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Abstract—We consider the problem of decodability when ran-
dom linear coding (RLC) is performed on a stream of packets in a
line network. First, we clearly define the problem of decodability
for a stream of arriving packets, and discuss its importance
with some examples. Then, we will find the limits on the mean
arrival rate under which the stream is decodable. Further, upper
bounds will be derived for the average length of a decoded block
of packets in multi-hop line networks. Finally, these analytical
results are validated via simulations.

I. INTRODUCTION
Linear network codes achieve the min-cut capacity of net-

works [1]. In fact, random linear codes over large Galois fields
have been proved to do so [2]. In [3], a distributed network
coding scheme was introduced, where each node stores the
arriving packets and forwards random linear combinations of
the stored packets. As a result, for a network with no buffer
limitations, all arriving packets are stored, and then used to
generate new packets. Hence, there is no information loss.
However, in this case, upon reception of a packet, a node has
to determine whether or not the incoming packet is in the linear
span of its previously stored packets. Further, for generating
every coded packet, all stored packets need to be accessed. It is
therefore desirable to have limited buffer sizes, since it limits
the complexity of storage and coded packet generation process.
Further, using small buffers at relay nodes simplifies practical
issues such as on-chip board space and memory-access latency
as well as reducing the average packet delay [4].
Various coding strategies for achieving capacity in infinite-

buffer erasure line networks is outlined in [5]. Later, [6]
considered the limitations posed by finite memory, specifically
in a simple line network involving a single intermediate
node. Several challenges arise when extending the study from
a single intermediate node to a multi-hop line network as
detailed in [7]. However, none of the previous works in the
literature have addressed the problem of decodability for finite-
memory random linear network coding.
In this paper, our objective is to define the problem of

decodability when random linear network coding is performed
on a stream of arriving packets and also to derive bounds on
decodable rates and decoded block lengths in line networks.

II. NOTATIONS AND DEFINITIONS
We consider a memoryless packet arrival process with mean

rate λ for the source which is able to accommodate infinitely
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many packets until they are decoded at the destination. The
block of packets that are decoded will then be deleted from
the source buffer. We consider a line network of hop-length h,
a graph with vertex set V = {s = v0, v1, v2, ..., vh−1, d = vh}
and edge set −→e = {{vi, vi+1} : i = 0, ..., h− 1} with erasure
probability εi on link {vi−1, vi} for i = 1, ..., h. It is assumed
that random linear coding (RLC) over Fq is performed at the
source as well as the intermediate nodes, where Fq is the
Galois field of size q. 1 Moreover, we employ the following
notations. For any x ∈ [0, 1], x � 1 − x. Node s and node d
represent the source and destination nodes, respectively.

III. MAXIMUM DECODABLE THROUGHPUT

To define the problem of decodability, first we have to
identify the rules and conditions under which a block of RLC-
encoded packets is decoded at the destination. As an example,
similar to the model in [6], assume the source (encoder) has
a finite memory of size m. Further, the destination (decoder)
receives packets directly from the source, i.e., there is no relay
node. For now, we define the state of the network as the
difference between the number of packets arrived at the source
and the number of packets received by the destination, i.e.,
transmitted to the destination and not lost. At the beginning
of the first time epoch, the memory of the source is empty
and we are in state 0. We remain in this state until the first
packet p1 arrives. Suppose the next packet transmitted from
the source to the destination is not lost. Then we still remain in
state 0, but the destination receives a packet that is a random
linear combination of only the packet p1, i.e., a random scalar
multiple of p1. Hence, the decoder recovers p1 from the
received packet. Now suppose after the first packet p1 arrives,
the next outgoing packet is lost and we reach state 1. Suppose
packet p2 arrives before an outgoing packet is successfully
transmitted, i.e., transmitted and not lost. Then, any packet to
be transmitted by the source is a random linear combination
of p1 and p2. Suppose further that a packet is received by
the destination, so we are again in state 1. This packet is
currently useless to the destination node, since it is neither p1
nor p2. Nevertheless, it contains some information previously
unknown to the destination node, e.g. p1 and p2 lie in a certain
linear subspace. Consequently, the next packet received by the
destination delivers previously unknown information, provided
that it is linearly independent of the packet already stored.

