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Abstract—In this paper, we consider the bacterial point-to-
point communication problem with one transmitter and one
receiver by considering the ligand receptor binding process. The
most commonly investigated signalling model, referred to as the
Level Scenario (LS), uses one type of a molecule with different
concentration levels for signaling. An alternative approach is to
employ multiple types of molecules with a single concentration
level, referred to as the Type Scenario (TS). We investigate the
trade-offs between the two scenarios for the ligand receptor from
the capacity point of view. For this purpose, we evaluate the
capacity using numerical algorithms. Moreover, we derive an
upper bound on the capacity of the ligand receptor for a Binomial
Channel (BIC) model, using symmetrized Kullback-Leibler (KL)
divergence. A lower bound is also derived when the environment
noise is negligible. Finally, we analyse the effect of blocking of a
receptor by a molecule of a different type, by proposing a new
Markov model in the multiple-type signalling.

I. INTRODUCTION

Diffusion based Molecular communication (MC) has stimu-

lated a great deal of interest because of its potential broad ap-

plications. In diffusion-based systems, information is encoded

into the concentration, type or releasing time of the molecules.

For instance, in [1], an on-off keying modulation is proposed

where molecules are released only when the information bit

is one. It is shown that if there is no interference from the

previous transmission slots, the channel can be modeled by a

Z-channel. In [2], [3], new modulation techniques based on

multiple types of molecules are presented.

In this paper, we concentrate on the large scale model for

diffusion based channels which reflects the average effects

of diffusion, [4]. However, to derive the large-scale diffusion

capacity of MC, one has to deal with the reception process

at the receiver side. Two reception models are considered

for a passive receiver. The first model is a perfect absorber

where the receiver absorbs the hitting molecule. The second

model, which is more realistic, is the ligand-receptor bind-

ing receiver, where the hitting molecule is absorbed by the

receptor with some binding probability, [5], [6]. Authors in

[7] interpret the randomness of ligand binding as noise and

employ Markov chains to derive a closed form for it. Ligand

receptors are modeled by a Markov chain in [5], by a discrete-

time Markov model in [8], and by a Binomial channel for a

bacterial colony in [4]. The Binomial channel is defined by

p(y|x) =
(
n
y

)
xy(1 − x)n−y where the input x ∈ [0, 1], the

output y ∈ {0, 1, . . . , n} and n, the number of trials, is a given

natural number. Average and peak constraints on the input x
may exist. The capacity of this channel without average and

peak constraints, for large values of n behaves as follows [9]:

1

2
log

n

2πe
+ log π (1)

However, there is no explicit upper or lower bound on the

Binomial channel capacity when n is finite. An algorithm for

computing the capacity of Binomial Channel was presented in

[10] using convex optimization methods. Our main contribu-

tions are as follows:

• We investigate the tradeoffs between two bacterial com-

munication scenarios for ligand receptors: (a) multi-type

molecular communication with a single concentration

level, and (b) single-type molecular communication via

multiple concentration levels. At the first glance, scenario

(a) introduces a new degrees of freedom and reduces the

intersymbol interference (ISI). However since the number

of molecules per type (the power per type) reduces

by the increase of the types, we should examine the

benefit of using different types of molecules. To make

the comparison between scenarios (a) and (b), we adopt

the model of [4] in this work.

• We derive an upper bound to the capacity of Binomial

channel model with given average and peak constraints

on the channel input, using KL divergence bound of [11]

(Theorem 1). Based on numerical evidence, we believe

that this upper bound works well in the low SNR regime

(which can occur in MC systems).

• A lower bound for the Binomial channel with a peak

constraint and no environment noise is presented in

Lemma 1. Based on numerical results, we believe that

this lower bound is tight for low peak values.

• A Markov model for the interactions between different

types of molecules near the receptor is presented and the

capacity for this model is computed numerically.

