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Abstract—Recently, we proposed wireless network compression
via memory-enabled overhearing helpers as an endeavor to
reduce the traffic load on the wireless gateway via elimination of
the redundant data in the network. In this setup, each memory-
enabled helper overhears the data packets previously sent by the
wireless gateway to various mobile clients within its coverage
and uses them toward forming a model about the content of the
packets from the traffic. The resulting model is then used as side
information by the wireless network compression module in a
two-part code to reduce the overall cost of delivering a packet
to a client over links with asymmetric cost (where the helper-
client link is far less costly than the gateway-client link). One
main challenge in this scenario is the fact that memory-enabled
overhearing helpers do not receive all of the sequences sent to the
mobile clients (as there is no feedback in place in the overhearing
link), resulting in mismatched side information between the
encoder (i.e., gateway) and the helper. In this paper, we present
an information theoretic formulation for the mismatched side
information problem. We study this problem in the context of
universal lossless compression and derive bounds on the average
minimax redundancy of encoding each packet. Our results also
lead to construction of coding schemes for the mismatched side
information using two-part codes.

Index Terms—Wireless Networks, Mismatched Side Informa-
tion, Memory-Assisted Compression, Redundancy Elimination.

I. INTRODUCTION

Mobile data efficiency is very important in wireless com-
munication. Hence, mechanisms that reduce the amount of
transmitted data can considerably impact wireless networks.
Redundancy elimination at the packet-level is a promising ap-
proach for reducing wireless network traffic since experimental
studies over real-world wireless traffic demonstrate 50% inter-
client repetition among the segments of the packets [1],
[2]. This repetition is due to the fact that packets that two
mobile clients download from a server (source) can be highly
correlated. It is important to note that existing solutions, such
as application-layer caching and even deduplication within one
data flow are ineffective to cope with the redundancy that
exists mostly at the packet level and across several clients.
This motivates the study of solutions that aim at learning the
source statistics in the network and use that learning toward
compression of new packets from all flows.

In [3]–[6], we took the first steps towards characterizing
the achievable benefits of exploiting the packet redundancies
beyond simple repetition suppression (i.e., deduplication).
Data compression and source coding are natural candidates for
this task. However, traditional compression techniques would
be ineffective in the elimination of the redundancy within
a small network packet [7]. Further, traditional compression
methods cannot leverage the redundancy across clients; as

they compress each packet independent of the other packets.
In [3]–[6], we formulated the redundancy elimination as net-
work compression via network memory and introduced a new
framework for compression of network data called memory-
assisted compression in wired networks.

In [8], [9], we proposed wireless network packet compres-
sion via memory-enabled overhearing helpers, where the gain
of memorization and memory-assisted compression is more
spelled out. The memory-enabled helpers are small, possibly
cooperative nodes with sufficiently large storage space, which
is used for the memorization of the overheard packets previ-
ously transmitted from the wireless gateway to mobile clients.
The overhearing capability of helper nodes comes at no cost
(in terms of bandwidth usage) and eliminates the need for
backhaul connectivity while offering throughput enhancement
by off-loading the gateway. In a nutshell, the overhearing
helper forms the source model by learning from the overheard
traffic. Then, in the compression of a new packet, a two-
part coding strategy is employed, where the source model is
sent from the overhearing (helper) node to a mobile client to
supplement (as side information) the compressed data that is
transmitted from the wireless gateway to the mobile client;
enabling the client to decompress the codeword and recover
the packet. Since the communication in the link between
the helper and the client is by far less costly than that of
the wireless gateway and the client, the proposed network
compression via overhearing nodes, by design, reduces traffic
on the latter link.

An important challenge that was not considered in [8], [9] is
the impact of mismatch between the decoder side and the en-
coder side information. The error-prone wireless environment
makes it difficult to guarantee that the sender node and the
helper node (which has overheard the previous communication
of the source with other mobile clients) share the same model
of the information source. This is because the error recovery
mechanism is implemented between the source and the client
to which the packet is destined to, not the helper that only
overhears the communication. This results in a mismatch be-
tween the source model at the encoder and the decoder, which
in turn makes the memory-assisted compression challenging.
In this paper, we view the overhearing in the network as
an erasure channel, where a fraction E of the packets from
the entire previously sent packets to other clients are erased
due to overhearing at the helper. We analytically study the
impact of the mismatched side information on the wireless
network compression via memory-enabled overhearing nodes
and provide theoretical results on the performance of memory-
assisted compression in this scenario.
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II. BACKGROUND REVIEW ON UNIVERSAL COMPRESSION

Let S be a multinomial (memoryless) source over alphabet
A, with a (|A| − 1)-dimensional parametric vector θ which
takes values in Θ ⊂ <d, where d = (|A| − 1) denotes the
dimension of the unknown source parameter vector. One may
extend this model to a more realistic setup for real-world
sources by considering a mixture of parametric sources (with
memory) as studied in [6], [10]. Please note that the side
information (through memorized packets) primarily helps to
remove the universal compression overhead, which is already
significant for short memoryless sources.