1Throughout this work, we only consider the case where q is sufficiently
large.
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Such a packet is called an “innovative” packet. Further, it is
notable that packets p1 and p2 will be decoded simultaneously
at the destination and hence will generate a decoded block of
length 2. Basically, every packet that is transmitted from a non-
zero state is innovative at the destination because we assume
q is sufficiently large. Also, every time the state returns to
0, a block of packets will be decoded and the length of the
decoded block corresponds to the number of packets arrived
during the time that the state was non-zero.
However, as claimed in [6], the statement above is true only

when packets arrive at the source in states 0, 1, . . . ,m−1. If a
packet arrives at source in state m, the current contents of the
source will be overwritten and hence corrupted, and will never
be recovered. This is because a source with a buffer sizem can
only generate m innovative packets and after that any linear
combination would be linearly dependent to the previously
generated ones. In other words, the source has exactly m
innovative packets to transmit before and after receiving the
new packet, meaning that a packet worth of information is lost
by this arrival. Moreover, the current contents of the source
are corrupted and impossible to recover. In [6], the probability
of packet loss is defined to characterize such behavior. In
this work, however, an infinitely large buffer size is assumed
for the source to investigate the characteristics and behavior
of the decoding process at the destination for a multi-hop
line network, without having to worry about packet loss or
corruption of the contents of the source buffer. We will realize
that such advantages come at the cost of decoding delay, i.e.,
occasionally having to wait a long time for a block of packets
to be decoded. We call a stream of packets with a fixed mean
arrival rate λ decodable if the expected waiting time for a
block of packets to be decoded is finite. The mean arrival rate λ
associated with a decodable stream will be called a decodable
arrival rate. However, the question is whether there are any
arrival rates for which a stream of packets is not decodable.
To answer this question, next, we will define parameters that
have a critical role in characterizing decodability.
In the example above, we realize that each coded packet

received at the destination is in fact a linear “equation” for
which the original information packets arrived at the source
are its “unknowns” to be found. Hence, upon receiving as
many linearly independent equations at the destination as
the number of unknowns, the system of linear equations is
solvable and hence, a block of packets is decoded. The size of
the decoded blocks is equal to the number of unknowns at the
moment the system of linear equations is solved. Therefore,
to guarantee that a stream of packets with arrival rate λ is
decodable, the number of unknowns received at the destination
should not grow unboundedly with respect to the number
of equations received. To address such a problem, we need
to be able to characterize the growth rate and dependencies
of both the number of innovative packets at the destination
(equations) and the number of original packets used in those
innovative packets (unknowns). Previously, in [7], the authors
have developed analytical results regarding the arrival rate
of innovative packets at the destination when the network
performs at steady state, i.e., throughput.
In a line network setting, we define the innovativeness of

node vi with respect to node vi+1 at time epoch t, denoted by

Ii(t), as the number of packets stored in vi that are innovative
for vi+1. The innovativeness of a node is limited to its buffer
size, i.e., 0 ≤ Ii(t) ≤ mvi . Further, each arrival at the
source increases its innovativeness, IS(t), by one. With RLC
being performed on potentially a large number of information
packets at the source, the buffer of the intermediate nodes
contains a limited number of linearly independent packets
(equations) including a large number of source-originated
Packets (unknown variables). For the purpose of decoding
analysis, in addition to the innovativeness of each node, the
number of original packets involved in the buffer contents of
each intermediate node is also considered. Hence, we define
Pi(t) as the number of original packets used in forming the
linear combinations stored at the buffer of node vi.

