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Abstract—With the explosive growth of the Internet traffic,

data compression can be a powerful technique to improve the

efficiency of data transfer in networks and consequently reduce

the cost associated with the transmission of such data. Recently,

we proposed a memory-assisted compression framework that uti-

lizes the packet-level memorized context to reduce the inevitable

redundancy in the universal compression of the payloads of the

short-length network packets. In this paper, we investigate the

practical aspects of implementing cluster-based memory-assisted

compression and proposed a non-parametric clustering algorithm

for training packet selection. We demonstrate that, when com-

pression speed is not an issue, our proposed non-parametric

clustering algorithm with Lite PAQ compression algorithm can

achieve nearly 70% traffic reduction on real data gathered

from Internet traffic. We also explore the trade-off between

the memory-assisted compression speed and performance using

different clustering algorithms and compression methods.

Index Terms—Memory-Assisted Compression; Networking;

Redundancy Elimination; Non-parametric Clustering.

I. INTRODUCTION

The very high amount of data traffic produced and transmit-
ted daily around the world call for new techniques to reduce
the considerable amount of redundancy in the traffic. Recent
studies confirm that most of this redundancy is present at the
packet level [1], [2]. In other words, packets generated by
the same or different sources and destined to the same or
different clients contain significant cross-packet correlation.
Universal compression has undergone a lot of developments
in the past few decades [3]–[10]. However, for an IP packet
with a length only approximately 1500 bytes, the state-of-
the-art compression techniques, e.g., context tree weighting
(CTW) [11], [12], are inefficient in capturing the redundancy
in data as compression performance primarily depends on the
sequence length (cf. [7], [13] and the references therein). In
other words, there is a significant penalty with respect to what
is fundamentally achievable when we attempt to universally
compress a finite-length packet [13]. On the other hand, many
of the packets share common context that can be exploited
for better compression. It is very desirable to encode and
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compress each individual delivering packet more efficiently
by utilizing the dependency across multiple packets and side-
information provided from the memory. Therefore, a protocol-
independent and content-aware network packet compression
scheme is required for removing the data redundancy.

Thus far, many researchers have investigated the opportu-
nities for eliminating the redundancy in the network packets
by equipping some nodes in the network with memorization
capability in order to perform better packet-level redundancy
elimination via deduplication (cf. [14]–[18]). However, there is
even more space to improve beyond the simple deduplication
if we look into the statistical redundancies within a packet
as well as significant dependencies that exist across packets.
These statistical redundancies can potentially be suppressed
using statistical compression techniques.

In [1], [19], we developed a framework for compression
of small sequences, called memory-assisted compression and
introduced its potential application in network compression.
In memory-assisted framework, compression of a sequence is
performed using a memory of the previously seen sequences.
Consequently, every sequence can be compressed far bet-
ter compared to the case that the sequence is compressed
on its own without considering the memory. We showed
that memory-assisted compression has significant potential
for removal of the redundancy from network packets. To
realize memory-assisted compression in the network, in [2],
we investigated clustering for data compression and proposed
a clustering algorithm based on Hellinger distance metric
in the context of memory-assisted compression. In [20], we
further provided theoretical justification as to why clustering
is optimal in the context of memory-assisted compression.
However, it remained an open problem as to provide the
optimal combination of clustering algorithm and compression
method for memory-assisted compression that works effi-
ciently in practice. In this paper, we explore the combination of
different compression methods as well as clustering algorithms
and describe the benefits of each for a given application. In
particular, we present an effective non-parametric clustering
algorithms for memory-assisted compression which eliminates
the need for knowing the number of clusters in advance.

The rest of this paper is organized as follows. In Sec-
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tion II, we present the necessary background on universal
compression. In Section III, we provide an applicable module
framework and key design elements for memory-assisted data
compression with clustering. In Section IV, we discuss the
feature extraction and distance metric for network packets.
In Section IV, we propose a non-parametric clustering algo-
rithm for training packets selection from common memory. In
Section V, we provide simulation with real network traces
with different schemes demonstrating the effectiveness of
the proposed non-parametric clustering. Finally, Section VI
concludes this paper.

