e -
e(i»), where e(i) follows the least favorable prior on Ad; and 

Wi is the probability that the sequence is generated by source 

e(i) in the mixture. Please note that the random set � (which 

is unknown a priori) is randomly generated once according 
to the least favorable prior and is used thereafter for the 

generation of all sequences from the mixture source. Let S be 
the random variable associated with the source index, which 

follows the distribution w over [K], i.e., P [S = i] = Wi. 

Then, by definition, given � we have e = e(S). Unlike � 
that is generated once and used thereafter for the generation 

of sequences, S is chosen with the distribution w every time 

a new sequence is generated. Let the mixture entropy H(w) 
be defined as H(w) = - LiE[Kj Wi log Wi.] 

We consider the following scenario. We assume that, in 

Fig. 1, both the encoder E and the decoder D have access 

to a common side information of T previous sequences 

(indexed by [TD from the mixture of K parametric sources, 
where each of these sequences is independently generated 

according to the above procedure. Let m � nT denote 

the aggregate length of the previous T sequences from the 

mixture source.2 Further, denote yn,T = {yn(t)} i'=1 as the 

set of the previous T sequences shared between E and D 
as side information, where yn(t) is a sequence of length n 
generated from the source eS(t) and S(t) follows w on [K]. 
In other words, yn(t) rv fLo(S(t». Further, denote S as the 

vector S = (S(l), ... , S(T)), which contains the indices of 

lWe define entropy H(r) for any vector r such that 2:i ri = 1 in the 
same manner throughout the paper. 

2For simplicity of the discussion, we consider the lengths of all sequences 
to be equal to n. However, most of the results are readily extendible to the 
case where the sequences are not necessarily equal in length. 
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the sources that generated the T previous side information 

sequences. 

Let [(xn, yn,T) denote a generic length function that 

utilizes the side information yn,T in the compression of a 

new sequence xn. Please note that decoding is performed 

using a function dn : ({D, l}*, AnxT) -+ An that utilizes 

the side information sequence yn,T as well. The objective 

is to analyze the average redundancy in the compression 

of a new sequence xn that is independently generated by 

the same mixture source with source index Z (which also 

follows w). We investigate the fundamental limits of the 

universal compression with side information yn,T that is 

shared between the encoder and the decoder and compare 

with that of the universal compression without side infor

mation of the previous sequences. It is straightforward to 

verify that H(xnlyn,T) and H(xn) for different values 

of the sequence length n, memory (side information) size 

m = nT, the weight of the mixture w, and the dimensions of 

the parameter vectors d serve as two of the main fundamental 

limits of the compression, which seek the minimum number 

of bits required to represent a random sequence xn when 
yn,T is present as side information or not. 

III. FUNDAMENTAL LIMITS OF UNIV ERSAL 

COMPRESSION FOR MIXTURE SOURCES 

In this section, we state our main results on the fundamen

tal limits of universal compression for mixture sources with 

and without side information. In order to see the impact of 

the universality and side information on the compression per

formance, i.e., to investigate the impact of � being unknown, 

we will need to analyze and compare the average codeword 

length of the following important schemes described in the 

sequel. 

• Ucomp: Universal compression, which is the conven

tional compression based solution that does not utilize 

the memory. In this case, H (xn) determines the fun

damental limit of the universal compression. 

• UcompSM: Simple universal compression with side 

information (common memory between the encoder and 

the decoder), which treats the side information as if it 

were generated from a single parametric source. 

• UcompPCM: Universal compression with perfectly clus

tered side information (based on the source indices), 

which assumes that the source indices of the side 

information sequences are labeled, and hence, only the 

relevant side information is used toward the compression 
of a new sequence. In this case, H(xnlyn,T, S, Z) 
determines the fundamental limit of the universal com

pression.3 

• UcompOM: Optimal universal compression with side 

information, which optimally utilizes the side informa

tion sequence yn,T to minimize the average redundancy. 

In this case, H(xnlyn,T) determines the fundamental 

limit of the universal compression. 

3Please note that UcompPCM scheme is not practically interesting as the 
index labels S and Z of the sequence is usually not available. 

• UcompCM: Universal compression with clustering of 

the side information, which is the practical clustering

based scheme proposed in this paper and shall be 

described in Section IV. 

In [15], we exactly characterized the performance (average 

codeword length) of the abovementioned schemes(except 
UcompCM as it is just one example of a practical algorithm 

presented in this paper). We restate the main findings here 

and refer the interested reader to see [15] for the details of 

the results and the proofs. 