A. Decodability condition for a Two-hop Line Network
In this section, for simplicity of representation, we consider

three nodes: A source S, a relay R, and a destination D.
Further, their innovativeness are denoted by IS(t), IR(t),
ID(t), and the number of original packets used in forming
the linear combinations stored at their buffers are denoted by
PS(t), PR(t), PD(t), respectively.
Previously, we have seen how the innovativeness of each

node changes with arrival and/or departure of packets. For
example, IS increases by one with each packet arrival at the
source, but potentially2 decreases by one when a packet is
transmitted successfully while IR < m, where m is the buffer
size of the relay R. Further, IR potentially3 increases by one
if a packet is successfully transmitted to the relay from the
source when IS > 0, and potentially decreases by one when
a packet is transmitted successfully to the destination. Finally,
ID only increases by one if a packet is successfully transmitted
to the destination from the relay node when IR > 0.
The changes in parameters PS(t), PR(t), PD(t) are quite

different from how innovativeness of each node behaves. For
the source node, since each arriving packet contributes a new
unknown variable for decoding, PS(t) increases by one with
each packet arrival at the source. Further, PR(t) either remains
the same or takes the value of PS(t − 1) where the latter
occurs when a packet is received at relay R from the source
no matter what are the buffer contents. In other words, when
a packet is transmitted by the source and not lost, it brings
a linear combination of all the packets stored at the source
and combines it with the previously stored contents of the
relay. Similarly, PD(t) either remains the same or takes the
value of PR(t − 1) where the latter occurs when a packet is
received at the destination. Note that, the above changes occur
regardless of the innovativeness of the packets. To summarize,
let Bp(t) be a Bernoulli random variable taking the value 1
with probability p at time epoch t and the value 0 otherwise.
The following represents the changes in PS(t), PR(t), PD(t)
in terms of λ, ε1, and ε2.

PS(t+ 1) = PS(t) +Bλ(t) (1)
PR(t+ 1) = PR(t) +Bε1(t) (PS(t)− PR(t)) (2)
PD(t+ 1) = PD(t) +Bε2(t) (PR(t)− PD(t)) (3)

2IS is non-negative.
3IR should not exceed m.
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The following lemma summarizes the necessary and suffi-
cient conditions for a block of packets to be decoded using
the parameters described above.

Lemma 1 A block of length K is decoded at time t∗ if and
only if both the following relations hold:
1) PD(t∗) = ID(t∗)
2) ID(t∗) − ID(t0) = K , where t0 =

max ({t < t∗ : PD(t) = ID(t)})

The proof can be found in Appendix A.
Lemma 1 only presents the conditions for a single event

of decoding of a block of packets. However, we are more
interested in conditions that must hold to ensure the decod-
ability of a stream of packets in the long run. At the beginning
of this section, using a toy example, we observed that every
time the state of the source returns to 0, a block of packets
will be decoded. Although this statement is not true for a
general multi-hop line network, later we will see that at steady-
state, a block of packets is decoded if and only if the source
revisits the state 0 at least once before the moment of decoding.
Lemma 3 will present the necessary and sufficient condition
for decodability at steady-state.

Lemma 2 The ordered tuple (IS(t), IR(t)) forms an irre-
ducible Markov chain.

The proof can be found in Appendix B.

Lemma 3 A stream of packets with source arrival rate λ is
decodable if and only if in the Markov chain (IS(t), IR(t)),
any state of the form (0, Y ) is recurrent, where Y =
0, 1, . . . ,m.

The proof can be found in Appendix C.
In [8], a powerful tool is introduced to simplify and analyze

complicated Markov chains with a large number of states.
We will use the same methods to reduce the dimensions of
the Markov chain defined in Lemma 2 as presented in the
following corollaries.

Corollary 1 The Markov chain (IS(t), IR(t)) can be col-
lapsed into a new Markov chain IR(t) which represents the
set of states of the form (X, IR(t)), where X = 0, 1, . . ..

Corollary 2 The Markov chain (IS(t), IR(t)) can be col-
lapsed into a new Markov chain IS(t) which represents the
set of states of the form (IS(t), Y ), where Y = 0, 1, . . . ,m.

Lemma 4 simplifies the condition of decodability introduced
in Lemma 3 to include only the collapsed Markov chain IS(t)
instead of the Markov chain (IS(t), IR(t)).

Lemma 4 All the states of the Markov chain (IS(t), IR(t))
are recurrent if and only if all the states of the collapsed
Markov chain IS(t) are recurrent.

The proof can be found in Appendix D.

The following assumption is used to approximate the limit
on the arrival rate λ. However, the assumption is not needed
to prove the existence of such a limit.