II. BACKGROUND REVIEW AND RELATED WORK

In this section, we first briefly review the necessary back-
ground and previous work on the memory-assisted compres-
sion. Let a parametric source be defined using a d-dimensional
parameter vector µ

✓

= (µ1, ..., µd

) 2 � that is a priori un-
known, where d denotes the number of the source parameters
and ✓ = (✓(1), ..., ✓(K)

) is the K-source mixture randomly
generated from the source parameter vector space �.

Let Xn

= {x1, x2, . . . , xn

} denote sample packet with
length n from the mixture source model ✓. Denote Yn,T

=

{yn(t)}T
t=1 as the set of the previous T sequences shared

between compressor and decompressor, where yn(t) is a
sequence of length n generated from the source ✓P (t). In
other words, yn(t) ⇠ ✓(P (t)). Further, denote P as the
vector P = (P (1), ..., P (T )), which contains the indices of
the sources that generated the T previous side information
sequences.

Most of the universal compression schemes are strictly
lossless codes, namely, Lempel-Ziv [21], [22], CTW algo-
rithm [11] and Lite PAQ algorithm [23]. We assume that, in
Fig. 1, both the compressor and the decompressor have access
to a common side information of previous packet sequences
yn,T from the mixture of K parametric sources, where each
packet is independently generated according to the above
procedure. We discuss the following four data preprocessing
schemes of compression performance of sample packet Xn in
the following.

• Ucomp: Universal compression, which is the conven-
tional compression based solution without utilizing mem-
ory.

• UcompSM: Universal compression with simple memory
(common memory between the compressor and the de-
compressor), which treats the side information as if it
were generated from a single parametric source.

• UcompPCM: Universal compression with perfectly clus-
tered memory (based on the source indices), which as-
sumes that the source indices of the side information
sequences are labeled, and hence, only the relevant side
information is used toward the compression of a new
packet.1

• UcompCM: Universal compression with clustered mem-
ory. This utilizes the non-parametric clustering-based

1Please note that UcompPCM scheme is not practically interesting as the
source indices P of the sequence is usually not available.
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Fig. 1. Architecture of the memory-assisted compression module with
clustering at data source.
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Fig. 2. Data decompression module architecture at the last hop node.

scheme to select useful memory, which will be described
in Section IV.

In the case of universal compression, the single packet alone
without knowing any memory. The expected code lengths is
given in [20] by

H(Xn

) = H
n

(✓) +
d

2

log n+O(1). (1)

In case of universal compression with clustered side infor-
mation, the compression is trained with packets from the same
source. In [20], the conditional entropy of Xn is given by

H(Xn|Yn,T

)=H
n

(✓)+
d

2

log

✓
1+

nK

m

◆
+O

✓
1

n
+

1p
T

◆
, (2)

where H
n

(✓) is the entropy of source model ✓. The compressor
uses a memory of size m = nT (T packets of size n) to
compress a new sequence of length n from X . This indicates
the optimal compression rate for compression of packet with
T/K training packets from the same one source model.

Hence, when T is sufficiently large, we expect that Ucom-
pCM has the same performance as (2) indicates. This indeed
demonstrates that clustering is optimal for the universal com-
pression with side information [20]. As such, we pursue the
clustering of the side information (i.e., memory) in Section IV.

III. MEMORY-ASSISTED DATA COMPRESSION MODULE
WITH CLUSTERING

This section elaborates the detailed design of 3.5 layer data
compression system, which implements the memory assisted



compression of real data transmission between data source
and data destination. We first describe system deployment
and motivational scenarios, and then discuss the details of the
system.

A. Module Deployment

As we know for traditional five-layer architecture of cellular
core network, our memory-assisted data compression system
with clustering is a 3.5 layer module deployed between the
network layer and transport layer. At network layer, the
compressor at the content generator server extracts IP payload
as input, and encapsule compressed content to IP packet again
before sending to next hop. This compression system mainly
compresses the IP packets with lossless coding algorithm and
decompresses the packets at the last-hop switches or routers
prior to the final destination node, improving transmission
efficiency of down-link data. By saving volume of packets to
be sent, large redundancy in networks can be reduced. Taking
General Packet Radio Service (GPRS) cellular network as
an example, the Serving GPRS Support Node (SGSN) pool
works as data source, while the Base Station is taken as
data destination. Another example is the backbone network of
Google’s network infrastructure, compression can also reduce
redundancy in traffic from data center to Edge Point of
Presence. Please note that data transmission in the backhaul
comprises a large chunk of Google’s overall costs.