Theorem 1. In the case of Ucomp, we have 

K dmax 
d H(xn) = L WiHn(e(i)) + L "2Vd logn + 0 (1) a.s. 

i=l d=l 

Remark. According to Theorem 1, in the universal compres

sion of a sequence of length n from the mixture source, the 

main term of the redundancy scales as the weighted average 

of � logn terms. This can be significantly large if H(Wd) 
is much smaller than � log n. Again, if K = 1, we have 

H(xn) = Hn(e) + � logn + 0(1); this is exactly the well

known behavior of the average codeword length in the case 

of one unknown d-dimensional source parameter vector. 

Theorem 2. In the case of UcompOM, we have 

K dmax K 

H(xnlyn,T) = L WiHn(e(i)) + L Vd L Wd,iRd,i 
i=l d=l i=l 

+0 (Jr + �) a.s., 

where Rd,i is given by 

A d ( n ) Rd,i = - log 1 + -,-- . 
2 Wd,im (3) 

Remark. Theorem 2 characterizes the redundancy of the 

optimal universal compression scheme with side information, 

which uses a memory of size m = nT (T sequences of 

size n) in the compression of a new sequence of length n. 
It is natural to expect that the side information will make 

the redundancy decrease. The redundancy of the Ucom

pOM decreases when H(w) or roughly K is sufficiently 

small. Again, K = 1, gives H(xnlyn,T) = Hn(e) + 
� log (1 + {:!:;,) + 0 (� + Jr ) , which was also characterized 

in [11]. 

Next, we state the most important conclusion that is drawn 

from our results, which also happens to be the main moti

vation for us to perform clustering of the network data for 

achieving better memory-assisted compression performance. 

Theorem 3. The peiformance of UcompOM and Ucomp

PCM are almost surely asymptotically equivalent. That is, 
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Remark. This is indeed a significant result with signifi

cant implications. It states that the performance of optimal 

universal compression with side information (UcompOM), 

which uses a memory of size m = nT (T sequences of 

size n) in the compression of a new sequence of length n 
is equal to that of the universal compression with �erfectlY 

clustered memory (UcompPCM) up to 0 ( Jr + � terms. 

Hence, when T is sufficiently large, we expect t at both 
have the same performance. This indeed demonstrates that 

clustering is optimal for the universal compression with side 

information. As such, we pursue the clustering of the side 

information (i.e., memory) in this paper in Section IV. 

IV. PARAMETRIC CLUSTERING FOR MIXTURE MODELS 

In this section, we present the parametric clustering so

lution for network packets. The K-means algorithm can be 

used for this purpose provided that proper feature space and 

distance metrics are selected. 

A. Feature Extraction 

Feature extraction deals with extracting simpler descrip

tions for a large set of data that can accurately describe char

acteristics of original data. For memory less source models, 

the frequency of each alphabet in the sequence defines an 

empirical probability density distribution vector which also 

happens to be the sufficient statistics. Although for more 

sophisticated source models, the empirical probability distri

bution of the packets is not a sufficient statistics anymore as 

collisions may occur between different parametric sources in 

the marginal symbol distribution, the empirical probability 

distribution would still match for packets from the same 

source. In this paper, we choose the vector of the empirical 

probability distribution as our features and since we work at 

the byte granularity (i.e., IAI = 256), the feature vector is 
255-dimensional. Please note that the chosen feature space is 
not necessary optimal but simulations confirm that it works 

well in practice for packets of size 1,500 bytes. 

B. Clustering 

As discussed earlier in Section II, we have a side infor

mation sequence of packets yn,T that consists of T packets 

that originated from a mixture source model. The goal is to 

classify the packets into K different clusters without knowing 

K. Intuitively, we can think of a cluster as a group of packets 

that are close to each other in some space defined by a 

distance metric when compared with the distances to points 

outside of the cluster. In this paper, we choose to use the 

Euclidean distance metric between any two packets. Please 

note that Euclidean distance metric is not necessarily the 

optimal metric for the purpose of clustering of network pack

ets. For each packet yn(t), we introduce a binary indicator 

btk E {O, 1} (where k = 1, . . .  , K) that describes which 

of the K clusters the packet yn(t) is assigned to, so that 

if packet yn(t) is assigned to cluster k then btk = 1, and 

bik = 0 for i i=- k [16]. We can define an objective function 
as k K 

J = L L bik Ilyn(t) - ukll, 
i=1 k=1 

3.5 ,..-----------------, 
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Fig. 2. Average compression-rate for a mixture of five memoryless and 
five first-order Markov sources. 

which represents the sum of the distances of each packet to 
its assigned vector Uk. where Uk is the probability distribution 

vector of the symbol set. The goal of clustering algorithm is 

to find values for the {bid and the {ud that minimize J. 