Assumption 1 Let Pr{(IS , IR)}, Pr{IS}, Pr{IR} be the
steady-state probability distributions of the Markov chains
(IS(t), IR(t)), IS(t), and IR(t), respectively. Then, the steady-
state probability distributions of source and relay are inde-
pendent of each other, i.e., Pr{(IS , IR)|IS} = Pr{IR}, and
Pr{(IS , IR)|IR} = Pr{IS}.

Finally, the following results summarizes the decodability
condition in terms of the source arrival rate λ.

Lemma 5 In the collapsed Markov chain IR(t), the steady
state probability πR(m) = lim

t→∞

Pr{IR(t) = m} is a non-
decreasing continuous function of λ, achieving its maximum,
πmax
R (m), when all the states in the collapsed Markov chain

IS(t) are transient or null-recurrent.

The proof can be found in Appendix E.

Theorem 1 A stream of packets with source arrival rate λ is
decodable if and only if λ < C∗, where C∗ is the maximum
throughput, i.e., C∗ = ε1π

max
R (m).

The proof can be found in Appendix F.

IV. DECODING DELAY
In section III, the existence of an upper limit to the

decodable arrival rate λ is proved and derived. However,
as mentioned before, decodability with no packet loss or
corruption of the buffer contents, comes at the cost of decoding
delay. In this section, we address the problem of finding
analytical expressions for the average length of decoded blocks
and its variations with arrival rate λ. The average length of a
decoded block is a measure of decoding delay at the network
since a larger decoded block implies a larger average packet
delay.
First, we start with the familiar two-hop example and

propose an upper bound on the average length of decoded
blocks. Then, we will generalize the bound for a multi-hop
line network.

A. Average Length of Decoded Blocks: Two-hop Line Network
Given a stream of packets is decodable, the Markov

chain IS(t) is ergodic and therefore, has a steady-state
probability distribution, denoted by πS(.), where πS(i) =
limt→∞ Pr{IS(t) = i} for i = 0, 1, 2, . . .. Further, the steady-
state probability distribution for the Markov chain IR(t) is
denoted by πR(.), where πR(i) = limt→∞ Pr{IR(t) = i} for
i = 0, 1, . . . ,m. Finally, Theorem 2 provides an upper bound
on the average length of a decoded block in a two-hop line
network setting.

Lemma 6 Let T+
0 be the time to return to zero for the Markov

chain IS(t), i.e. T+
0 = min{t > t0 : IS(t) = IS(t0) = 0}.

Then, the expected time to return to zero at steady-state is
E
[
T+
0

]
= πS

−1(0).
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For the proof, See the proof of Lemma 5 in Chapter 2 of [9].

Lemma 7 Let P dec
R (k) be the probability that right after IS(t)

returns to zero at time t0, i.e. IS(t0) = 0, a block of packets
including only the original packets arrived at the source up
to time t0 is decoded, given IR(t0) = k. Then, we have the
following for k = 1, 2, . . . ,m:

P dec
R (k) > {ε1ε2}

k−1
ε2 ekε1ε2 .

The proof can be found in Appendix G.

Theorem 2 Let πrcv
R (k) be the conditional steady-state prob-

ability that IR(t) = k right after the relay receives a packet
given that the relay is not full before the packet arrives, i.e.
IR < m. Let ldec be the random variable representing the
length of a decoded block. Then, the following provides an
upper bound for the average length of a decoded block:

E [ldec] < λE
[
T+
0

]{ m∑
k=1

πrcv
R (k)P dec

R (k)

}
−1

. (4)

The proof can be found in Appendix H.

B. Average Length of Decoded Blocks: Multi-hop Line Net-
work
Here, we extend the results of SectionIV-A to a line network

with h hops. The steady-state probability distribution for the
Markov chain Ij(t) corresponding to the relay vj is denoted by
πj(·) for j = 1, 2, . . . , h, where πj(i) = limt→∞ Pr{Ij(t) =
i}.