B. Module Architecture and Operations

Fig. 1 shows the data source architecture. The compression
at data source is divided into two stages, which are named of-
fline clustering stage and online training selection stage. First,
common memory packets are partitioned into different clusters
for maximum compression performance. Second, for every
new sample packet, memory packets sharing similar statistical
properties are clustered together as a side information for
compression of sample packet (referred as training selection).
After compression with proper information, the compressor
returns both the indices of clusters and the codeword for the
compressed sequence as the new payload of IP packets.

Fig. 2 illustrates the data decompression operations. The
data destination accomplishes the procedures of compression
in reverse order. With access to the common memory and the
indices of associated clusters given by received compressed
packet, the decompressor recovers the original content by in-
dexing training clusters and distributes it to receivers according
to IP header.

C. Key Concerns for Implementation

The proposed memory-assisted compression uses data clus-
tering to accomplish selection of useful training data. Before
delving into the details of the algorithms, we need to discuss
the key problems to be solved to achieve the optimal com-
pression performance in practice. These will be discussed in
detail in the future sections of the paper.

1) Training Packet Selection Algorithm: Theoretically, the
optimal training set for compressor is the combination of pack-
ets generated from the same source model [20]. In other words,
we need to select the cluster that contains the packets from
the same source model as the sample packet to be compressed.
This requires dividing the data packets into groups (clusters)
so as to be able to assign each new sample packet to the
optimal cluster for efficient compression.

2) Selection of the Compression Method: Traditionally,
dictionary-based compressors are applied to compress data
in telecommunication systems for their high speed in online
computation. Statistical compression has superior performance
but has a slower speed. We comprehensively compare the
performance of both compressors with different schemes in
section V.

IV. TRAINING PACKET SELECTION ALGORITHM

In this section, we present two algorithms to accomplish
packet-level clustering and selection of training packets to
be fed to the compressor for memory-assisted compression.
Before the introduction of algorithms, we firstly describe the
infinite mixture source model and related aspects of training
packet selection, including feature extraction and distance
metric.

In real world networks, the number of sources in mixture
model is not generally known. In this paper, we relax the
assumption that we have the priori information about the
clusters of the mixture source that was made in [2]. To address
this problem, an infinite mixture model is used to represent the
data sequences as

p (z�) = lim

m!1

mX

i=1

w
i

�
⇣
z � ✓(i)

⌘
, (3)

where w
i

is the probability that the packet is generated by
source model ✓(i) in the mixture, and m denotes the number
of all possible data models from source set �.

Feature extraction deals with generating simple descriptions
for a large amount of data that can accurately describe charac-
teristics of original data. In networks, characters are encoded
via 8 bits or a multiple of 8 bits binary sequences (i.e., byte
granularity). To deal with mixture source model, we choose
a 256-symbol set as the minimum character unit for cluster
analysis.

To measure the similarity between the packets, we select the
Hellinger distance metric to quantify the similarity between
two probability distributions. For any two discrete probability
distributions P and Q, Hellinger distance is given by

H (P,Q) =

1p
2

vuut
255X

i=1

⇣p
P
i

�
p
Q

i

⌘2
, (4)

Please note that Hellinger distance is a generalized form of the
relative entropy (which is not a distance metric) and naturally
coincides with the redundancy in the universal compression,
which is our performance metric of interest.



A. k-Means Clustering Algorithm

Suppose the total number of clusters is given by K. Then, k-
Means [24] clustering algorithm partitions the memory into K
clusters by trying to minimize the total distance of the packets
inside the clusters from their respective cluster centers. Then,
the cluster with shortest distance from the sample packet X

n

is assigned as the training for compression. Please refer to [2]
for a detailed explanation of the clustering and classification
using k-Means algorithm.

There are two major drawbacks in compression using k-
Means clustering algorithm. First, the prior parameter of mix-
ture source model needs to be known. Second, the performance
and speed of the compressor both suffer from the large scale
classified training set.

B. Non-Parametric Clustering Algorithm

K-means clustering algorithm can successfully cluster data
packets in the ideal situation with static number of source
model mixture. However, this algorithm can break down when
the number of users are not able to predict the number of
clusters correctly, especially for the infinite mixture source
model in real world networks.

