
1

Universal Compression of a Mixture of
Parametric Sources with Side Information

Ahmad Beirami, Member, IEEE, Liling Huang, Mohsen Sardari, and Faramarz Fekri, Senior Member, IEEE

Abstract—This paper investigates the benefits of the side
information on the universal compression of sequences from
a mixture of K parametric sources. The output sequence of
the mixture source is chosen from the source i ∈ {1, . . . ,K}
with a di-dimensional parameter vector at random according
to probability vector w = (w1, . . . , wK). The average minimax
redundancy of the universal compression of a new random
sequence of length n is derived when the encoder and the decoder
have a common side information of T sequences generated
independently by the mixture source. Necessary and sufficient
conditions on the distribution w and the mixture parameter
dimensions d = (d1, . . . , dK) are determined such that the
side information provided by the previous sequences results in
a reduction in the first-order term of the average codeword
length compared with the universal compression without side
information. Further, it is proved that the optimal compression
with side information corresponds to the clustering of the side
information sequences from the mixture source. Then, a cluster-
ing technique is presented to better utilize the side information
by classifying the data sequences from a mixture source. Finally,
the performance of the clustering on the universal compression
with side information is validated using computer simulations on
real network data traces.

Index Terms—Universal Lossless Compression; Side Informa-
tion; Mixture Source; Clustering.

I. INTRODUCTION

UNIVERSAL compression aims at reducing the aver-
age number of bits required to describe a sequence

from an unknown source from a family of sources, while
good performance is desired for most of the sources in the
family [4]–[12]. However, it often needs to observe a very
long sequence so that it can effectively learn the existing
patterns in the sequence for efficient compression. Therefore,
universal compression performs poorly on relatively small
sequences [13], [14] where sufficient data is not available for
learning of the statistics and training of the encoder. On the
other hand, the presence of side information at the decoder

A. Beirami was with the School of Electrical and Computer Engineering,
Georgia Institute of Technology. He is currently with the Department of
Electrical and Computer Engineering, Duke University, Durham, NC 27708,
USA. e-mail: (ahmad.beirami@duke.edu).

L. Huang is with the School of Electronic, Information and Electri-
cal Engineering, Shanghai Jiao Tong University, Shanghai, China e-mail:
sunny hll@sjtu.edu.cn.

M. Sardari and F. Fekri are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. e-
mail: ({mohsen.sardai, fekri}@ece.gatech.edu).

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1017234.

This paper was presented in part at the 2013 IEEE International Conference
on Computer Communications (INFOCOM 2013) [1], and the 51st Annual
Allerton Conference on Communication, Control, and Computing (Allerton
2013) [2], and the 15th IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC 2014) [3].

has proven to be useful in several source coding applications
(cf. [15]–[17] and the references therein). In particular, the
impact of side information on universal compression has also
been shown to be useful (cf. [12], [18]–[20]). However, to the
best of the authors’ knowledge, the problem of the universal
compression of a mixture of parametric sources with side
information has not been explored in the literature.

The recent rapid growth in the network traffic has motivated
new research directions to leverage the existing correlations
in the sequences (network packets) in order to reduce the
traffic. These solutions must be transparent to the user and
the application and hence must reside on the network layer,
where the correlated sequences in the network flow are
present [21]–[24]. As network packets are relatively small,
universal compression solutions (if employed naively) do not
result in much traffic reduction [1], [13], [23], [24]. Further,
the existing universal compression schemes do not exploit the
cross correlation among the packets destined to different users.
As such, recently, we proposed universal compression of net-
work packets using network memory in [23], [24], where the
common memory between the encoder server (or router) and
the decoder router was used as the side information to improve
the performance of universal compression on network packets.
As each packet may be generated by a different source, a
realistic modeling of the network traffic requires to consider
the content server to be a mixture source [1]. This motivates
us to study the universal compression of sequences from a
mixture source using common side information between the
encoder and the decoder. With a different motivation, Krishnan
and Baron recently proposed a MDL-based parallel universal
compression algorithm to exploit the cross correlation among
the packets [25], [26].

In [20], [27], we derived the optimal universal compression
performance with side information for a single source, i.e.,
K = 1; we proved that significant improvement is obtained
from the side information in the universal compression of
small sequences when sufficiently large side information is
available. It was shown that a few megabytes of side informa-
tion can drive the sequence length very close to the entropy.
On the other hand, it is natural to expect that network packets
that can be observed on a router are generated by a mixture of
parametric sources. Motivated by this fact, in this paper, we
extend the setup of the memory-assisted universal compression
to a mixture of K parametric sources. Although the problem
formulation is inspired from the network traffic compression,
universal compression of a mixture source with side informa-
tion finds applications in a wide variety of problems, such as
data storage systems, and migration of virtual machines, where
the compression of data before transmission is desirable.

ar
X

iv
:1

41
1.

76
07

v1
 [

cs
.I

T
]

 2
7

N
ov

 2
01

4

2

E D

M

θ (K)

θ (1)

θ (2)

Fig. 1. The basic scenario of universal compression with side information
for a mixture source.

As shown in Fig. 1, we assume that each sequence (e.g.,
network packet) is a sample of length n from a mixture
of K parametric sources. We consider the scenario where
T sequences from the mixture source are shared as side
information between the encoder E and the decoder D and
the first objective is to derive the average minimax redun-
dancy incurred in the optimal universal compression with side
information as a function of n, K, and T . We further develop
a clustering algorithm for the universal compression with side
information based on the Hellinger distance of the sequences
and show its effectiveness on real network traffic traces. We
prove that the adopted clustering algorithm is consistent and
asymptotically optimal using the side information in the sense
that, given the side information, the minimum codeword length
in the universal compression of a new sequence from the
mixture source using side information is attained.

Our contributions in this paper can be summarized as
follows:
• We formally characterize the average minimax redun-

dancy incurred in universal compression of a random
sequence of length n from a mixture source given that
the encoder and the decoder have access to a shared side
information of T sequences (each of length n from the
mixture of K parametric sources).

• We demonstrate that the performance of the optimal uni-
versal compression with side information (in the minimax
sense) is almost surely that of the universal compression
with perfect clustering of the memory based on the
originator source in the mixture when source labels are
available. Hence, clustering is optimal in the first-order
redundancy term for universal compression with side
information.

• We propose a clustering strategy for the side information
that aims at grouping the side information sequences that
share similar statistical properties. A newly generated
packet by the mixture source is classified into one of
the clusters for compression. We demonstrate the effec-
tiveness of the proposed algorithm through experiments
performed on real network traffic traces.

The rest of this paper is organized as follows. In Section II,
we review the necessary background on universal compres-
sion. In Section III, we present the formal definition of the
problem. In Section IV, we derive the entropy of the mixture
source, which serves as a lower limit on the average codeword
length. In Section V, we provide the main results on the
universal compression of mixture sources with and without
side information and discuss their implications. In Section VII,

we present the clustering algorithms used for the compression
of the mixture sources. In Section VIII, we provide simulation
results that support our theoretical results on the compression
of the mixture sources. Finally, Section IX concludes this
paper.

II. BACKGROUND ON UNIVERSAL SOURCE CODING

In this section, we briefly review the necessary background
on the universal compression of parametric sources. We defer
the generalization to a mixture source to Section III. Let a
parametric source be defined using a d-dimensional parameter
vector θ = (θ1, ..., θd) ∈ Λd that is a priori unknown, where
d denotes the number of the source parameters and Λd ⊂ Rd
is the space of d-dimensional parameter vectors of interest.
Denote µθ as the parametric source (i.e., the probability
measure defined by the parameter vector θ on sequences of
length n).

Let X denote a finite alphabet. Let Xn denote a sample
(random vector of length n) from the probability measure µθ.
We further denote xn = (x1, ..., xn) ∈ Xn as a realization of
the random vector Xn. Then, define Hn(θ) , H(Xn|θ) as
the source entropy given the parameter vector θ, i.e.,

Hn(θ)=E log

(
1

µθ(Xn)

)
=
∑

xn∈Xn

µθ(x
n) log

(
1

µθ(xn)

)
.

(1)
Throughout this paper log(·) always denotes the logarithm in
base 2 and expectations are taken over the random sequence
Xn with respect to the probability measure µθ.

In this paper, we focus on the class of strictly lossless
uniquely decodable fixed-to-variable codes defined as the
following. The code cn : Xn → {0, 1}∗ is called strictly
lossless (also called zero-error) on sequences of length n if
there exists a reverse mapping dn : {0, 1}∗ → Xn such
that ∀xn ∈ Xn, we have dn(cn(xn)) = xn. Further, let
l : Xn → R denote the universal strictly lossless length
function for the codeword cn(xn) associated with the sequence
xn such that l(·) satisfies Kraft’s inequality to ensure unique
decodability. That is

∑
xn∈Xn 2−l(x

n) ≤ 1. In this paper, we
ignore the integer constraint on the length function, which
results in a negligible redundancy upper bounded by 1 bit
analyzed exactly in [28], [29].