All logarithms are in base e in this paper. This paper is orga-

nized as follows: in Section II, we present the system model

for Level and Type signalling scenarios, whose capacities are

discussed in Subsection II-A. In Section III, a new upper

bound on the capacity of the Binomial channel is presented by

considering peak and average constraints. Section IV includes

a lower bound on the capacity of the Binomial channel by

extending the Z-channel. In Section V, the interaction of

molecules near the receptor is modeled. Section VI includes

the numerical results.
II. SYSTEM MODEL

In this section, we describe two bacterial point-to-point

communication scenarios with the ligand receptors.

Level Scenario (LS): Here the transmitter encodes informa-

tion at multiple concentration levels to create the codewords.
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At the transmitter and the receiver, there is only one colony

with n bacteria where each bacteria has N receptors; i.e., nN
receptors in total. All these n bacteria produce just one type

of molecule. This scenario is shown in Fig. 1b.

Type Scenario (TS): This scenario uses multiple types of

molecules at the transmitter and the receiver. We assume

the same total number of n bacteria (as in LS) are avail-

able, which are equally divided into m colonies at both the

transmitter and receiver as shown in Fig.1a. As such, each

colony has n/m bacteria. Moreover, different colonies at

the transmitter produce different types of AHL molecules.

Similar to the LS, each bacteria has N receptors. Furthermore,

the colonies are synchronized at the transmitter. Therefore,

there are nN/m receptors in total per each colony, i.e., each

type of molecule. Each colony can detect its own molecule

type and as a result, produces different color Fluorescent

Proteins (e.g. GFP,YFP,...) which are used by the receiver

to decode the received signal. In addition, we assume all

receptors of a colony are independent and sense a common

molecule concentration. Throughout Sections II, III and IV,

we assume that the binding processes of different molecule

types are independent. We investigate a more general model

in Section IV by taking into account the interaction of different

types of molecules at the TS.

In both scenarios, we assume that there is no intersymbol

interference (ISI). In other words, we assume those molecules,

who do not bind to the receptors in the current time slot,

will be degraded to the next time slot and hence will not

interfere with molecules from the next slot. This assumption,

together with the large-scale diffusion channel property, result

in a linear channel. For simplicity, we further assume that

no attenuation occurs in the channel. Therefore, the received

average concentration Ar is equal to the transmitted average

concentration As. At the receiver with ligand receptors, the

probability of binding at the steady state, is given by [4]:

pb =
As

As +
κ
γ

(2)

where γ is the input gain and κ is the dissociation rate of

trapped molecules in the cell receptors. If we consider an

environment noise with average concentration Ane, due to the

molecules of the same type from other sources, the probability

of binding becomes:

pb =
As +Ane

As +Ane +
κ
γ

(3)

In LS, we only have one type of molecule and its binding

probability is equal to

pbLS
=

XLS +ALS
ne

XLS +ALS
ne + κ

γ

, 0 ≤ XLS ≤ As (4)

where XLS is the received average concentration at the

receiver and ALS
ne is the average concentration of environment

noise. On the other hand, in TS, we have different types

of molecules; the probability of binding for the ith type of

molecule is given by

pbiTS
=

XTS
i +Ai,TS

ne

XTS
i +Ai,TS

ne + κ
γ

, 0 ≤ XTS ≤ As

m
(5)

(a) Type scenario (TS)

(b) Level scenario (LS)

Fig. 1: Two scenarios: TS and LS

where XTS
i is the received average concentration of the ith

type of molecule at the receiver and Ai,TS
ne is the average

environment noise for the ith type of molecule. Without loss

of generality, we assume Ai,TS
ne = ATS

ne . Here, we consider

the same γ and κ for all types of molecules and receptors.

A. Capacity analysis

In both scenarios, the output is discrete. Further, we assume

an environment noise and consider average and peak signal

concentration level constraints. The channel is Binomial as

follows:

p(Y = y|X = x) = (6)(
Nn

y

)
fy
pb
(x+Ane)

(
1− fpb

(x+Ane)
)Nn−y

,

fpb
: [0,∞]→ [0, 1], y ∈ {0, 1, ..., Nn}

Note that for LS we have Ane = ALS
ne but for TS we have

Ane = ATS
ne as the environment noises. The function fpb

(X+
Ane) is the binding probability function, where X is the signal

concentration level and Ane is the average environment noise.