Lemma 8 Let P dec
1 (k1) be the probability that right after

IS(t) returns to zero at time t0, i.e. IS(t0) = 0, all the
information required to decode the original packets arrived at
the source up to time t0 is passed to the relay node v1, given
I1(t0) = k1. Similarly, Let P dec

2 (k2) be the probability that
right after I1(t) becomes zero at a time t1, i.e. I1(t1) = 0,
all the required information to decode the original packets
arrived at the source up to time t0 is passed to the relay node
v2, given I2(t1) = k2. Further, Let P dec

3 (k3), · · · , P
(kh−1)
h−1

be defined in a similar fashion, where h is the number of
hops. Then, we have the following for j = 1, 2, . . . , h− 1 and
kj = 1, 2, . . . ,mi:

P dec
j (kj) > {εjrj+1}

kj−1
rj+1 e

kjεjrj+1 ,

where, rj = εjπj(mj).

The proof is omitted due to lack of space.

Theorem 3 Let πrcv
j (k) be the conditional steady-state prob-

ability that Ij(t) = k right after node vj receives a packet
given that the relay is not full before the packet arrives, i.e.
Ij < m. Then, the following provides an upper bound for the
average length of a decoded block in a line network of h hops:

E [ldec] < λE
[
T+
0

] h−1∏
j=1

{
mj∑
k=1

πrcv
j (k)P dec

j (k)

}−1

. (5)
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Fig. 1. Variations of the average length of a decoded block in a two-hop
line network
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Fig. 2. Variations of the average length of a decoded block in a three-hop
line network

The proof is omitted due to lack of space.

C. Simulation Results
In this section, the proposed upper bounds are validated by

comparing it with simulations. In our simulation setup, the
buffer size of all the relay nodes are assumed to be equal,
m = 5 packets. Further, the probability of erasure on all the
links are assumed to be the same, ε = 0.1. The mean arrival
rate at the source, λ, is varied in a range that the stream of
packets remain decodable. Then, the variations of the average
length of a decoded block are presented in Fig. 1, Fig. 2, and
Fig. 3 for a line network with 2, 3, and 4 hops, respectively.
Clearly, from the simulation results, the upper bound is fairly
tight for a two-hop line network, and as the number of hops
increases, the upper bound becomes looser. The reason for
such behavior is multiplication of the upper bound introduced
for the two-hop case for a multi-hop scenario.
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APPENDIX A
PROOF OF LEMMA 1

Suppose that a block of length K is decoded at time t∗.
Then, at time t∗, the number of equations at the destination
must have become equal to the number of unknowns, i.e.,
ID(t∗) = PD(t∗). Further, by definition, t0 is the last
time that the event PD(t) = ID(t) has occurred before
t∗, hence, PD(t) > ID(t) for t0 < t < t∗. Therefore,
ID(t∗) − ID(t0) is the number of equations in the latest
solvable set of linear equations, leading to find ID(t∗)−ID(t0)
unknowns. The length of the decoded block being K , results
in ID(t∗) − ID(t0) = K . The proof of the reverse statement
is straightforward and follows the same steps as mentioned.

APPENDIX B
PROOF OF LEMMA 2

Given the channel realizations at time t, i.e., whether if
a packet is lost or not at time t, and knowing the way the
innovativeness of each node changes with arrival and/or de-
parture of packets, it is clear that (IS(t), IR(t)) only depends
on (IS(t− 1), IR(t− 1)).

APPENDIX C
PROOF OF LEMMA 3

Suppose that a stream of packets with source arrival rate λ
is decodable. Assume that all of the states of the form (0, Y )
are transient, where Y = 0, 1, . . . ,m. In this case, after a
certain amount of time and also after the last block of packet

is decoded, the Markov chain (IS(t), IR(t)) will never visit
any of the states of the form (0, Y ). Hence, at no point in
time the number of equations generated and transmitted at
the source will be as many as the number of unknowns used
and hence, no block of packets will be ever decoded from
that certain time forward. Next, suppose that in the Markov
chain (IS(t), IR(t)), any state of the form (0, Y ) is recurrent,
where Y = 0, 1, . . . ,m. Then, after visiting an arbitrary state
(0, i), the block of packets will be decoded with the successful
transmission of i packets to the destination without receiving
more packets from the source. Since i is finite (i ≤ m), this
event happens with a positive probability. Since a return to
such states of the form (0, Y ) is recurrent, in a finite time the
block of packets will be decoded.