Denote Rn,d(l, θ) as the average (expected) redundancy of
the code cn with length function l on a sequence of length n
for the parameter vector θ, defined as

Rn,d(l, θ) = El(Xn)−Hn(θ). (2)

Note that the average redundancy is non-negative. Further, a
(universal) code is called weakly optimal if its average code-
word length normalized to the sequence length uniformly con-
verges to the source entropy rate, i.e., limn→∞

1
nRn,d(l, θ) =

0 for all θ ∈ Λd.
Define Rn,d as the average maximin redundancy, i.e.,

Rn,d = max
p(·)

min
l

∫
Λd

Rn,d(l, θ)p(θ)dθ. (3)

The average maximin redundancy is associated with the best
code under the worst prior on the space of parameter vectors

3

(i.e., the capacity achieving Jeffreys’ prior). Let R̄n,d denote
the average minimax redundancy, which is defined as

R̄n,d = min
l

max
θ
Rn,d(l, θ). (4)

Gallager showed that the average minimax redundancy and
the average maximin redundancy (as defined above) are
equal [18]. Let I(θ) be the Fisher information matrix asso-
ciated with the parameter vector θ, i.e.,

I(θ), lim
n→∞

1

n log e
E

{
∂2

∂θi∂θj
log

(
1

µθ(Xn)

)}
. (5)

Fisher information matrix quantifies the amount of informa-
tion, on average, that each symbol in a sample sequence xn

from the source conveys about the source parameter vector.
Let Jeffreys’ prior on the parameter vector θ be denoted by

pJ(θ) ,
|I(θ)| 12∫

Λd
|I(λ)| 12 dλ

. (6)

Jeffreys’ prior is optimal in the sense that the average minimax
redundancy is asymptotically achieved (up to a constant)
when the parameter vector θ is assumed to follow Jeffreys’
prior [18], [30], [31].1 Jeffreys’ prior is particularly interesting
because it is also maximin optimal, which corresponds to the
worst-case prior for the best compression scheme (called the
capacity achieving prior) [18].

We need some regularity conditions to hold for the para-
metric model so that our results can be derived.

1) The parametric model is smooth, i.e., twice differen-
tiable with respect to θ in the interior of Λ so that the
Fisher information matrix can be defined. Further, the
limit in (5) exists.

2) The determinant of fisher information matrix is finite for
all θ in the interior of Λ and the normalization constant
in the denominator of (6) is finite.

3) The parametric model has a minimal d-dimensional
representation, i.e., I(θ) is full-rank. Hence, I−1(θ)
exists.

4) We require that the central limit theorem holds for
the maximum likelihood estimator θ̂(xn) of each θ in
the interior of Λ so that (θ̂(Xn) − θ)

√
n converges to

a normal distribution with zero mean and covariance
matrix I−1(θ).

The average minimax (maximin) redundancy is well studied
for a single parametric source given by the following theorem.

Theorem 1 ([30], [31]). The average minimax (maximin)
redundancy is given by

R̄n,d =
d

2
log
(n

2πe

)
+ log

∫
Λd

|In(θ)| 12 dθ + o(1).2 (7)

1The boundary risk is asymptotically strictly larger than the interior risk by
a constant using Jeffreys’ prior and when the space of the parameter vectors
includes the boundary, a modification of Jeffreys’ prior towards the boundary
to compensate for this is minimax optimal (cf. [32]).

2Throughout this work, we have used the following asymptotic notations:
• f(n) = o(g(n)) iff |f(n)| ≤ |g(n)|ε, ∀ε,
• f(n) = O(g(n)) iff |f(n)| ≤ |g(n)|k, ∃k,
• f(n) = ω(g(n)) iff g(n) = o(f(n)),
• f(n) = Ω(g(n)) iff g(n) = O(f(n)),

According to Theorem 1, the average maximin redundancy
scales as d

2 log n + O(1). This redundancy may indeed be a
significant overhead on top of the entropy for small sequences,
as the second term in (7) could be relatively large for small n
as characterized in [13].

III. PROBLEM SETUP

In this section, we present the setup of the universal com-
pression with common side information at the encoder and the
decoder. Let ∆ ,

{
θ(i)
}K
i=1

denote the set of K , |∆| param-
eter vectors of interest where θ(i) ∈ Λdi is a di-dimensional
parameter vector. Note that we let K deterministically scale
with n. Let dmax , max{d1, . . . , dK} denote the maximum
dimension of the parameter vectors, where we assume that
dmax = O(1), i.e., dmax is finite. We further assume that for any
d < d′, we have Λd ⊂ Λd′ , and hence, ∆ consists of K points
on the space Λdmax . In this setup, as in Fig. 1, the source is a
mixture of K parametric sources µθ(1) , . . . , µθ(K) , where for
all i ∈ [K] , {1, . . . ,K}, θ(i) is a di-dimensional unknown
parameter vector. For the generation of each sequence of
length n, the generator source is selected according to the
probability vector w = (w1, . . . , wK) from the mixture, i.e.,
∆. In other words, p(θ|∆) =

∑K
i=1 wiδ(θ−θ(i)), where wi is

the probability that the sequence is generated by source θ(i) in
the mixture. The random set ∆ (which is unknown a priori) is
generated once and is used thereafter for the generation of all
sequences from the mixture source. Let S be a random variable
that determines the source index from which of the sequence
is generated. As such, S follows the distribution w over [K],
i.e., P[S = i] = wi. Then, by definition, we have θ = θ(S)

given ∆. Unlike ∆ that is generated once, S is chosen via
w every time a new sequence is generated. Let the mixture
entropy H(w) be defined as H(w) = −

∑
i∈[K] wi logwi.3

We assume that, in Fig. 1, both the encoder E and the
decoder D have access to a common side information of
T previous sequences (indexed by [T]) from the mixture
of K parametric sources, where each of these sequences is
independently generated according to the above procedure.
Let m , nT denote the aggregate length of the previous T
sequences from the mixture source.4 Further, denote yn,T =
{yn(t)}Tt=1 as the set of the previous T sequences shared
between E and D, where yn(t) is a sequence of length n
generated from the source θS(t) at time epoch t, where S(t)
follows w on [K]. In other words, yn(t) ∼ µθ(S(t)) . Further,
denote S as the vector S = (S(1), ..., S(T)), which contains
the indices of the sources that generated the T previous side
information sequences.

• f(n) ∼ g(n) iff limn→∞ f(n)/g(n) = 1,
• f(n) . g(n) iff f(n) = o(g(n)), and
• f(n) & g(n) iff f(n) = ω(g(n)).

3We define entropy H(r) for any vector r such that
∑

i ri = 1 in the
same manner throughout the paper.

4For simplicity of the discussion, we consider the lengths of all sequences
to be equal to n. However, most of the results are readily extendible to the
case where the sequences are not necessarily equal in length.

4

Let lM(xn,yn,T) denote a length function that utilizes the
side information yn,T in the compression of a new sequence
xn. The objective is to analyze the average redundancy in the
compression of a new sequence xn that is independently gen-
erated by the same mixture source with source index Z (which
also follows w). We investigate the fundamental limits of the
universal compression with side information (yn,T) that is
shared between the encoder and the decoder and compare with
that of the universal compression without side information of
the previous sequences. In this respect, it is straightforward
to show that the minimax and maximin average redundancy
are equivalent and are given by the capacity of the channel
between the sequence Xn and the parameter vectors ∆ given
side information sequence Y n,T . Hence, I(Xn; ∆|Yn,T) and
I(Xn; ∆), for different values of the sequence length n,
memory (side information) size m = nT , the weight of the
mixture w, and the dimensions of the parameter vectors d,
serve as two of the main fundamental limits of the universal
compression in this setup.

IV. ENTROPY OF THE MIXTURE SOURCE: COMPRESSION
WITH KNOWN SOURCE PARAMETER VECTORS

In this section, we derive the limits of compression when the
source parameter vectors are known. It is well known that for
the mixture source, optimal compression is achieved by mixing
the models. In other words, let p(xn) denote the mixture
probability distribution on sequences of length n, which is
defined as

p(xn) =

K∑
i=1

wiµθ(i)(x
n). (8)

Hence, the length function

l(xn) = log

(
1

p(xn)

)
(9)

is the optimal length function in this case, and it will achieve
the entropy of the mixture source.

To derive the limits of compression for known source
parameter vectors, we need to derive the entropy of the mixture
source. Let Hn(∆, Z) , H(Xn|∆, Z) be defined as the
entropy of a random sequence Xn from the mixture source
given that the source parameters are known to be the set ∆
and the index of the source that has generated the sequence
(i.e., Z) is also known.5 Then, in this case, by definition

Hn(∆, Z) =

K∑
i=1

wiHn(θ(i)), (10)

where Hn(θ(i)) is the entropy of source µθ(i) given θ(i)

defined in (1). Note that Hn(∆, Z) is not the achievable
performance of the compression. It is merely introduced here
so as to make the presentation of the results more convenient.

Let the set ∆ be partitioned into subsets in the following
fashion.