Let xn = (x1, . . . , xn) be a sequence generated by the
source with probability µθ(x

n). In the absence of side in-
formation, xn is universally coded by c : An → {0, 1}∗
with the length function denoted by l(xn) that satisfies Kraft’s
inequality. Let Hn(θ) be the entropy of the parametric source
induced by µθ as given by

Hn(θ) =
∑
xn

µθ(x
n) log

1

µθ(x
n)
.1 (1)

The performance of the employed compression is measured
in terms of the average code redundancy, which is given
by R(l, θ) = E[l(Xn)] − Hn(θ). If the parameter vector
θ ∈ Θ was known, the ideal code length of a sequence xn,
obtained from the optimal code (ignoring the integer code
length requirement), would be − logµθ(x

n). On the other
hand, without the knowledge of θ, one has to encode the
sequence with a penalty term that is characterized by the code
redundancy. The average minimax redundancy, defined as

R̄(n,Θ) = min
l

max
θ∈Θ

R(l, θ),

is a performance measure for universal lossless coding
schemes. It is shown in [11], [12] that for a memoryless source
with d unknown parameters, we have

R̄(n,Θ) =
d

2
log
( n

2πe

)
+log

∫
θ∈Θ

|I(θ)| 12 dθ+O

(
1

n

)
, (2)

where |I(θ)| is the determinant of the Fisher information
matrix evaluated at θ.

Denote by R̄(w, θ) the expected redundancy of a universal
compression scheme with the prior w(θ) on Θ0 ⊂ Θ. A result
related to (2) is the following [13], [14]:

R̄(w, θ) =
d

2
log
( n

2πe

)
− logw(θ)+log |I(θ)| 12 +o(1), (3)

where the convergence is uniform in θ ∈ Θ0. Accordingly,
Jeffreys’ prior, defined as

wJ(θ) =
|I(θ)| 12∫

θ∈Θ0
|I(θ)| 12 dθ

, (4)

is maximin optimal. Note that Jeffreys’ prior is also minimax
optimal [15].

Finally, another important relationship that we use in this
paper is the following result by Gallager [16] which shows
that if µθ is a measurable function of θ, then

R̄(n,Θ) = sup
w(θ)

I(Xn; θ), (5)

1In this paper, E denotes the expectation operation using the probability
measure µθ . Further, log(·)’s are taken at base 2.
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Fig. 1. Illustration of network compression via overhearing helper M . The
memorized sequence ym represents the total past data from S to the clients
overheard by M . The overhearing channel is represented by dotted line.

where I(Xn; θ) is the mutual information between Xn and θ,
and w(θ) is the prior distribution on θ.

III. WIRELESS NETWORK COMPRESSION VIA
MEMORY-ENABLED OVERHEARING HELPERS

The idea of wireless network compression via overhearing
helpers is to deploy memory-enabled (non-mobile) helpers that
are capable of overhearing communication from the wireless
gateway to all the mobile clients inside the coverage area of
the wireless gateway. The overhearing comes at no extra cost
due to the broadcast nature of the wireless communication.
Although this can be applied to every cellular or WiFi access
network, one realization of such memory-enabled helpers can
be in femto-cell network design combined with traditional
macro-cell networks, as in [17]. Note that the backbone
connectivity of the helpers are not included in the problem
setup, first because the learning process of helper nodes is
performed only based on the overheard data which is available
for free and secondly, solutions that rely on helper connectivity
should include provisions to deal with intermittent connectivity
and the impact of the extra load imposed on the backbone.

Wireless network compression via memory-enabled over-
hearing helpers works as follows. Consider an example sce-
nario involving a single wireless gateway S, a mobile client
C and a helper M as in Fig. 1. In a real-world scenario, the
node S is wireless gateway (or tower) that is connected to the
Internet or the network backbone and transmits the packets to
clients in unicast sessions. In our abstraction of the problem,
node S may be viewed as a parametric source that sends
independent sequences of length n to the clients in the cell.
However, the source parameter is unknown to S and clients.
Now, assume that several sequences (packets) have already
been destined to some other clients via unicast from S, but due
to the broadcast nature of the wireless environment, the helper
M also overheard a subset of these sequences. Let ym denote a
sequence of length m, which is formed by the concatenation
of all previously sent sequences to the other clients by S.
Throughout this paper, we assume that n

m = o(1),2 i.e., the
length of the memorized sequence is sufficiently large.