We also assume that the function fpb
is an increasing function

and concave. From (2)-(5), we consider the function fpb
(X +

Ane) = X+Ane

X+Ane+
κ
γ

for ligand receptors. As we note, when

the concentration level increases, the binding probability also

increases.

In LS, we have a single colony with input X and output Y ,

with the following peak and average concentration constraints:

0 ≤ X ≤ As, E[X] ≤ α (7)

Then, we find the capacity for LS as

CLS = max
p(x),

0≤X≤As, E[X]≤α

I(X;Y ), Y ∈ {0, 1, ..., Nn}.

(8)

In TS, we use Xi to denote the input of the ith colony to the

channel and Yi to denote the output of the ith colony at the

receiver. The constraints for TS are as follows

0 ≤ Xi ≤ As

m
, E[Xi] ≤ α

m
, i = 1, ...,m, (9)
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Hence, the capacity can be written as

CTS = max
p(x1,x2,...,xm)

I(X1, ...Xm;Y1, ..., Ym) (10)

= m× max
p(x),

0≤Xi≤As
m ,

E[Xi]≤ α
m

I(Xi;Yi), Yi ∈ {0, 1, ..., nN
m
}.

For a fair comparison, we consider ALS
ne = ATS

ne .

III. CAPACITY UPPER BOUND

There is no closed form for the Binomial channel capacity.

As such, for the first time, we propose an upper bound for

the Binomial channel at the low SNR regime by considering

power and peak constraints, i.e., E[X] ≤ α, 0 ≤ X ≤ A
respectively. The Binomial channel is defined as follows:

P (Y = y|X = x) = (11)(
Nn

y

)
fy
pb
(x+Ane)

(
1− fpb

(x+Ane)
)Nn−y

,

fpb
: [0,∞]→ [0, 1], y ∈ {0, 1, ..., Nn}

p(y|x) is binomial distribution, we have
∑

y yp(y|x) =
Nnfpb

(x).
We introduce a new upper bound on the capacity of the

Binomial channel based on the symmetrized Kullback-Leibler

(KL) divergence, referred as KL upper bound in [11]. We

first explain the KL upper bound briefly. Let Dsym(p‖q) =
D(p‖q) +D(q‖p). Then,

U(p(y|x)) = max
p(x)

Dsym(p(x, y)‖p(x)p(y)) (12)

≥ max
p(x)

I(X;Y ) = C(p(y|x)).

It is straightforward to show that

Dsym

(
p(x, y)‖p(x)p(y)) = (13)

Ep(x,y) log p(Y |X)− Ep(x)p(y) log p(Y |X)

Now, we state our upper bound in the following theorem. The

proof is provided in [12].

Theorem 1. Consider a point to point Binomial channel
P (Y = y|X = x) =

(
Nn
y

)
fy
pb
(x + Ane)(1 − fpb

(x +

Ane))
Nn−y , and any input probability mass function (p.m.f)

p(x) where fpb
: [0,∞]→ [0, 1], y ∈ {0, 1, ..., Nn}. Then, for

any input distribution the symmetrized KL divergence upper
bound has the following explicit formula:

I(X;Y ) ≤ U(p(x, y)) (14)

= NnCov(fpb
(X +Ane), log(

fpb
(X +Ane)

(1− fpb
(X +Ane))

)),

Furthermore, for a Binomial channel with average intensity
constraint α and peak constraint A we have

UBinomial(p(y|x)) := max
p(x):

E[X]=α,0≤X≤A

U(p(x, y))

= nN

{ fpb (α+Ane)

fpb (A+Ane)
× F × E, if (∗)

fpb (A+Ane)

4 × E, if (∗∗)

where E = log
fpb (A+Ane)(1−fpb (Ane))

fpb (Ane)(1−fpb (A+Ane))
, F = fpb

(A+Ane)−
fpb

(α+Ane), (∗) = fpb
(α+Ane) <

fpb (A+Ane)

2 , and (∗∗) =
fpb

(α+Ane) ≥ fpb (A+Ane)

2 . Hence,

C = max
p(x):

E[X]=α, 0≤X≤A

I(X;Y ) ≤ UBinomial(p(y|x)). (15)

We compute this KL upper bound numerically in Sec-

tion VI. Based on numerical evidence, we believe that this

upper bound works well for Binomial channels (such as MC

channels) with low capacity.