∆ = ∪dmax
d=1∆d, (11)

5We assume that the random set of parameter vectors is generated once
and used for the generation of all sequences of length n thereafter. Therefore,
throughout the paper, whenever we assume that ∆ is given, we mean that the
set of the parameter vectors is known to be the set ∆.

where ∆d is the set of the d-dimensional parameter vectors in
∆. Further, let Kd , |∆d| be the number of parameter vectors
in set ∆d. In other words, Kd is the number of sources of
dimension d in the mixture source. Hence,

∑dmax
d=1Kd = K.

Now, we can relabel the elements in ∆ according to their
parameter vectors. Let ∆d = {θ(d,1), . . . , θ(d,Kd)}. Denote
wd = (wd,1, . . . , wd,Kd

) as the weight of the d-dimensional
parameter vectors. Further, let vd ,

∑Kd

i=1 wd,i be the ag-
gregate weight of all d-dimensional parameter vectors and
denote v , (v1, . . . , vdmax). Let ŵd , wd/vd, i.e., we have
ŵd,i , wd,i/vd, for 1 ≤ i ≤ Kd.

Hence, Hn(∆, Z) can be rewritten as

Hn(∆, Z) =

dmax∑
d=1

Kd∑
i=1

wd,iHn(θ(d,i)) (12)

=

dmax∑
d=1

vd

Kd∑
i=1

ŵd,iHn(θ(d,i)). (13)

Next, we derive the entropy of the mixture source (which
sets the asymptotic fundamental lower limit on the codeword
length for the known source parameters case), i.e., when ∆ is
known. Define Hn(∆) , H(Xn|∆).

Theorem 2. The entropy of the mixture source for all ∆ except
for a set A(n) whose volume asymptotically vanishes as n→
∞, is given by

Hn(∆) = Hn(∆, Z) +H(v) +

dmax∑
d=1

vdHd + o(1), (14)

where Hd is given by

Hd =

{
H(ŵd) if H(ŵd) . d

2 log n
R̄n,d if H(ŵd) & d

2 log n
, (15)

and R̄n,d is given by (7).

Proof: The proof is explained in the appendix.
Theorem 2 determines the entropy of the mixture source,

which corresponds to the minimum codeword length when
the parameter vectors in the set ∆ are known to the en-
coder and the decoder (i.e., non-universal compression). Note
that Hn(∆) also serves as a trivial lower bound on the
codeword length for the case of universal compression (i.e.,
unknown parameter vectors). For sufficiently low-entropy ŵd

(or roughly sufficiently small Kd), the price of describing
the d-dimensional parameter vectors is, on average, equal to
H(ŵd), which corresponds to describing the respective source
parameter vector in the encoder.

Remark. Theorem 2 does not hold for an asymptotically
vanishing volume of the parameter vectors. This is because
one can choose the parameter vectors in a way that they
do not conform to asymptotic scaling. For example, if all
the parameter vectors are chosen to be equal, then the extra
redundancy term over Hn(∆, Z) = Hn(θ(1)) would be zero.
On the other hand, the result states that the volume of the space
covered by such choices would become vanishingly small as
n→∞. This is equivalent to saying if the parameter vectors
are chosen independently according to a uniform prior on the

5

state of parameter vectors, then the probability of the event that
they do not conform to the scaling predicted by Theorem 2 is
vanishingly small.

The following corollary describes the entropy when the
number of source parameter vectors are sufficiently small.

Corollary 3. If K = O
(
n

1
2−ε
)

for some ε > 0, then for all
∆ except for a set A(n) whose volume asymptotically vanishes
as n→∞, we have

Hn(∆) = Hn(∆, Z) +H(w) + o(1). (16)

Proof: Since K = O
(
n

1
2−ε
)

for some ε > 0, we have

Kd = O
(
n

d
2−ε
)

for some ε > 0 and for all 1 ≤ d ≤ dmax.

Thus, we have H(ŵd) . d
2 log n. Thus, Hd = H(ŵd) for all

1 ≤ d ≤ dmax. The proof is completed by noting that

H(w) = H(v) +

dmax∑
d=1

vdH(ŵd). (17)

According to the corollary, when K = O
(
n

1
2−ε
)

for some
ε > 0, the optimal coding strategy (when the source parameters
are known) for asymptotically almost all the parameter vectors
would be to encode the source index Z and then use the
optimal code (e.g., Huffman code) associated with parameter
θ(Z) for sequences of length n to encode the sequence xn.
In fact, if H(w) . d

2 log n, then the cost of encoding the
parameter is asymptotically smaller than the cost of universally
encoding the parameter and hence it is beneficial to encode
the parameter vector using an average of H(w) bits. Further,
if K = 1, then ∆ = θ(1) and Z = 1 would be deterministic.
Hence, Hn(∆) = Hn(∆, Z) = Hn(θ(1)), which was intro-
duced in (1) as the average compression limit for the case of
a single known source parameter vector.

Corollary 4. If H(ŵd) & d
2 log n for all 1 ≤ d ≤ dmax such

that vd > 0, then for all ∆ except for a set A(n) whose volume
asymptotically vanishes as n→∞, we have

Hn(∆) = Hn(∆, Z) +H(v) +

dmax∑
d=1

vdR̄n,d + o(1). (18)

Proof: The proof is very similar to the previous corollary
and is omitted for brevity.

According to the corollary, in the case where the number
of sources in the mixture is very large, the mixture entropy
converges to Hn(∆, Z) plus H(v) plus the weighted average
of the R̄n,d terms (which are exactly the average maximin
redundancy in the universal compression of parametric sources
with d unknown parameters given in Theorem 1). At the first
glance, it may seem odd that the codeword length in the case of
known source parameter vectors incurs a term that is associated
with the universal compression of a source with an unknown
parameter vector. A closer look, however, reveals that in this
case the cost of encoding the source index of a d-dimensional
parameter vector surpasses the cost of universally encoding
the source parameter vector. Hence, intuitively, it no longer
makes sense to encode the d-dimensional parameter vector

for the compression of the sequence xn using an average of
H(ŵd) bits. More rigorously speaking, as was shown in the
proof of Theorem 2, the probability distribution of xn given
θ ∈ ∆d would converge to the probability distribution of xn

when the source has one unknown d-dimensional parameter
vector that follows Jeffreys’ prior. This in turn results in the
R̄n,d term in the compression performance.

V. FUNDAMENTAL LIMITS OF UNIVERSAL COMPRESSION
FOR MIXTURE SOURCES

In the previous section, we derived the limits of the com-
pression of mixture sources when the source parameter vectors
are known. In this section, we will turn to the universal
compression problem and will quantify the benefits of side
information. To see the impact of the universality and side in-
formation on the compression performance, i.e., to investigate
the impact of ∆ being unknown, we will need to analyze
and compare the average minimax redundancy (the excess
codeword length on top of the entropy) for the following
important fundamental schemes.
• Ucomp: Universal compression, which is the conven-

tional compression based solution. This is the usual uni-
versal compression in the literature with length function
l(xn).

• UcompM: Universal compression with side information
(common memory between the encoder and the decoder),
which takes in the side information sequence into the en-
coding and decoding with length function lM(xn,yn,T).

• UcompMS: Universal compression with side information
and source indices, which uses the side information se-
quences and also the indices of the sources that generated
them (at the encoder/decoder). The respective length
function will be denoted by lMS(xn,yn,T ,S, Z).6

We quantify the performance of these fundamental schemes
using their respective average redundancies. Let R(l,∆) de-
note the average redundancy of the Ucomp compression
algorithm for the universal compression of a mixture source,
which is defined in the usual way, as in (2), given by

R(l,∆) = El(Xn)−Hn(∆). (19)

Further, let R(n,w,d) and R̄(n,w,d) denote the average
maximin and minimax redundancy, respectively, which are
defined in the same manner as in (3) and (4) in Section II.
Our goal is to characterize the performance of universal
compression as a function of the mixture weights w and
source parameter vector dimensions d. Note that the average
maximin redundancies RM(n,m,w,d) and RMS(n,m,w,d),
and the average minimax redundancies R̄M(n,m,w,d) and
R̄MS(n,m,w,d) can also be defined similarly.

It is straightforward to extend Gallager’s Theorem to the
following.

Theorem 5. Consider Ucomp, UcompM, and UcompMS for
the compression of mixture sources with the set of parameter
vectors ∆ ∈ Λ′(n), where Λ′(n) is defined in (40). Then,

6UcompMS scheme may be uninteresting from practical point of view as
the source indices may be unknown in a lot of applications.

6

the average minimax redundancy and the average maximin
redundancy are equivalent, i.e.,

R̄(n,w,d) = R(n,w,d)

= max
p

I(Xn; ∆). (20)

R̄M(n,m,w,d) = RM(n,m,w,d)

= max
p

I(Xn; ∆|Yn,T). (21)

R̄MS(n,m,w,d) = RMS(n,m,w,d)

= max
p

I(Xn; ∆|Yn,T ,S, Z) (22)

Further, if ∆ is chosen such that for i 6= j, we have θ(i) and
θ(j) are independent and the marginal distribution of each θ(i)

is Jeffreys’ prior on the di-dimensional space Λdi , such prior
is asymptotically capacity achieving as n→∞.