Next, S wishes to send a new sequence xn to C. Recall that
the traffic (i.e., the packets) destined to different mobile clients
from the gateway S are highly correlated. Therefore, the
memory-enabled overhearing helper M can learn the source
model by estimating the unknown source parameter by using
the overheard packets from the past communication between
the cell tower (or the WiFi access-point) and mobile nodes.

2f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n)

= 0.
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Fig. 2. The model abstraction of compression problem with mismatched side
information.

This extracted source model can then be used as a side infor-
mation (if provided to the client) improving the compression
performance on the future traffic from the gateway S to any
new mobile client C. In other words, the memory-enabled
helpers can possibly help to reduce the transmission load of the
wireless gateway by transmitting the side-information about
the data traffic to the clients using a less costly memory-client
M -C link.

In absence of erasure caused by overhearing, S and M
would share a common side information ym. Let zm be the
resulting sequence from overhearing ym by the overhearing
helper node M in Fig. 2. Due to channel erasures, a subset
of the symbols in zm are marked as erased. In this paper, we
assume that both encoder (at S) and decoder (at M ) know
the length of side information, i.e., m, and the number of
erased symbols r, hence, E = r

m is also known to both the
encoder and the decoder. Please note that S just knows the
number of erased symbols and does not know which symbols
in zm are marked as erasures. The purpose of the present
paper is to analytically derive the impact of the mismatched
side information ym (available at S) and zm (available at M )
in the compression performance.

IV. TWO-PART CODE DESIGN

In this section, we present the code design based on the
adaptation of the two-part coding (c.f. [7], [13] and the refer-
ences therein). The benefit of using two-part coding strategy
for wireless network compression problem is two-fold. First,
the compressed codeword describing xn is consisted of two
parts that can be separately sent to the end-user, i.e., the
client node C; one part from the source S and the other
from the memory-enabled helper M in Fig. 1. Secondly, the
memorized sequence ym is assumed to be longer than xn and
can be used to obtain a more accurate estimate of the source
parameter for more efficient compression. First, let us consider
the matched memory case (i.e., E = 0). We defer the impact of
the mismatched side information to Section V. Hence, the first
part of the code describes the best estimation θ̂(ym) ∈ Θ of
the unknown source parameter vector θ by using the statistics
of the source extracted from ym. This part is extracted by M
and is sent by M to C. The estimate θ̂(ym) is also extracted
by S, which is then used in the second part of the code by S
to encode the packet xn and send it to C.

Note that the main objective of the wireless network com-
pression is to minimize the total communication cost and
hence support more clients. As such, we can define virtual
costs for S-C and M -C links in Fig. 1. Let κ denote the ratio
of the cost of communicating one bit in the M -C link to that
of the S-C link. In practical settings, it is rational to assume
that the S-C link is much more costly than the M -C link.
This is because S serves several femto-cells but a helper node

only serves the clients within a single femto-cell. Hence, κ is
much smaller than unity. Let LS(0) be the expected number of
bits sent by S and LM (0) be the expected number of bits sent
by M to the client C in Fig. 1 when E = 0 . The following
theorem determines the communication cost in each link in
the case of network compression via overhearing helper [8].

Theorem 1 Given E = 0 and a memory of size m, we have{
LS(0) = Hn(θ) + d

2 log
(
1 + n

m

)
+ o(1)

LM (0) = d
2 logm+O(1)

.

Proof: Please see [8] for the proof.
Remark: According to Theorem 1, when m is sufficiently
large and E = 0, the number of bits sent by the wireless
gateway (LS(0)) is close to the entropy of the sequence
which is the information-theoretic lower bound on the average
number of bits sent by S. Further, the aggregate expected
communication cost for both links in Fig. 1 is E[C0(Xn)] =
LS(0) + κLM (0). Hence, we observe that when κ � 1
for sufficiently large m (asymmetric communication cost),
larger memorized sequences can be employed while the total
communication cost is still dominated by the bits sent from
the gateway to the client, which is close to the entropy.

V. IMPACT OF MISMATCHED SIDE INFORMATION

Thus far, we demonstrated that significant performance
improvement is expected from memory-enabled overhearing
helpers by adapting two-part codes to the problem setup when
E = 0 (no mismatch). Please note that LS(0) in Theorem 1
is indeed the entropy plus the average minimax redundancy
given a random side information sequence ym of length m is
available to both the encoder and the decoder. In this section,
we consider the impact of the mismatched side information
on the achievable benefits.