IV. CAPACITY LOWER BOUND

In this section, we compute a lower bound for the Binomial

channel when the environment noise is negligible, by assuming

a binary input, while in the previous section, continuous

input was assumed. Further, we do not consider the average

constraint. We compute a closed form formula for the lower

bound. The proof of the following lower bound is provided in

[12].

Lemma 1. Consider a point to point Binomial channel P (Y =
y|X = x) =

(
Nn
y

)
fy
pb
(x+Ane)(1− fpb

(x+Ane))
Nn−y , and

any input p.m.f. p(x), in which Ane = 0 and x ∈ {0, As}. A
lower bound on the capacity of this channel is obtained as:

Clower = H(
1

1 + eg(pb)
)− g(pb)

1 + eg(pb)
(16)

where pb = As

As+
κ
γ

, g(pb) = H((1−pb)
nN )

1−(1−pb)nN and H(p) =

−p log p − (1 − p) log(1 − p). The capacity of this channel
is a lower bound to the Binomial channel capacity without
the energy constraint, when the environment noise is zero.

If we consider Nn = 1 then the channel would reduce to a

Z-channel.

V. BLOCKING OF MOLECULE NEAR RECEPTOR

In the previous sections, for the TS scenario we assumed

orthogonal parallel channels for different types of molecules

where there is no interference between different types of

molecules (i.e. no blocking of a receptor by molecules of

another type). However, it is expected that when there are

different types of molecules, they may interfere with each

other. In other words, one type of molecule may block

another type of molecule from binding to its receptor pair. For

example, consider m = 2 with two types of molecule, A,B
and their corresponding receptors as RA, RB respectively. The

molecule type A near RB may prevent the molecule type

B from binding to RB and vice versa.Assume that XA and

XB are the received average concentrations of types A and

B, respectively. The main reaction kinetics, for binding the

molecule type B to its receptor may be modeled as [6]:

XB +RB

γB�
κB

XRB , (17)

where γB ≥ 0 is the association rate of molecules type B
with receptors of type B and κB ≥ 0 is the dissociation rate

of XRB complex. Now, we can characterize the blocking for
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(a) Markov Model with no Blocking for Receptor type
B

(b) Markov Model with blocking for Receptor type B

Fig. 2: Two Markov Models for Receptor type B

the receptor type B, similar to the reaction kinetics formulas,

by:

XA +RB
γBlock,A
B−−−−−→ RBlock,A

B , (18)

XA +RB
κBlock,A
B←−−−−− RBlock,A

B

where γBlock,A
B ≥ 0 is the blocking rate of RB by molecule

type A and κBlock,A
B is the unblocking rate of RBlock,A

B (which

RB was blocked by molecule type A). If we do not take the

blocking into account, then we have a reaction kinetic for each

type of receptor to its type of molecule. As in [6], we may

define a Markov model for the no blocking case based on (17),

as shown in Fig. 2a for m = 2. Likewise, according to (18) and

similar to (17), we propose a Markov model for the blocking

as shown in Fig. 2b. We consider three states. The full state

is when the receptor binds to its type, the empty state when

the receptor is free, and the block state when the receptor is

blocked with a different type of molecule. The steady state

behaviour of the system reaction formula can be obtained as

(see Fig. 2a):

pb = pFull =
XB

XB + κB

γB

(19)

Solving the chain for the blocking case, we have the following

probability of binding and blocking:

pb = pFull =

γB

κB
XB

γB

κB
XB +

γBlock,A
B

κBlock,A
B

XA + 1
, (20)

pBlock =

γBlock,A
B

κBlock,A
B

XA

γB

κB
XB +

γBlock,A
B

κBlock,A
B

XA + 1
. (21)

If we increase one type of molecule, the probability of binding

for another type is decreased as expected. This model can be

extended for m > 2 via,

pib = piFull =

γi

κi
Xi

γi

κi
Xi +

γBlock
i

κBlock
i

∑m
j=1,j �=i Xj + 1

(22)

piBlock =

γBlock
i

κBlock
i

∑m
j=1,j �=i Xj

γi

κi
Xi +

γBlock
i

κBlock
i

∑m
j=1,j �=i Xj + 1

(23)
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Fig. 3: Capacity of LS and TS for αLS = As
2m

and αTS = As
2

.

where pib and piBlock are the binding probability of the ith
molecule to its receptor and the blocking probability of the

ith type of the receptor by the another type, respectively. We

assume the same blocking and unblocking rates for the ith
receptor, which are defined by γBlock

i and κBlock
i respectively.