Proof: The proof is explained in the appendix.
Remark. Note that our results hold for a set Λ′(n) = Λ \
A(n) whose volume asymptotically equals that of Λ. In other
words, if you pick the parameter vectors according to any
distribution whose support is the entire set Λ (i.e., it puts non-
zero mass over any point in Λ), then our results would hold
asymptotically almost surely (a.s.).7

Next, we state a trivial ordering on the average minimax
redundancy of these fundamental schemes.

Proposition 6. The following ordering holds for the average
minimax redundancies of Ucomp, UcompM, and UcompMS.

R̄MS(n,m,w,d) ≤ R̄M(n,m,w,d) ≤ R̄(n,w,d). (23)

Proof: This holds as the UcompMS length function can
choose to ignore S and Z, and also the UcompM length
function can choose to ignore yn,T . In other words, more
information cannot hurt.

In the rest of this section, our goal is to characterize
the average minimax redundancies of the aforementioned
fundamental schemes, and in particular the gaps between
them, to understand the fundamental benefits provided by
side information in the universal compression of a mixture
of parametric sources.

A. Ucomp: Universal Compression without Side Information

We refer to Ucomp as the universal compression without
side information, in which a universal length function l(xn) is
used to compress the sequence xn without regard to the side
information sequence yn,T .

Next, we state the main result in characterizing the average
minimax redundancy.

Theorem 7. In the case of Ucomp, we have

R̄(n,w,d) =

dmax∑
d=1

vd(R̄n,d −Hd) + o(1) a.s., (24)

where Hd is defined in (15).

Proof: The proof is explained in the appendix.

7An event An happens asymptotically almost surely (a.s.) if and only if
limn→∞ P[An] = 1.

According to Theorem 7, in the universal compression of
a sequence of length n from the mixture source, the main
term of the redundancy scales as the weighted average of
(R̄n,d −Hd) terms. This can be significantly large if H(wd)
is much smaller than d

2 log n. Again, if K = 1, we have
R̄(n, 1, d) = R̄n,d; this is exactly the average minimax (max-
imin) redundancy in the case of one unknown d-dimensional
source parameter vector described in Theorem 1.

Theorem 7 also suggests that independently from K and
H(w), the price to be paid for universality is given by R̄n,d
over and above Hn(∆, Z), i.e., the entropy when ∆ and Z
are known. In other words, H(Xn) − Hn(∆, Z) scales like∑
d vdR̄n,d (which is the price of universal compression of a

sequence of length n from a single source with an unknown
d-dimensional parameter vector that follows the worst-case
Jeffreys’ prior averaged over d).

Corollary 8. If H(ŵd) & d
2 log n for all 1 ≤ d ≤ dmax, then

R̄(n,w,d) = o(1) a.s. (25)

Proof: If vd > 0, then H(ŵd) & d
2 log n, and hence, we

have Hd = R̄n,d, which means R̄n,d−Hd vanishes. Hence, the
main redundancy term vd(R̄n,d−Hd) in Theorem 7 vanishes
for all 1 ≤ d ≤ dmax, which completes the proof.

According to the corollary, for large K, we asymptotically
almost surely (a.s.) expect no extra redundancy associated
with universality on top of the mixture entropy. This is not
surprising as even in the case of known source parameter
vectors, as given by Theorem 2, the redundancy converges to
the weighted average of the redundancies for a d-dimensional
unknown source parameter vector that follow Jeffreys’ prior.
Therefore, there is no extra penalty when the source parameter
vectors are indeed unknown.

B. UcompM: Universal Compression with Side Information

We refer to UcompM as the universal compression with
side information. In this section, our goal is to characterize the
average minimax redundancy of the UcompM scheme given
the side information, i.e., R̄M(n,m,w,d), where T = m

n
sequences from the mixture source are shared between the
encoder and the decoder as side information.

Proposition 9. In the case of UcompM, if m = O(1), then

R̄M(n,m,w,d) = R̄(n,w,d)−O(1). (26)

According to Proposition 9, when m does not grow to
infinity, the improvement offered by side information is at most
constant, which is negligible compared with the leading term
of redundancy which is O(log n).

Theorem 10. In the case of UcompM, for m = ω(1) we have

R̄M(n,m,w,d) =

dmax∑
d=1

vd

K∑
i=1

ŵd,iR̂d,i + o(1) a.s., (27)

where R̂d,i is given by

R̂d,i =

{
d
2 log

(
1 + n

ŵd,im

)
+ δ if H(ŵd) . d

2 log n

0 if H(ŵd) & d
2 log n

,

(28)

7

where δ is an absolute constant with respect to n and can be
made arbitrarily small for sufficiently large T .

Proof: The proof is explained in the appendix.
Theorem 10 characterizes the redundancy of the optimal

universal compression scheme with side information, which
uses a memory of size m = nT (T sequences of size n) in
the compression of a new sequence of length n. It is natural
to expect that the side information will make the redundancy
decrease. The redundancy of the UcompM decreases when
H(w) or roughly K is sufficiently small. Again, K = 1,
results in R̄M(n,m, 1, d) = d

2 log
(
1 + n

m

)
+ o(1), which

is consistent with what we derived for a single parametric
source in [20]. Further, it is deduced from Theorem 10 that
limT→∞ R̄M(n,m,w,d) = o(1) (regardless of w), i.e., the
cost of universality would be negligible given that sufficiently
large memory (side information) is available. Thus, the ben-
efits of optimal universal compression with side information
would be substantial when H(w) is sufficiently small. On the
other hand, when H(w) grows very large, no benefit is ob-
tained from the side information in the universal compression
and the performance improvement becomes negligible. This is
due to the fact that, in light of Theorem 7, the compression
performance for the known source parameters case is already
equal to that of the universal compression.

C. UcompMS

Next, we analyze the fundamental performance of a class
of schemes that have access to the unknown source labels. In
particular, we would like to analyze how much performance
improvement the knowledge of the unknown source indices
would offer over the fundamental limits of UcompM. We
refer to UcompMS as the universal compression with perfectly
clustered side information sequence yn,T , which is shared
between the encoder E and the decoder D. Further, the index
vector S of the memorized sequences and the index Z of
the sequence xn to be compressed are known to both E
and D. Therefore, one can imagine that an oracle exists that
can partition the sequences in yn,T based on their source
index. Then, it can be shown that it is optimal that E and
D cluster the side information sequences according to S and
use the minimax estimator to estimate the source parameter
vector associated with each cluster; the encoder E classifies
the sequence xn to the respective cluster using the oracle and
encodes the sequence only using the side information provided
by the estimated parameter vector of the respective cluster.

Theorem 11. In the case of UcompMS, we have

R̄MS(n,m,w,d) =

dmax∑
d=1

vd

K∑
i=1

ŵd,iR̂d,i + o(1) a.s., (29)

where R̂d,i is defined in (28).

Proof: The proof is explained in the appendix.
Theorem 11 characterizes the redundancy of the universal

compression with perfectly clustered side information. It is
straightforward to observe that for sufficiently large m, the
redundancy of UcompMS becomes very small. However,

UcompMS is impractical in most situations as the oracle
that provides the source index is not available. As an im-
portant special case if K = 1, then R̄MS(n,m,w,d) =
d
2 log

(
1 + n

m

)
+ o(1), which reduces to Theorem 2 of [20]

regarding the average minimax redundancy for the case of a
single source with an unknown parameter vector.

Corollary 12. Regardless of w and d, we have

lim
T→∞

R̄MS(n,m,w,d) = o(1). (30)

Proof: Note that T → ∞ simply means m → ∞, and
d
2 log

(
1 + n

ŵd,im

)
→ 0 as m→∞, completing the proof.

According to the corollary, the redundancy vanishes as T →
∞ (or equivalently m→∞). Therefore, for sufficiently large
m, significant performance improvement is expected in terms
of the number of bits required to describe a sequence xn.

Corollary 13. We have

R̄M(n,m,w,d) = R̄MS(n,m,w,d) + o(1) a.s. (31)

Proof: The corollary is proved by combining Theo-
rems 10 and 11.

Remark. The corollary has significant implications. It states
that the performance of optimal universal compression with
side information (UcompM), which uses a memory of size
m = nT (T sequences of size n) in the compression of a new
sequence of length n is equal to that of the universal compres-
sion with perfectly clustered memory (UcompMS) up to o(1)
terms. Hence, when T is sufficiently large, we expect that
both have the same performance. This indeed demonstrates
that clustering is optimal for the universal compression with
side information. As such, we pursue the clustering of the side
information (i.e., memory) in this paper in Section VII.

VI. OPERATIONAL LIMITS OF UNIVERSAL COMPRESSION
FOR MIXTURE SOURCES

In addition to the fundamental schemes (and respective
length functions), in this paper, we will also assess two
operational schemes listed below. Both schemes fall in the
UcompM coding regime that we have access to the memory
but not the source indices.
• UcompM1: Simple universal compression with side in-

formation (common memory between the encoder and
the decoder), which treats the side information as if it
were generated from a single parametric source. In other
words, it uses the minimax estimator for the unknown
parameter vector of the source for a single source. The
length function associated with this operational scheme
is denoted by l1M(xn,yn,T).