Let R̄E(n,m,Θ) be the average minimax redundancy of the
compression of a random sequence xn of length m using a
random side information sequence zm of length m in Fig. 2,
where E = r

m is the fraction of erased packets in zm compared
with ym (which is also the fraction of erased symbols). Please
note that we have assumed that the source is memoryless and
hence only the number of erased symbols becomes relevant
in the analysis of the erasure process. It is straightforward to
extend Theorem 1 to verify that{

LS(E) = Hn(θ) + R̄E(n,m,Θ) + o(1)
LM (E) = d

2 logm+O(1)
. (6)

Thus, we only need to characterize R̄E(n,m,Θ) to analyze
the cost of communication. Next, we obtain a lower limit on
this average minimax redundancy by analyzing the case that
the encoder knows the location of erased symbols.

Proposition 2 Given that E < 1− δ for some δ > 0, we have

R̄E(n,m,Θ) ≥ d

2
log

(
1 +

n

m(1− E)

)
+O

(
1

n

)
. (7)

Proof: Let R̄(n, t,Θ) be the average minimax redundancy
of a universal scheme compressing a sequence of length n
given a side information vt sequence, such that n

t = o(1)
known to both encoder and decoder. According to [18] and
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using (5), the average minimax redundancy of a memory-
assisted compression scheme with a side information of size
t can be obtained as

R̄(n, t,Θ) = max
p(θ)

I(Xn; θ|V t)

= max
p(θ)

[
I(Xn, V t; θ)− I(V t; θ)

]
= R̄(n+ t,Θ)− R̄(t,Θ). (8)

From (2), we have

R̄(n, t,Θ) =
d

2
log
(

1 +
n

t

)
+O

(
1

n

)
.

The proof is completed by using (8) and the fact that the
destination has only access to a memory of size t = m−r and
no strictly lossless compression scheme can benefit from a side
information longer than the one available at the destination.

Please note that the bound in Proposition 2 is achieved if M
can encode and transmit the location of the erased packets to
S (through uplink). On the other hand, if we assume no uplink
communication between M and S then this bound is clearly
not achievable.

Next, we state a trivial upper limit, which is tight when the
erasure E → 1, i.e., there is no memory shared between S and
M . This bound is obtained by ignoring the available memory
at the encoder and the decoder. Then, R̄E(n,m,Θ) is bounded
from above by

R̄E(n,m,Θ) ≤ R̄(n,Θ). (9)

In the following, we provide a constructive approach which
leads to a non-trivial upper bound on the average minimax
redundancy for m → ∞. The bound is given for binary case
for the simplicity of the presentation. Extension to discrete
non-binary alphabet requires a more careful investigation of
the simplex of the source parameter vectors.

Theorem 3 For sufficiently large side information size m, and
δ < E < 1− δ for some δ > 0, we have

R̄E(n,∞,Θ) ≤
min(d 1

E e,1)∑
i=1

2

π

(
sin−1

√
iE − sin−1

√
(i− 1)E

)
(

1

2
log

2n

πe
+ log CiE(i−1)E + o(1)

)
, (10)

where
Cα2
α1

=

∫ α2

α1

1√
x(1− x)

dx.

Sketch of the proof: Consider a memoryless source with
parameter space Θ = (0, 1) and alphabet A = {a, b}. The
Jeffreys’ prior for this source, defined in (4), is w(θ) =

1

π
√
x(1−x)

. If we use this prior for coding a sequence xn,

the resulting redundancy would be

R̄(n,Θ) =
1

2
log(

n

2πe
) + log(π) + o(1).

However, the side information will induce another prior on the
parameter space that reduces the redundancy of the Jeffreys’

prior. Consider a sequence ym at S with m(a)
S number of a’s.

Likewise, let m(a)
D be the number of a’s in zm. Let θ̂S denote

the ML estimate of θ at S and θ̂D be the ML estimate at M .
We have

θ̂S =
m

(a)
S

m

m
(a)
S − r
m

≤ θ̂D =
m

(a)
D

m
≤
m

(a)
S

m
. (11)

A strictly lossless compression scheme requires both the
encoder and the decoder use the same parameter estimate or
prior. To overcome the mismatch in (11) between θ̂S and θ̂D,
we consider the following scheme: both the encoder and the
decoder divide the interval (0, 1) into sub-intervals of size r

m .
Since θ̂D ≤ θ̂S and |θ̂D − θ̂S | < E , the estimated parameter
at the encoder and the decoder are either in the same sub-
interval or in two adjacent sub-intervals. This discrepancy can
be resolved with one extra bit sent by the encoder.