It is also possible to consider the environment noise Ane

when computing the binding and blocking probabilities. By

considering the probability of binding when there is blocking,

this channel is a multi-input multi-output Binomial channel,

whose capacity is defined as follow:

CTS = max
p(x1,x2,...,xm),

0≤Xi≤As,E[Xi]≤α

I(X1, ...Xm;Y1, ..., Ym), (24)

Yi ∈ {0, 1, ..., nN
m
}

P (Yi = yi|X1 = x1, ..., Xm = xm) =(nN
m

yi

)
fyi

pi
b

(x1, ..., xm, Ane)(1− fpi
b
(x1, ..., xm, Ane))

(nN
m −yi)

where fpi
b
(x1, ..., xm, Ane) = pib is the probability of binding

in the presence of the blocking.

VI. SIMULATION

In this section, we evaluate the rates of TS scenario given

in equation (10), and the LS scenario given in equation (8),

using Blahut-Arimoto algorithm (BA) [13]. We consider n =
16, N = 5, γ = 0.0004 and κ = 0.1.

Fig. 3a shows the capacity for LS and TS, for m =
2, 4, 8, 16 when ALS

ne = ATS
ne = 0. It is seen that increasing

the number of molecule types, m, from 1 improves the per-

formance (for fixed As), which is expected due to the parallel
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transmission of the molecules. However, if we continue to

increase m, and accordingly decrease the number of bacteria

in each colony to n/m, the performance degrades. The reason

is that decreasing the concentration level of TS in equation (9)

decreases the binding probability. Hence, there is an optimal

m. For example, we can see that, for As = 80, this optimal

value lies between m = 4 and m = 8. This means that for

As = 80, at m = 2, 4 the TS capacity is higher than the LS,

but for m = 8, 16, it is lower than LS. Similar conclusions can

be made from Fig. 3b in the presence of the environment noise

ALS
ne = ATS

ne = 5 . Our proposed KL upper bound, in (15), is

depicted in Fig. 4, where the gap between the capacity and the

upper bound decreases as the environment noise increases. It

can be observed that the distance between the KL upper bound

and the capacity is constant in logarithm.
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Fig. 4: Capacity and KL upper bound in terms of Ane for the

Binomial channel with As = 80 and α = 40.

The lower bound in (16) along with the capacity are shown in

Fig. 5. For small values of As, our lower bound is tight which

means the binary distribution is capacity achieving distribution

for small values of As. Fig. 6 shows the effect of blocking
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Fig. 5: Capacity and Lower Bound in terms of As for the Binomial

channel with n = 4 and N = 5.

by showing the capacity of LS and TS for m = 2. We

assumed γBlock
1 = γBlock

2 = 0.0005, κBlock
1 = κBlock

2 = 0.01,

γ1 = γ2 = 0.0004 and κ1 = κ2 = 0.1. As illustrated, blocking

decreases the capacity of TS. In this case, the loss due to

blocking is even more than the improvement due to the use

of multiple molecule types.

VII. CONCLUSION

In this paper, we first investigated capacity performance

of type and level scenarios. Next, we derived a new upper
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Fig. 6: Capacity for TS by considering blocking and without

blocking and LS for αLS = As
2m

and αTS = As
2

, for Ane = 0.

bound for the capacity of the Binomial channel at low SNR-

regime based on the KL-divergence bound as well as a lower

bound. Next, blocking was modeled as a Markov process and

the probabilities of binding and blocking were derived. As

expected and confirmed by simulations, the blocking would

decrease the capacity of type scenario.
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