To cluster packets without knowing prior parameter of
mixture source model , we propose a dynamic non-parametric
clustering method. We partition memory into m small sub-
clusters S = {s1, . . . , sm}. Each sub-cluster consists of about
T/m neighboring packets with the minimum variance.

Algorithm 1 Non-Parametric Clustering Algorithm
Compute empirical PDF vectors {d

i

}
Compute sub-clusters S = {s1, . . . , sm}
for Incoming packet Xn

do

Compute distance ||Xn � s
i

||
Current sub-cluster set C = S
while training pkt num<min training num do

if s
closesti = min

si2C

||Xn � s
i

|| then

Training set Q = Q [ {s
closesti}

Index set T = T [ {closest
i

}
training pkt num update
Remove s

closesti from C = {s1, . . . , sm}
end if

end while

Return Q and T
end for

As soon as the fine-grain sub-clusters are produced, the
construction of the training packet set can be under process.
Each sub-cluster is represented by the mean value of the
included vectors, the similarity between sample packet Xn

and sub-clusters is measured by the distance between Xn

and s
i

. After the initialization of the current sub-cluster set
C = S, the sub-cluster from set C nearest to Xn is merged
into the training set Q and is removed from C after merging.
In other words, the new dynamic training set Q is updated by

P = {s
⇡1 , . . . , s⇡K} , where

{⇡1,. . . ,⇡K

} = arg min

{⇡1,...,⇡K}⇢{1,...,T}

KX

i=1

||Xn � s
⇡i || (5)

and ⇡
i

6= ⇡
j

if i 6= j. Also, ||Xn � s
⇡i || represents the

distance between Xn and s
⇡i . The merging ends when the

expected number of training packets is reached. The actual
number of sub-clusters is fixed according to the minimum
number of packets requirement of compressor. Algorithm 1
elaborates the procedures of the non-parametric clustering for
selection of training packets.

In the real world case, when the feature space of data
packets scattered in a high dimensional(255-dimension) space,
the shapes of clusters are arbitrary, with varying densities.
Especially, when the sample data packet is among none of the
clusters, the performance of K-means clustering will be badly
influenced. This non-parametric clustering algorithm take this
characteristic of real world data as the basic assumption. By
merging sub-clusters nearby, it can effectively collect most
useful training data with appropriate consistency for sample
packet compression. Besides, without giving the accurate
number of clusters in advance, the non-parametric clustering
algorithm achieves impressive improvement compared to K-
means clustering. All the detailed simulation in next session
will elaborate the performance of the proposed algorithm.

V. SIMULATION AND EVALUATION

In this section, we present simulation results to demonstrate
the performance of the proposed memory-assisted compres-
sion system with non-parametric clustering and the overall
improvement of memory-assisted compression over universal
compression without memory. Furthermore, we discuss the
trade-off between compression speed and performance.

A. Simulations on Real Network Traces
For a realistic evaluation, we perform simulation with data

gathered from 20 different mobile users network traces in
real world. The data set was gathered by S. Sanadhya et al.
in [17]. First, we randomly generate packet sequences from the
27000-packet mixture of 15 users to construct the commonly
accessible memory for clustering. Then, 10 sample packets
from each of the 20 users (200 packets in total) are selected as
test packets. Note the test packets are distinct from the packets
used for training. Besides, there are 50 test packets that are
generated from the 5 users which are not used for the gener-
ation of the training packets and hence do not have packets
in the mixture memory. Average compression rate of each test
packet is taken as the compression performance metric. Please
note that each test packet is compressed separately. This is due
to the packets flow in networks is a combination of packets
from different sources and can not be simply compressed
together. The whole simulation setup is summarized in table I.

B. Packet Selection Algorithm Performance Comparison
To compare the overall performance of memory-assisted

compression with different clustering schemes, simulation
results are summarized in Table II.
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Fig. 3. Average compression-rate of Lite PAQ on real traffic data.
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Fig. 4. Average compression-rate of CTW on real traffic data.