APPENDIX D
PROOF OF LEMMA 4

Suppose all the states of the collapsed Markov chain IS(t)
are recurrent. Assuming an arbitrary state (IS , IR) = (i, j) in
the Markov chain (IS(t), IR(t)) is transient means that there is
a non-zero probability that (IS(t), IR(t)) will never return to
the state (i, j). Using Theorem 2 of [8], the sum of the steady-
state probabilities of the group of states of the form (i, Y )
in the Markov chain (IS(t), IR(t)) is equal to the steady-
state probability of the state i in the collapsed Markov chain
IS(t), where Y = 0, 1, . . . ,m. The steady-state probability of
the state i in the collapsed Markov chain IS(t) is non-zero
since all the states of the collapsed Markov chain IS(t) are
recurrent. Hence, there is at least one state of the form (i, Y ),
in the Markov chain (IS(t), IR(t)) has a non-zero steady-state
probability. Suppose that the state (i, k) in the Markov chain
(IS(t), IR(t)) has a non-zero steady state probability. Because
of the structure of The the Markov chain (IS(t), IR(t)), the
state (i, j) can be reached from the state (i, k) with a positive
probability, e.g. by sending or receiving packets at the relay.
Therefore, the state (i, j) is not transient and the result follows
from this contradiction. The reverse direction is easy and can
be done in a similar way.

APPENDIX E
PROOF OF LEMMA 5

Assumption 1 implies that the steady state probability
πR(m) equals the blocking probability that the source S
perceives from the relay node R which is ε2 Pr{XR = m},
where Pr{XR = m} is the steady-state probability of the
Markov chain corresponding to the relay [7]. Since ε2 is
assumed to be a constant, to prove the lemma, we need to
prove the results for Pr{XR = m} instead of πR(m). In
the Markov chain corresponding to the relay, α = rinε2,
β = rinε2, and α0 = rin, where rin is the arrival rate of
packets from the source. Clearly, rin increases with λ because
larger λ increases the probability of the source to be non-empty
and hence increases the arrival rate of innovative packets to the
relay from the source. Therefore, α and α0 increase with λ and
β decreases with λ. Hence, Pr{XR = m} is a non-decreasing
function of λ and it can be seen that it is a continuous function
as well [7]. Further, by increasing λ the probability of the
source being in empty state decreases. However, at some point
increasing λ leads to a situation in which the empty state of
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the source becomes transient or null-recurrent. In this case, the
parameters α, α0 and β will not change anymore and πR(m)
achieves its maximum πmax

R (m).

APPENDIX F
PROOF OF THEOREM 1

Using Lemma 3 and Lemma 4, it is clear that to prove the
theorem we need to prove that the state 0 in the collapsed
Markov chain IS(t) is recurrent if and only if λ < C∗, where
C∗ = ε1π

max
R (m).

Suppose that former holds, i.e., the state 0 in the Markov
chain IS(t) is recurrent. Then, assume that λ ≥ C∗. Further,
let rout(λ) be the maximum possible departure rate at the
source which equals ε1πR(m). From Lemma 5, we know
that πR(m) is a non-decreasing continuous function of λ,
achieving its maximum, πmax

R (m), when all the states in the
collapsed Markov chain IS(t) are transient or null-recurrent.
Hence, rout(λ) is a non-increasing continuous function of λ,
achieving its minimum, rmin

out = ε1π
max
R (m) = C∗, when all

the states in the collapsed Markov chain IS(t) are transient or
null-recurrent. Since the state 0 in the Markov chain IS(t) is
recurrent, it is clear that the arrival rate at the source is smaller
than the maximum possible departure rate, i.e., λ < rout(λ). It
is also known that rout(λ) ≥ C∗ since C∗ = rmin

out . Let λ∗ be
the smallest arrival rate at the source for which the state 0 of
the Markov chain IS(t) is transient or null-recurrent meaning
for any arrival rate smaller than λ∗ the state 0 is recurrent,
i.e., λ < rout(λ) for any λ < λ∗. Then, because rout(λ) is
a continuous function of λ, we have λ∗ = rout(λ