• UcompMc: Universal compression with clustering of the
side information, which is the practical clustering-based
scheme proposed in this paper and shall be described in
Section VII.

Since for these operational schemes the length function is
predetermined, we will quantify their performance under the
worst-case prior on the space of the source parameter vectors.
The worst-case prior is derived as a by-product of Theorem 5.

8

A. UcompM1: Simple Universal Compression with Side Infor-
mation

Next, we comment on the performance of the simple univer-
sal compression with side information scheme that is regarded
as UcompM1. In this compression scheme, it is assumed that
the encoder E and the decoder D (in Fig. 1) both have access
to the memorized sequence yn,T from the mixture source. The
sequence yn,T is used to form the optimal minimax estimator
of one unknown source parameter vector. Observe that the
scheme would be minimax optimal if yn,T was generated
by a single parametric source with an unknown parameter
vector. The estimated source parameter using the minimax
estimator for one unknown parameter vector is then used for
the compression of the sequence xn.

As discussed in Section IV, when the source parameter
vectors are known, then mixing the probability distributions
is optimal and achieves the entropy. The subtlety here is that
since the source parameter vectors are unknown, there is a
penalty to be paid for learning them. When the source is a
mixture of more than one source parameter vectors, UcompM1
will naively start to build a larger model for the source with
much more parameters for it to be able to closely follow
the source statistics. As the length of the sequences become
sufficiently large, such an approach will be able to learn the
source statistics fairly well. It will indeed converge to the
source model as the depth of the built context tree grows but
with significantly larger number of parameters. Unfortunately,
model reduction methods such as context pruning [10] will
not be a remedy to this issue either. We will comment more
on the performance of UcompM1 in Section VIII.

B. UcompMc: Universal Compression with Clustering of the
Side Information

Thus far, we argued why a naive memory-assisted compres-
sion (UcompM1) would suffer from curse of dimensionality
in learning the unknown source parameters. On the other
hand, in Section V, we theoretically proved that the opti-
mal memory-assisted compression performs similarly to the
memory-assisted compression with known source indices. This
suggests that an asymptotically optimal strategy would be to
cluster the side information sequences into several distinct
models (one model for each source in the mixture). This
shall significantly reduce the number of parameter models and
hence will improve the compression performance. This is the
subject of the next section of this paper.

VII. CLUSTERING ALGORITHMS FOR COMPRESSION OF
MIXTURE SOURCES

In this section, we present two clustering solutions for
network packets. The k-means algorithm can be used for this
purpose provided that a proper feature space and a relevant
distance metric are selected. Further, we have also experi-
mented with the non-parametric k-nearest neighbors clustering
algorithm and we will comment on the performance of both
algorithms. In the sequel, we describe a hierarchical clustering
algorithm that proves to be useful for compression. The pro-
posed hierarchy for the content-aware joint memorization and

Packet

Compressible

?

Forward

No Determine Cluster

via Hellinger

Distance

Compress using

Cluster Statistics

Forward

Yes

Fig. 2. Network packet compression flowchart. The modules in the dashed
box are the components of the k-means clustering using Hellinger distance.

clustering for network packet compression is shown in Fig. 2.
As shown, we first identify whether or not an incoming packet
is compressible. If the packet is determined incompressible, it
is neither compressed nor stored in the memory. On the other
hand, the compressible packets are passed to the clustering
unit which operates based on the Hellinger distance metric.

Compressibility determination: The compressibility deter-
mination is performed based on the empirical entropy of the
data packet. The side information packets in memory may be
divided into two categories: one category contains packets with
very high entropy rate (close to 8 bits per byte) and hence these
packets are incompressible. These include already compressed
videos or images. The other category contains packets whose
empirical entropy rate is estimated to be much less than
8, and hence, these packets are compressible. Therefore, as
the first step, the packets are partitioned into compressible
and incompressible. After the partitioning step, the packets
in the resulting memory are all compressible. Then, we will
perform a clustering of the resulting memory. Note that one
may generate man-made models where each sequence has
high entropy while the individual sequences are indeed highly
correlated. On the other hand, our observations from the
real data traces suggest that this issue is not encountered
in practice. Hence, we chose to ignore the packets that we
determine to be incompressible.

Feature selection: Feature extraction deals with extracting
simpler descriptions for a large set of data that can accu-
rately describe characteristics of original data. For memoryless
source models, the frequency of each alphabet in the sequence
defines an empirical probability density function (pdf) vector
which also happens to be the sufficient statistics. Although
for more sophisticated source models, the empirical pdf of
the packet (i.e., the frequency of each byte in the packet)
is not a sufficient statistics anymore as collisions may occur
between different parametric sources in the marginal symbol
distribution, the empirical probability distribution would still
match for packets from the same parametric source while the
probability of collision is relatively low. Further, since the
lengths of the data packets are relatively small on the order
of several kilobytes, any model beyond a memoryless model
would overfit the data [11], [33]–[35]. Hence, we assume
that each packet is generated using a memoryless model. We

9

choose the vector of the empirical pdf as our feature vector
and since we work at the byte granularity (i.e., |X | = 256), the
feature vector is 255-dimensional (255 independent variables).
We stress that the chosen feature space is not necessary
optimal but simulations confirm that it works close to optimal
in practice for packets of size 1,500 bytes or longer.

Distance metric: To perform clustering, we need to use
a distance metric that determines the similarity between any
two packets. Note that the overall objective is to reduce
the compression rate where the compression penalty can be
described in terms of KL-divergence between the true model
and the estimated model (cf. [11]). On the other hand, KL-
divergence is not a metric. Hence, the natural choice for
the distance metric would be the Hellinger distance metric,
which is widely used to quantify the similarity between
two probability distributions (cf. [36]). For two probability
distributions p(·) and q(·) defined on symbols from alphabet
X , the Hellinger distance is defined as

dH(p, q) =
1

2

√∑
x∈X

(√
p(x)−

√
q(x)

)2

. (32)

In our setup, we calculate the Hellinger distance of two packets
using the empirical pdf of the symbols for each packet. Recall
that a packet xn ∈ Xn is a vector of n symbols xi ∈ A.

k-means clustering: As discussed earlier in Section III, we
have a side information sequence of packets yn,T that consists
of T packets that originated from a mixture source model. We
stress that the total number of source in the mixture (denoted
by K) is unknown. Each packet in the memory needs to be
assigned to one clusters from the k choices. We use the binary
indicator cjt to denote the cluster assignment for the t-th packet
yn(t). The indicator cjt = 1 if yn(t) is assigned to cluster
j ∈ [k], otherwise cjt = 0. Then, the objective function for
clustering is given by

J =

T∑
t=1

k∑
j=1

cjtdH(qt, uj), (33)

where qt is the distribution on the symbols obtained from
yn(t) and uj is the probability distribution vector on the
symbols associated with the packets in cluster j. The goal
of the clustering algorithm is to find the assignment cjt for
j ∈ [k] and t ∈ [T] such that J is minimized.

The problem setup suggests that the k-means clustering
algorithm [37] is suitable for our purpose. k-means algorithm
is an iterative algorithm which consists of two steps for
successive optimization of cjt (and hence uj). Given cluster
center uj , the optimal cjt can be easily determined by assigning
the packet yn(t) to the closest cluster with minimum Hellinger
distance dH(qt, uj). Then, we fix cjt and update uj . k-means
clustering algorithm can successfully cluster data packets in
the ideal situation with static number of source model mixture.
However, this algorithm can break down when the number
of sources cannot be estimated correctly, especially for the
infinite mixture source model in real world networks. Note
that k-means algorithm also requires the selection of k a priori.
In our simulations we observed that choosing a large k would
always do the job as most of the clusters will remain empty
when the algorithm converges.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

U1 U2 U3 U4 U5 U6

co
m

pr
es

si
on

 ra
te

 (b
its

/b
yt

e)

Ucomp

UcompM1

UcompMc

UcompMS

Fig. 3. Average compression-rate for a mixture of 3 memoryless and 3
first-order Markov sources using Lite PAQ compression algorithm.

Non-parametric k-nearest clustering: To cluster packets
without assuming any parameters a priori about the data,
we also used the dynamic non-parametric clustering method
based on the well known k-nearest algorithm. To this end,
we partition the memory into m small sub-clusters that are
represented by the cluster centers S = {s1, . . . , sm}. Each
sub-cluster consists of about T/m neighboring packets with
the minimum variance.

As soon as the fine-grain sub-clusters are produced, then
we can process the training packets to form the appropriate
memory for compression. After the initialization of the current
sub-cluster set C = S, the sub-cluster from set C nearest
to xn is merged into the training set Q and is removed
from C after merging. In other words, the new dynamic
training set Q is updated. The merging ends when the expected
number of training packets is reached. The actual number of
sub-clusters is fixed according to the minimum number of
packets requirement of compressor. Algorithm 1 elaborates
the procedures of the non-parametric clustering for selection
of training packets.