C. Classification 

Once the clustering of memory is performed, to compress 

a test packet xn, we need to classify the packet to one of the 

K clusters. Then we use the assigned cluster of packets as 

the side information to compress xn. The test packet xn is 

assigned to the closest cluster by function 

b = arg min Ilxn - ujll. l -:;j-:;K 
v. SIMULATION RESULTS 

The simulations are divided to two parts. In the first part, 
we generate mixture sources and validate our theoretical 

findings. Next, we also present results of simulation on real 

network traffic traces. 

A. Simulations on Man-Made Mixture Models 

In order to validate the theoretical results of the paper, we 

chose to use a mixture of parametric sources as the content

generator for the traffic. In particular, we used a mixture of 

five memoryless and five first-order Markov sources on 256-

ary alphabet (IAI = 256). Each packet is selected uniformly 

at random from the mixture source. Consequently for a 

memory less Markov source the number of source parameter 

d is 255, and for a first-order Markov source d is 256 x 255 

which is the number of independent transition probabilities. 

For short-length sequences, we generate 18,000 packets at 

random from this source model, where each packet is 1,500 

bytes long. Then, we use 200 packets from each source as 

test packets for the purpose of evaluation. 

Figure 2 demonstrates the results of the simulation on 

man-made data generated from the described mixture source. 

Users Ul through US are memoryless whilst users U6 

through UlO are first-order Markov sources and the memory 

is comprised of the mixture of these 10 years. We use lite 

PAQ-based compression for Ucomp, UcompSM, UcompCM, 

and UcompPCM. Please note that lite PAQ is a very effective 

compression scheme which performs better than the well

known Lempel-Ziv [17] and context tree weighting [6] al
gorithms. As can be seen, lite PAQ is already doing a poor 

job when the sequence is from a first-order Markov demon

strating the need for memory-assisted compression. This is 
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Fig. 3. Average compression-rate for the data gathered from the mixture 
of 10 network users. 

TABLE I 
THE AVERAGE COMPRESSION RATE (BITS/BYTE) AND AVERAGE TRAFFIC 
REDUCTION (%) OF DIFFERENT COMPRESSION SCHEMES ON THE REAL 

NETWORK TRAFFIC TRACES USING LITE PAQ. 

Scheme Avg. Compo Rate Avg. Traffic Reduc. 
Ucomp 6.62 17.2% 
UcompSM 4.53 43.4% 
UcompPCM 3.93 50.9% 
UcompCM 3.50 56.2% 

also in agreement with the predictions from [8], [9]. We can 

see that UcompPCM is consistently better than UcompSM 

and UcompCM as it is the optimal way of classification 

and clustering, however, UcompPCM is impractical in most 

scenarios. 

B. Simulations on Real Network Traces 

Next, we perform experiments on data gathered from 10 

wireless users using real network traces. We chose to mix the 

data from these 10 users in order to simulate the situation that 

occurs in an intermediate router that is serving these users. 

Again, the total number of packets in the memory are 18,000 

packets at random from this source model. Then, we use 200 

packets from each source as test packets for the purpose of 

evaluation and average out the result. 

Figure 3 contains the average compression-rate on these 

data. Please note that we slightly abused the notation and used 

UcompPCM for compression based on the user from which 

the data is gathered (and not the unknown content-generating 

source). Here, indeed we do not have access to anything other 

than the user ID. As can be seen, UcompCM, which is the 

cluster-based memory-assisted compression presented in this 

paper, consistently outperforms all other schemes as data 

from one user is not necessarily from one source. Table I 

demonstrates the average compression-rate over all the 10 

users as well the average traffic reduction achieved in this 

scenario. As can be seen, while lite PAQ (which is one of 

the very best compression algorithms) only offers 17% traffic 

reduction on average for the data gathered from these 10 

users, by using cluster-based memory-assisted compression 

more than 50% traffic reduction is achieved. Furthermore, 

clustering an additional 5% improvement over the situation 

where the data from the users are clustered according to the 

user they are destined to. This confirms that the data destined 

to a single user are not necessarily from the same content

generating source. 

VI. CONCLUDING REMARKS 

In this paper, we studied the problem of memory-assisted 

network packet compression from a theoretical point of 
view. We compared several different possible schemes for 

memory-assisted compression of mixture sources and proved 

that cluster-based memory-assisted compression is indeed 

optimal. We provided a simple clustering algorithm based 

on K-means clustering for memory-assisted compression of 

network packets. Our simulation results validated the effec

tiveness of the clustering for memory-assisted of network 

packets in practice. Currently, we are investigating the the 

proper distance metric, clustering method, and feature space 

that can further improve the performance of the cluster-based 

memory-assisted compression. 
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