Let Θi = ((i − 1)E , iE) be the i-th sub-interval. Since,
wJ(θ) is Jeffreys’ prior,

P[θ ∈ Θi] =

∫
θ∈Θi

wJ(θ) dθ

=
2

π

(
sin−1

√
iE − sin−1

√
(i− 1)E

)
.

Further, for binary memoryless sources, I−1(θ) = θ(1 − θ).
Hence, according to (3), the redundancy of a compression
scheme, with the side information that the source parameter
is chosen from Θi, can be obtained as

R̄(n,Θi) =
1

2
log
( n

2πe

)
+ log

∫
θ∈Θi

|I(θ)| 12 + o(1)

=
1

2
log
( n

2πe

)
+ log CiE(i−1)E + o(1),

which completes the proof of the theorem.
It is straightforward to verify that the bound provided by
Theorem 3 reduces to the trivial bound stated (2) when E → 1.
This is because C1

0 reaches its maximum of π and the total
number of sub-intervals within (0, 1) is one and hence no extra
information is needed from the source.

For the special case of E = O( 1√
n

), we can provide a
stronger result that exactly characterizes R̄E(n,m,Θ).

Proposition 4 If E = o( 1√
n

), as m→∞, we have

R̄E(n,∞,Θ) = o(1). (12)

Sketch of proof: Since E = O( 1√
n

), the size of sub-
interval Θi is also o( 1√

n
). Let θ? ∈ Θi, then,

R̄(n,Θi) = E[logµθ(X
n)− logµθ?(Xn)]

= nD(µθ||µθ?)
(i)
=

n

2
(θ − θ?)2I(θ) + o(1)

(ii)
= o(1), (13)

where D(.||.) is the KL divergence. In (13), equality (i)
follows from the second order approximation of KL divergence
and (ii) follows from the fact that (θ − θ?)2 < 1

n .
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Fig. 3. Gain of memory-assisted compression over the end-to-end compres-
sion. The memory size is m = 106.

VI. CODE DESIGN FOR MISMATCHED SIDE INFORMATION

Construction of a memory-assisted compression scheme
with mismatched side information follows from the proof of
Theorem 3. As the proof suggests, we should first construct
a code that would compress a sequence with the side in-
formation that the parameter is from a sub-interval Θi. Let
xt1 = x1x2 . . . xt be a sequence with binary symbols. Clearly,

P
[
xt1|θ

]
= θna(t)θt−na(t),

where na(t) is the number of symbols a in xt1. The prior
probability on the sub interval Θi is the normalized Jefferys’
distribution, i.e.,

wJ(θ) =
|I(θ)| 12
CiE(i−1)E

.

Therefore, the probability of the sequence xt1 is equal to

P
[
xt1
]

=

∫ iE

(i−1)E

1

CiE(i−1)E

√
θ(1− θ)

θna(t)θt−na(t) dθ. (14)

Now, the sequence xn along with its probability can be
passed to an arithmetic encoder. However, a better compres-
sion scheme, from practical point of view, can be used that
evaluates the probability in (14) sequentially. As such, the
sequential probability estimates of xt+1

1 can be evaluated as
follows [19]:

P
[
xt+1

1

]
= P

[
xt1
] nxt+1(t) + 1

2

t+ 1

+β × α1
na(t)+ 1

2 (1− α1)nb(t)+ 1
2

Cα2
α1 (1 + t)

−β × α2
na(t)+ 1

2 (1− α2)nb(t)+ 1
2

Cα2
α1 (1 + t)

,

where α1 = (i− 1)E , α2 = iE , and

β =

{
1 xt+1 = a,
−1 xt+1 = b.

The results in Fig. 3 show the performance of the proposed
sequential compression scheme for different sequence lengths,
fraction of erased symbols, and side information of length m =

106. The quantity g in Fig. 3 is defined as the gain of memory-
assisted compression (with side information) over compression
with no side information, i.e., g , El(Xn)

El(Xn|Zm) . We observe
that for simple binary sequences of length 100, a compression
gain of 1.6 on top of the end-to-end compression of xn is
achieved, on the average. This gain is expected to be higher
if we consider non-binary sources, as observed in [4].

VII. CONCLUSION

In this paper, we studied the impact of mismatched side
information in wireless network compression via overhearing
helpers. The mismatch occurs due to the erasures in the
wireless overhearing link. We modeled mismatch by an erasure
channel that erases a subset of the symbols from the side
information in the decoder side. We provided theoretical
results on the impact of erasure and memorization on the
performance of universal compression and also verified the
achievable gains through numerical simulations.
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