Algorithm 1 Non-Parametric k-Nearest Clustering Algorithm
Compute sub-cluster centers S = {s1, . . . , sm}
for Incoming packet xn do

Compute distance dH(xn, si)
Current sub-cluster set C = S
while training pkt num<min training num do

if si? = minsi∈C dH(xn, si) then
Training set Q = Q ∪ {si?}
Index set T = T ∪ {i?}
training pkt num update
Remove si? from C = {s1, . . . , sm}

end if
end while
Return Q and T

end for

In practice, the feature vectors of data packets are scattered
in a high dimensional space and the shapes of clusters are
arbitrary. In particular, when the sample data packet does not
belong to any of the clusters, the performance of k-means
clustering will be adversely impacted. On the other hand, by
merging nearby sub-clusters, k-nearest algorithm can collect
most useful training data with appropriate consistency for

10

sample packet compression. Besides, without the knowledge
of the number of clusters in advance, the k-nearest clustering
algorithm achieves performance improvement compared to k-
means clustering. All the detailed simulation in next session
will elaborate on the performance of the k-nearest algorithm
for data compression.

Compression of a new packet: Once the clustering of
memory is performed, we will derive the mixture distribution
by mixing all the distributions obtained from the source
models, as discussed in Section IV, to achieve the source
model. Then, the new sequence can be compressed on the
fly without any further processing. This is a perfect fit for the
statistical compression methods, such as the CTW and LPAQ.

For dictionary based methods, since mixing is impossible,
we perform classification to compress a new packet xn.
We first decide which cluster should be used as the side
information to compress xn. Therefore, we classify the packet
xn by assigning it to a proper cluster. The classification
algorithm is as follows. Let c be the cluster label of xn to
be determined. We compute Hellinger distance between the
symbol distribution q of xn and the cluster uj . Then xn is
assigned to the closest cluster by

c = argmin
1≤j≤K

dH(q, uj). (34)

VIII. SIMULATION AND EVALUATION

In this section, we present simulation results to demonstrate
the performance of the proposed memory-assisted compres-
sion system with non-parametric clustering and the overall
improvement obtained from side information in universal
compression of a mixture of parametric sources. Furthermore,
we discuss the trade-off between compression speed and
performance.

A. Simulations on Man-Made Mixture Models

To validate the theoretical results of the paper, we chose to
use a mixture of parametric sources as the content-generator
for the traffic. In particular, we used a mixture of five
memoryless and five first-order Markov sources on 256-ary
alphabet (|X | = 256). Consequently for a memoryless source
the number of source parameters d = 255, while for a first-
order Markov source d is 256 × 255 which is the number of
independent transition probabilities. Further, we assume that
each packet is selected uniformly at random from the above
mentioned mixture. For short-length sequences, we generate
18,000 packets at random from this source model, where each
packet is 1,500 bytes long. Then, we used 200 packets from
each source as test packets for the purpose of evaluation.

Fig. 3 demonstrates the results of the simulation on man-
made data generated from the described mixture source us-
ing Lite PAQ compression algorithm. This plot shows the
compression rate measured in the number of bits required to
describe each source byte. Hence, the uncompressed source
would need 8 bits/byte. Sources U1 through U3 are memo-
ryless whilst sources U4 through U6 are first-order Markov
sources. As can be seen, when the source model is simpler
universal compression (without side information can work
relatively much better and get closer to the entropy) whereas

TABLE I
SIMULATION SETUP SUMMARY

Case Value
No. of users in mixture source 15

No. of packets from each user in memory 1,800
Total no. of memory data packets 27,000
Average size of each data packet 1kB

Approximate size of total memory 25MB
No. of users for performance testing 15

Total number of test packets 200
Distance metric Hellinger distance

Clustering algorithm k-means, k-nearest
Compression algorithm Gzip, CTW, Lite PAQ

when the source model is first-order Markov there is a 300%
gap between the performance of the universal compression
without side information and with side information. Further,
as can be seen, the benefits of UcompMc over UcompM1
become more spelled out when the source model becomes
more complex. We will see simulations on real data in the
next section.

B. Simulations on Real Network Traces

For a realistic evaluation, we perform simulation with data
gathered from 20 different mobile users network traces in
real world. The data set was gathered by Sanadhya et al.
in [38]. First, we randomly generate packet sequences from the
27,000-packet mixture of 15 users to construct the commonly
accessible memory for clustering. Then, 10 sample packets
from each of the 20 users (200 packets in total) are selected
as test packets. Note the test packets are distinct from the
packets used for training. Besides, there are 50 test packets
that are generated from the 5 users which are not used for
the generation of the training packets and hence do not have
packets in the mixture memory. Average compression rate
of each test packet is taken as the compression performance
metric. We stress that each test packet is compressed separately
and the result is averaged over the sample test packets. This is
due to the packets flow in networks is a combination of packets
from different sources and can not be simply compressed
together. The whole simulation setup is summarized in Table I.

To demonstrate the impact of the side information on the
compression performance, we analyze the average compres-
sion rate of the three important schemes (Ucomp, UcompM1,
and UcompMc) using gzip, CTW, and Lite PAQ in Figs. 4, 5,
and 6, respectively. Please see [24] for a discussion on the pros
and cons of using each of these compression algorithms for
network data compression. As can be seen, universal compres-
sion without help of any memory packets (Ucomp) results in
the largest (worst) compression-rate which verifies the penalty
of finite-length compression analyzed in [13]. UcompMc,
which is the cluster-based memory-assisted compression, con-
sistently outperforms all other schemes. It is worth noting that
for the data from users which are not necessarily from mixture
source model (users T1,. . . , T5), non-parametric clustering still
achieves impressive improvement compared to simple memory
assisted compression UcompM1. Compression with memory
of user’s previous packets UcompMS sometimes performs

11

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15

co
m

pr
es

si
on

 ra
te

 (b
its

/b
yt

e)

Ucomp

UcompM1

UcompMc

Fig. 4. Average compression-rate of GZIP on real traffic data.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15

co
m

pr
es

si
on

 ra
te

 (b
its

/b
yt

e)

Ucomp

UcompM1

UcompMc

Fig. 5. Average compression-rate of CTW on real traffic data.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15

co
m

pr
es

si
on

 ra
te

 (b
its

/b
yt

e)

Ucomp

UcompM1

UcompMc

Fig. 6. Average compression-rate of Lite PAQ on real traffic data.

well while it sometimes performs poorly due to the fact that
the user data possibly comes from variant source models.
In general, clustering algorithm is applicable to both Lite
PAQ compression and CTW compression with impressive
improvement.

Table II presents the average traffic reduction over all the
fifteen users with different compression algorithms. Using the
non-parametric clustering scheme, we compare the overall
improvement of both dictionary-based compressor (Gzip) [39]
and statistical compressor (Lite PAQ and CTW). As can be
seen, Lite PAQ (which is close to the state-of-the art in
compression) achieves nearly 70% traffic reduction and CTW
achieves 65% reduction. With more than 65% traffic reduction,
statistical compression outperforms dictionary-based compres-
sion, which offers 60% reduction. However, dictionary-based
compression tends to have ten times higher compression
speed. Wireless applications tolerate more latency compared
to the wired networks. Hence, statistical compression is more
suitable for wireless data compression while dictionary-based

TABLE II
THE AVERAGE COMPRESSION RATE (BITS/BYTE) OF DIFFERENT

COMPRESSION SCHEMES ON THE REAL NETWORK TRAFFIC TRACES.

Ucomp UcompM1 UcompMc
Gzip 6.01 4.95 3.14
CTW 5.10 3.85 2.77
Lite PAQ 4.66 3.25 2.43

compression is likely to be employed in wired networks.

C. Clustering Algorithm Performance Comparison

We choose packet selection with two algorithms, namely, k-
means clustering algorithm and k-nearest clustering algorithm.
According to Table III, non-parametric clustering achieve
very similar performance, around 8% better than k-means
clustering. Besides, non-parametric clustering does not require
to know the number of clusters in advance like k-means
clustering. By using ball tree data structure [40], the compu-
tational cost of nearest sub-clusters search is O(N log(N)),
where N is the number of sub-clusters. The average size

12

TABLE III
AVERAGE COMPRESSION RATE (BITS/BYTE) OF UCOMPMC FOR

DIFFERENT CLUSTERING SCHEMES AND COMPRESSION ALGORITHMS.

UcompMc k-means k-nearest
Gzip 3.75 3.14
CTW 3.02 2.77
Lite PAQ 2.63 2.43

of training packets selected by k-means clustering is around
1800 packets whereas around 200 packets by non-parametric
clustering. With smaller-sized training packet selected by
k-nearest clustering algorithm, the compression speed is 9
times quicker than that of k-means clustering. As the average
size of clusters generated from k-means is 9 times larger
than the non-parametric counterpart. Through compression
performance, the k-nearest clustering algorithm is proved to
be more effective in network traffic redundancy reduction than
referenced k-means clustering algorithm for real world data.

IX. CONCLUSION

In this paper, we derived the fundamental limits of universal
compression (with and without side information) for mixture
sources. Our results showed that significant improvement can
be expected from side information in the universal compres-
sion of mixture sources. Our results further demonstrate that
the optimal performance using side information corresponds
to that of universal compression with known source indices.
Motivated by this result, we presented two clustering algo-
rithms for the universal compression of mixture sources with
side information and demonstrated their effectiveness on data
gathered from real network traces.