∗). Further,
rout(λ

∗) = rmin
out = C∗ because rout(·) achieves its minimum

when all the states in the Markov chain IS(t) are transient
or null-recurrent. Note that, if state 0 is transient, then every
other state in IS(t) is also transient. Hence, we have λ∗ = C∗

and consequently, λ < C∗ which is a contradiction to the
assumption λ ≥ C∗. Therefore, the assumption λ ≥ C∗ must
be false which proves the results.
The proof of the reverse is straightforward. Assuming

λ < C∗ guarantees that the state 0 in the Markov chain IS(t)
is recurrent since C∗ = ε1π

max
R (m) is the minimum of the

maximum possible departure rates at the source and hence
guarantees that the arrival rate λ is smaller than any maximum
departure rates at the source.

APPENDIX G
PROOF OF LEMMA 7

First, we need to find the condition for decoding the packets
arrived at the source up to time t0. Right after IS(t) becomes
zero, all the needed useful equations for the destination to
decode the packets arrived at the source up to time t0 are
now stored at the relay node. Further, IR(t0) = k implies
that there are only k of such equations available at the relay
node. Therefore, to be able to decode, the relay node should
not receive any innovative packet from the source while the
destination is receiving k packets from the relay. Let δ be
the probability of the event that in a single time epoch source
transmits a packet and the packet is either lost or not innovative
for the relay. Since the source is empty at t0, there is a higher

chance that the source remains empty at the next few epochs,
leading to δ = 1. However, after a few epochs, a packet
arrives at the source and we have δ = ε1. Hence, assuming
δ ≥ ε1 is a reasonable approximation for the purpose of
steady-state analysis. Consider the scenario in which the task
of decoding will be completed in exactly k+ i epochs4, where
i = 0, 1, 2, . . .. We proceed to compute the probability of this
scenario. In i of the epochs from the first i+ k− 1 epochs, at
the relay, neither an innovative packet should be received nor
a packet should be successfully transmitted, which happens
with probability δε2 in a single epoch. Further, in k − 1 of
the epochs from the first i + k − 1 epochs, At the relay, a
packet has to be successfully transmitted to the destination
while no packet arrives from the source, which happens with
probability δε2 in a single epoch. Finally, in the last epoch, a
packet has to be received by the destination, which happens
with probability ε2. Therefore, we have the following:

P dec
R (k) =

∞∑
i=0

(
k + i− 1

i

)
{δε2}

i
{δ ε2}

k−1
ε2 (6)

≥

∞∑
i=0

(
k + i− 1

i

)
{ε1ε2}

i
{ε1ε2}

k−1
ε2 (7)

= {ε1ε2}
k−1

ε2

∞∑
i=0

(k + i− 1) · · · (k)

i!
{ε1ε2}

i (8)

> {ε1ε2}
k−1

ε2

∞∑
i=0

ki

i!
{ε1ε2}

i (9)

= {ε1ε2}
k−1

ε2e
kε1ε2 (10)

Note that, (7) is the result of assuming δ ≥ ε1.

APPENDIX H
PROOF OF THEOREM 2

Before any block of packets is decoded at the destina-
tion, the following events must occur: IS(t′) returns to the
state 0, and IR(t

′) = k with probability πrcv
R (k), where

k = 1, 2, . . . ,m. For each k, all the packets arrived at the
source up to time t′ will be decoded with probability P dec

R (k).
Therefore, every time IS(t) returns to zero at epoch t′, all the
packets arrived at the source up to time t′ will be decoded with

the average probability
m∑

k=1

πrcv
R (k)P dec

R (k). Further, since the

expected waiting time for IS(t) to return to zero is E
[
T+
0

]
,

the average time it takes for a block of packets to be decoded at

the destination is E
[
T+
0

]{ m∑
k=1

πrcv
R (k)P dec

R (k)

}
−1

. Finally,

the rate at which the destination receives innovative packets
is λ given that the Markov chain IS(t) is ergodic, which is
the case since we assume the stream is decodable. Hence,

λE
[
T+
0

]{ m∑
k=1

πrcv
R (k)P dec

R (k)

}
−1

will be the average length

of a decoded block, and the results follows.
4The minimum number of epochs to complete the decoding is k.
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