TABLE I
SIMULATION SETUP SUMMARY

Case Value
Total Number of Users 20

Number of Users in Mixture Memory 15
Number Packets from Each User Data in Memory 1800

Total Number of Memory Data Packets 27000
Average Size of Each Data Packet 1KB

Approximate Size of Total Memory 25 MB
Number of Users for Performance Testing 20

Total Number of Test Packets 200
Distance Metric Hellinger Distance

Clustering Algorithm K-means, Non-parametric
Compression Algorithm Lite PAQ, CTW, Gzip

We choose packet selection with two algorithms, namely,
k-Means clustering algorithm and non-parametric clustering
algorithm. According to Table II, non-parametric clustering
achieve very similar performance, around 8% better than
k-Means clustering. Besides, non-parametric clustering does
not require to know the number of clusters in advance like
k-Means clustering. By using ball tree data structure [25],
the computational cost of nearest sub-clusters search is
O(N log(N)), where N is the number of sub-clusters. The
average size of training packets selected by K-means cluster-
ing is around 1800 packets whereas around 200 packets by
non-parametric clustering. With smaller-sized training packet
selected by non-parametric clustering algorithm, the compres-
sion speed is 9 times quicker than that of K-means clustering.
As the average size of clusters generated from K-means is 9
times larger thank the non-parametric counterpart.

TABLE II
AVERAGE COMPRESSION RATE WITH DIFFERENT CLUSTERING SCHEMES

Ratios (bits/byte) k-Means Non-parametric
Hellinger 2.63 2.42

Through comparison of performance of both clustering
algorithm, proposed non-parametric clustering algorithm is
proved to be more effective in network traffic redundancy
reduction than referenced K-means clustering algorithm for
real world data.

C. Memory-Assisted Compression Performance Evaluation

To demonstrate the impact of the side information on the
compression performance, we analyze the average codeword
length of the four important schemes (UcompPCM, Ucom-



TABLE III
THE AVERAGE TRAFFIC REDUCTION (%) OF DIFFERENT COMPRESSION

SCHEMES ON THE REAL NETWORK TRAFFIC TRACES.

Avg. Traf. Red. UcompPCM UcompCM UcompSM Ucomp
Lite PAQ 65.47 % 69.62 % 59.37 % 41.77 %
CTW 52.36 % 65.32 % 51.83 % 36.29 %
Gzip 44.80 % 60.79 % 38.12 % 24.87 %

pCM, UcompSM, and Ucomp) discussed in Section II. Fig. 3
and Fig. 4 illustrate the average compression-rate on these data
with Lite PAQ compressor and CTW compressor, respectively.

As can be seen, universal compression without help of
any memory packets (Ucomp) results in longest average code
lengths which verifies the penalty of finite-length compression
described in [13]. UcompCM, which is the cluster-based
memory-assisted compression, consistently outperforms all
other schemes. It is worth noting that for the data from
users which are not necessarily from mixture source model
(user T1,..., T5), non-parametric clustering still achieves im-
pressive improvement compared to simple memory assisted
compression UcompSM. Compression with memory of user’s
previous packets UcompPCM sometimes performs well while
it sometimes performs poorly due to the fact that the user data
possibly comes from variant source models. In general, clus-
tering algorithm is applicable to both Lite PAQ compression
and CTW compression with impressive improvement.

Table III presents the average traffic reduction over all the
fifteen users with different compression algorithms. Using the
non-parametric clustering scheme, we compare the overall
improvement of both dictionary-based compressor (Gzip) [26]
and statistical compressor (Lite PAQ and CTW). As can be
seen, Lite PAQ (which is close to the state-of-the art in
compression) achieves nearly 70% traffic reduction and CTW
achieves 65% reduction. With more than 65% traffic reduction,
statistical compression outperforms dictionary-based compres-
sion, which offers 60% reduction. However, dictionary-based
compression tends to have ten times higher compression
speed. Wireless applications tolerate more latency compared
to the wired networks. Hence, statistical compression is more
suitable for wireless data compression while dictionary-based
compression is likely to be employed in wired networks.

VI. CONCLUSION

In this paper, the clustering-based memory-assisted com-
pression system is investigated. Via experimentation on real
traces, we show that our proposed non-parametric clustering
memory-assisted compression with Lite PAQ algorithm is
indeed the most effective method among all clustering-based
memory-assisted compression schemes, achieving nearly 70%
traffic reduction in real network data. Finally from comparison
with Gzip compression, we discuss the trade-off between
compression speed and performance according to the char-
acteristics of networks.
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