APPENDIX

Proof of Theorem 2: Let D be the random dimension of
the source parameter vector. It is straightforward to show that

H(Xn|∆) = H(Xn|∆, Z,D) + I(Xn;Z,D|∆) (35)

Further, if Z is known, D is determined, and hence,
H(Xn|∆, Z,D) = H(Xn|∆, Z) which is derived in (10).
On the other hand, we have

I(Xn;Z,D|∆) = I(Xn;D|∆) + I(Xn;Z|∆, D). (36)

Let us first focus on I(Xn;D|∆). We have

I(Xn;D|∆) = H(D|∆)−H(D|∆, Xn). (37)

Note that H(D|∆) is by definition equal to H(v). Further,
we can use the maximum likelihood estimator of D using
xn, asymptotically as n → ∞, to consistently estimate D
asymptotically almost surely [33].8 Hence, H(D|∆, Xn) =
o(1) and I(Xn;D|∆) = H(v) + o(1).

Next, we consider I(Xn;Z|∆, D). In this case, we have

I(Xn;Z|∆, D) =

dmax∑
d=1

vdI(Xn;Z|∆, D = d). (38)

8An event A happens a.s. (almost surely) if and only if P[A] = 1.

In order to analyze, we need to consider two situations. First,
let H(ŵd) . d

2 log n. We have

I(Xn;Z|∆, D = d) = H(Z|∆, D = d)

−H(Z|Xn,∆, D = d). (39)

Clearly, H(Z|∆, D = d) = H(ŵd) by definition. Fur-
thermore, the maximum likelihood estimator for the source
parameter vector almost surely converges to the true θ in
mean square with variance O

(
1
n

)
. On the other hand, if

H(ŵd) . d
2 log n, let A(n) contain all ∆ where there exist

two parameter vectors such that ||θ(i) − θ(j)|| = O
(

1√
n

)
. It

is straightforward to see that the volume of such set shrinks to
zero as n→∞. Now, we only consider the set Λ′(n) defined
as

Λ′(n) = Λ \A(n). (40)

Then, for ∆ ∈ Λ′(n), we have for any parameter vector
θ(i) ∈ ∆, all other parameter vectors are asymptotically
such that ||θ(i) − θ(j)|| = ω

(
1√
n

)
. Hence, by picking the

closest parameter vector to the maximum likelihood estimate,
asymptotically we can determine Z almost surely. Hence,
we deduce deduce that H(Z|Xn,∆, D = d) = o(1) a.s.
Therefore, if H(ŵd) . d

2 log n, then

I(Xn;Z|∆, D = d) = H(ŵd) + o(1). (41)

To complete the proof of the theorem, we need to show
that if H(ŵd) & d

2 log n, we have I(Xn;Z|∆, D = d) =
R̄n,d + o(1). In this case, K → ∞ as n → ∞, and hence,
for any ε > 0, there exists a subset ∆′d of the Kd vectors of
the d-dimensional parameter vectors indexed with K ′d, with
normalized weight vector ûd, such that

(1− 2ε)R̄n,d < H(ûd) < (1− ε)R̄n,d. (42)

Let I∆′
d

denote the indicator function of the subset ∆′d. It is
straightforward to show that

I(Xn;Z|∆, D = d) ≥ I(Xn;Z|I∆′
d
,∆, D = d) (43)

≥ I(Xn;Z|I∆′
d

= 1,∆, D = d). (44)

Note that R̄n,d ∼ d
2 log n and hence H(ûd) . d

2 log n.
Therefore, we have I(Xn;Z|I∆′

d
= 1,∆, D = d) ≥ (1 −

2ε)R̄n,d+o(1) almost surely. On the other hand, we also have

I(Xn;Z|∆, D = d) ≤ I(Xn; θ(Z)|D = d) = R̄n,d. (45)

Hence, we deduce that I(Xn;Z|∆, D = d) = R̄n,d + o(1)
almost surely, completing the proof.

Proof of Theorem 5: The equivalence of the average
minimax redundancy and the average maximin redundancy
and the channel capacity above is a direct consequence of
Theorem 5 of Gallager in [18]. Next, let θ(i) and θ(j) be
independently chosen according to Jeffreys’ prior on the di-
dimensional space Λdi . Then, if H(ŵd) . d

2 log n almost
surely, as n → ∞, we have θ(i) and θ(j) are ω(1√

n
) apart.

Hence, this choice will maximize the mutual information
asymptotically almost surely. On the other hand, if H(wd),
almost surely you have too many parameter vectors that you
cannot discriminate them, and hence, the mutual information

13

is almost surely asymptotically vanishing regardless of how
they are distributed.

Proof of Theorem 7: In light of (20), we would need to
derive I(Xn; ∆). Observe that by the chain rule we have

I(Xn; ∆, Z,D) = I(Xn; ∆)

+ I(Xn;D|∆)

+ I(Xn;Z|D,∆) (46)

where D is the random dimension of the source parameter
vector. By applying the chain rule in a different order we get

I(Xn; ∆, Z,D) = I(Xn;D)

+ I(Xn;Z|D)

+ I(Xn; ∆|Z,D) (47)

Note that I(Xn;Z|D) = 0 as the random vector Xn would
not decrease the uncertainty in the index of the source Z as
there is no information about the source parameter vectors.
Next, consider I(Xn;D). In light of [33]–[35] D is the
random dimension of the signal can be determined uniquely
as n grows to infinity, i.e., limn→∞H(D|Xn) = 0. Hence,

I(Xn;D) = H(D)−H(D|Xn) = H(D)+o(1) = H(v)+o(1).
(48)

Similarly, I(Xn;D|∆) = H(v) + o(1) as H(D|∆) = H(D).
Further, I(Xn;Z|D,∆) is calculated in the proof of Theo-
rem 2. Finally, to derive I(Xn; ∆|Z,D) note that the param-
eter vectors are chosen independently, and hence, we have
I(Xn; ∆|Z,D) = I(Xn; θ(Z)|Z,D). On the other hand, as
each of the unknown parameter vectors follow Jeffreys’ prior,
we have I(Xn; θ(Z)|Z = z,D = d) = R̄n,d. Thus,

I(Xn; θ(Z)|Z,D) =

dmax∑
d=1

vd

K∑
i=1

ŵd,iI(Xn; θ(Z)|Z = z) (49)

=

dmax∑
d=1

vdR̄n,d. (50)

By combining (46) and (47) and the above, we arrive at the
desired result.

Proof of Theorem 10: In the case of UcompM, we need
to derive I(Xn; ∆|Yn,T). Using the chain rule we have the
following.

I(Xn; ∆,S, Z,D|Yn,T) = I(Xn; ∆|Yn,T)

+ I(Xn;S, Z,D|Yn,T ,∆). (51)

On the other hand, (Xn, Z,D) is independent of (Yn,T ,S)
given ∆. Hence,

I(Xn;S, Z,D|Yn,T ,∆) = I(Xn;Z,D|∆), (52)

which has been characterized in the proof of Theorem 7.
Applying the chain rule in a different order, we get

I(Xn; ∆,S, Z,D|Yn,T) = I(Xn;S, Z,D|Yn,T)

+ I(Xn; ∆|Yn,T ,S, Z,D). (53)

Now, considering I(Xn;S, Z,D|Yn,T) observe that

I(Xn;S, Z,D|Yn,T) = I(Xn;Z,D|Yn,T)

+ I(Xn;S|Yn,T , Z,D). (54)

Observe that I(Xn;Z,D|Yn,T) can be made arbitrarily close
to I(Xn;Z,D|∆) with T , i.e., ∀δ ∃T0 such that for T > T0,

I(Xn;Z,D|Yn,T)− I(Xn;Z,D|∆) < δ, (55)

and I(Xn;Z,D|∆) is characterized in the proof of Theorem 7.
Further note that I(Xn;S|Yn,T , Z,D) can be made arbitrarily
small with T , i.e., ∀δ ∃T1 such that I(Xn;S|Yn,T , Z,D) < δ
for T > T1.

Now, we only need to derive I(Xn; ∆|Yn,T ,S, Z,D)
in (53). We have

I(Xn; ∆|Yn,T ,S, Z,D) = I(Xn; θ(Z)|Yn,T ,S, Z,D)

+
∑
ı6=Z

I(Xn; θ(i)|Yn,T ,S, Z,D, θ(Z), θ(1), . . . , θ(i−1)) (56)

All the summands of the second term are zero as Xn is
independent of all θ(i) (i 6= Z) given Z. On the other hand,
observe that

I(Xn; θ(Z)|Yn,T ,S, Z,D) = I(Xn; θ(Z)|{Y n(t)}S(t)=Z , Z,D).
(57)

The size of 1
T |{Y

n(t)}S(t)=Z | can be made arbitrarily close
to ŵD,Z for sufficiently large T . On the other hand, in (57)
the side information is from a single source. Hence, the
mutual information can be obtained using Theorem 2 of [20].
Combining all these pieces results in the desired result.

Proof of Theorem 11: Observe that

I(Xn; ∆,S, Z,D|Yn,T) = I(Xn; ∆|Yn,T)

+ I(Xn;S, Z,D|Yn,T ,∆). (58)

The first term was characterized in Theorem 10 and the second
term is equal to I(Xn;Z,D|∆), which was derived in the
proof of Theorem 7. Applying the chain rule in a different
order we have

I(Xn; ∆,S, Z,D|Yn,T) = I(Xn;S, Z|Yn,T)

+ I(Xn; ∆|Yn,T ,S, Z)

+ I(Xn;D|∆,Yn,T ,S, Z). (59)

The second term in the expansion is what we are
after while I(Xn;D|∆,Yn,T ,S, Z) = 0. Considering
I(Xn;S, Z|Yn,T), we have

I(Xn;S, Z|Yn,T) = I(Xn;Z|Yn,T)

+ I(Xn;S|Yn,T , Z). (60)

Using similar arguments as in the proof of Theorem 10, we
can make I(Xn;Z|Yn,T) and I(Xn;S|Yn,T , Z) arbitrarily
close to I(Xn;Z|∆) and zero, respectively, for sufficiently
large T . Putting all these facts together, we conclude that

I(Xn; ∆|Yn,T ,S, Z) = I(Xn; ∆|Yn,T) + δ, (61)

where δ can be made arbitrarily small for sufficiently large T ,
which completes the proof.

14

REFERENCES

[1] M. Sardari, A. Beirami, J. Zou, and F. Fekri, “Content-aware network
data compression using joint memorization and clustering,” in 2013
IEEE Conference on Computer Networks (INFOCOM 2013), Apr. 2013.

[2] A. Beirami, M. Sardari, and F. Fekri, “Results on the optimal memory-
assisted universal compression performance for mixture sources,” in 51st
Annual Allerton Conference, Oct. 2013, pp. 890–895.

[3] A. Beirami, L. Huang, M. Sardari, and F. Fekri, “On optimality of
data clustering for packet-level memory-assisted compression of network
traffic,” in 15th IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC 2014), Toronto, Canada,
June 2014.

[4] L. Davisson, “Universal noiseless coding,” IEEE Trans. Inf. Theory,
vol. 19, no. 6, pp. 783 – 795, Nov. 1973.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–343,
May 1977.

[6] F. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting
method: basic properties,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp.
653–664, May 1995.

[7] J. Rissanen and G. Langdon Jr., “Universal modeling and coding,” IEEE
Trans. Inf. Theory, vol. 27, no. 1, pp. 12 – 23, Jan. 1981.

[8] M. Feder and N. Merhav, “Hierarchical universal coding,” IEEE Trans.
Inf. Theory, vol. 42, no. 5, pp. 1354 –1364, Sept. 1996.

[9] M. Effros, K. Visweswariah, S. Kulkarni, and S. Verdu, “Universal
lossless source coding with the Burrows Wheeler transform ,” IEEE
Trans. Inf. Theory, vol. 48, no. 5, pp. 1061–1081, May 2002.

[10] D. Baron and Y. Bresler, “An O(N) semipredictive universal encoder via
the BWT,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 928–937, May
2004.

[11] A. R. Barron and T. M. Cover, “Minimum complexity density estima-
tion,” IEEE Trans. Inf. Theory, vol. 37, no. 4, pp. 1034–1054, Jul. 1991.

[12] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inf. Theory, vol. 27, no. 2, pp. 199–207, 1981.

[13] A. Beirami and F. Fekri, “Results on the redundancy of universal
compression for finite-length sequences,” in 2011 IEEE International
Symposium on Information Theory (ISIT ’11), Jul. 2011, pp. 1604–1608.

[14] N. Merhav and M. Feder, “A strong version of the redundancy-capacity
theorem of universal coding,” IEEE Trans. Inf. Theory, vol. 41, no. 3,
pp. 714 –722, May 1995.

[15] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[16] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[17] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem,” IEEE
Trans. Inf. Theory, vol. 42, no. 3, pp. 887 –902, May 1996.

[18] R. G. Gallager, “Source coding with side information and universal
coding,” unpublished.

[19] A. Beirami, M. Sardari, and F. Fekri, “Results on the fundamental gain of
memory-assisted universal source coding,” in 2012 IEEE International
Symposium on Information Theory (ISIT ’12), Jul. 2012, pp. 1087–1091.

[20] A. Beirami and F. Fekri, “On lossless universal compression of dis-
tributed identical sources,” in 2012 IEEE International Symposium on
Information Theory (ISIT ’12), Jul. 2012, pp. 561–565.

[21] Z. Zhuang, C.-L. Tsao, and R. Sivakumar, “Curing the amnesia:
Network memory for the Internet, Tech. Report,” 2009. [Online].
Available: http://www.ece.gatech.edu/research/GNAN/archive/tr-nm.pdf

[22] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan,
and J. P. Singh, “Asymmetric caching: improved network deduplication
for mobile devices,” in Proceedings of the 18th annual international
conference on Mobile computing and networking, ser. Mobicom ’12.
New York, NY, USA: ACM, 2012, pp. 161–172. [Online]. Available:
http://doi.acm.org/10.1145/2348543.2348565

[23] M. Sardari, A. Beirami, and F. Fekri, “Memory-assisted universal
compression of network flows,” in 2012 International Conference on
Computer Communications (INFOCOM ’12), Mar. 2012, pp. 91–99.

[24] A. Beirami, M. Sardari, and F. Fekri, “Packet-level network com-
pression: Realization and scaling of the network-wide benefits,” arXiv
preprint arXiv:1411.6359, 2014.

[25] N. Krishnan, D. Baron, and M. K. Mihcak, “A parallel two-pass MDL
context tree algorithm for universal source coding,” in 2014 IEEE
International Symposium on Information Theory Proceedings (ISIT ’14),
Jul. 2014.

[26] N. Krishnan and D. Baron, “A universal parallel two-pass mdl context
tree compression algorithm,” arXiv preprint arXiv:1407.1514, 2014.

[27] M. Sardari, A. Beirami, and F. Fekri, “On the network-wide gain of
memory-assisted source coding,” in 2011 IEEE Information Theory
Workshop (ITW ’11), Oct. 2011, pp. 476–480.

[28] M. Drmota and W. Szpankowski, “Precise minimax redundancy and
regret,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2686–2707, Nov.
2004.

[29] W. Szpankowski, “Asymptotic average redundancy of Huffman (and
other) block codes ,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2434–
2443, Nov. 2000.

[30] B. Clarke and A. Barron, “Information-theoretic asymptotics of Bayes
methods,” IEEE Trans. Inf. Theory, vol. 36, no. 3, pp. 453 –471, May
1990.

[31] K. Atteson, “The asymptotic redundancy of Bayes rules for Markov
chains,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2104 –2109, Sept.
1999.

[32] Q. Xie and A. Barron, “Minimax redundancy for the class of memoryless
sources,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 646 –657, Mar.
1997.

[33] I. Csiszár and Z. Talata, “Context tree estimation for not necessarily
finite memory processes, via BIC and MDL,” IEEE Trans. Inf. Theory,
vol. 52, no. 3, pp. 1007 –1016, Mar. 2006.

[34] L. Finesso, C.-C. Liu, and P. Narayan, “The optimal error exponent for
markov order estimation,” IEEE Trans. Inf. Theory, vol. 42, no. 5, pp.
1488–1497, Sept. 1996.

[35] J. C. Kieffer, “Strongly consistent code-based identification and order
estimation for constrained finite-state model classes,” IEEE Trans. Inf.
Theory, vol. 39, no. 3, pp. 893–902, May 1993.

[36] L. L. Cam and G. L. Yang, Asymptotics in Statistics: Some Basic
Concepts. Springer, 2000.

[37] C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

[38] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan,
and J. Singh, “Asymmetric caching: Improved deduplication for mobile
devices,” in Proceedings of the ACM MOBICOM 2012 conference.
ACM, 2012.

[39] L. P. Deutsch, “Gzip file format specification version 4.3,” 1996.
[40] S. M. Omohundro, Five balltree construction algorithms. International

Computer Science Institute Berkeley, 1989.

http://www.ece.gatech.edu/research/GNAN/archive/tr-nm.pdf
http://doi.acm.org/10.1145/2348543.2348565

	I Introduction
	II Background on Universal Source Coding
	III Problem Setup
	IV Entropy of the Mixture Source: Compression with Known Source Parameter Vectors
	V Fundamental Limits of Universal Compression for Mixture Sources
	V-A Ucomp: Universal Compression without Side Information
	V-B UcompM: Universal Compression with Side Information
	V-C UcompMS

	VI Operational Limits of Universal Compression for Mixture Sources
	VI-A UcompM1: Simple Universal Compression with Side Information
	VI-B UcompMc: Universal Compression with Clustering of the Side Information

	VII Clustering Algorithms for Compression of Mixture Sources
	VIII Simulation and Evaluation
	VIII-A Simulations on Man-Made Mixture Models
	VIII-B Simulations on Real Network Traces
	VIII-C Clustering Algorithm Performance Comparison

	IX Conclusion
	Appendix
	References

