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Abstract—We consider the problem of the identification of a
mixture of ergodic stationary sources from a limited number of
finite-length observations of a mixture. We propose an algorithm
based on Bayesian Information Criterion and Expectation Maxi-
mization to identify the sources’ models and estimate the mixture
parameters. Based on this algorithm, the sources’ distributions
can be computed and used for nearly optimal memory-assisted
coding of the sequences generated by the mixture. Further, we
provide upper and lower bounds on the entropy of the mixture
source and show that it converges to the upper bound as the
length of the sequences increases and derive the convergence
rate for the per-symbol entropy of the mixture of finite memory
sources.

I. INTRODUCTION

Consider the class of all ergodic stationary stochastic pro-
cesses over a finite alphabet A. Let I}, = (Tpm,...,Tn),
x; € A, be a sequence of length n — m + 1, generated by a
stationary source. For simplicity, when m = 1, we may drop it
in the notations. Also, we represent an arbitrary sequence by a
boldface lower case letter x and its length by [(x). For an er-
godic stationary source .S with the stochastic process {X;}>°_,
the probability distribution for an arbitrary sequence of length
n is denoted by p,(z7) := p(z7]S) = Pr{ X} = «}|S}.

A stationary source has a finite memory of length £ if
the outcome at any time depends only on at most the last
k past samples, i.e. Pr{Xo = 29| XL =2-.} = Pr{X, =
20| X :,i = 2_}. A finite memory source can be considered
as a Markov chain process of order k£ and being described
by a set of |A|* (|A| — 1) conditional probabilities. Context
tree model [1] is the extension of the Markov processes in
the sense that the conditional probabilities can be determined
by strings of variable lengths (the contexts), and hence allows
the description of the source with much less parameters. These
sources are also called tree sources [2], [3].

Let S = (S51,52,...,S5K) be a set of K stationary ergodic
sources over alphabet A with p;(X™) := p(X™|S;). Assume
a prior distribution w = (ws,...,wk) on sources. At any
time instant ¢, a source is chosen at random and generates
a data sequence x; from alphabet A. Hence, the probability
distribution for the mixture is given by

K
me (x) = p(x|®) = > w; p(x|S;) (1)
j=1
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where ® = (S, w) is the set of mixture’s parameters. Our
primary goal is to find the parameters of the mixture based on
a finite number, N, of observed sequences xi,...,Xx.

When the data is generated by a single source and the
model is known (e.g. the order of a Markov chain or the
context tree), the source identification problem is simplified
to the estimation of the model parameters, often via the
maximum likelihood estimator (MLE). For the mixture of
sources, although MLE is applicable theoretically, due to
its complexity and incompleteness of data!, the expectation
maximization (EM) based methods are usually preferred [4],
[5]. On the other hand, when the source model is unknown
a priori, considering a more general model and applying the
MLE-based methods directly, would be problematic; First, as
more complex models often give higher likelihoods, MLE
tends to adapt them even if the source was truly from a simpler
model. Second, there might not exist enough data samples to
reliably estimate parameters of a complex model. So, we need
an algorithm to find the simplest model that describes the data
generation reliably and more accurately.

When the observations are generated by a single source,
minimum description length principle (MDL) [6], [7] and
Bayesian information criterion (BIC) have been successfully
applied for model selection. For a Markov source, when there
exist a priori known upper bound on its order, it is shown
that BIC and MDL with KT [8] and Normalized Maximum
Likelihood code-lengths are strongly consistent for order es-
timation (cf. [9]). without such a bound, the consistency of
BIC order estimator is shown in [10]. For a general tree
source, if it has finite memory, [11] showed the consistency
of BIC estimator even if there is no restriction on the depth of
the hypothetical context trees. For arbitrary ergodic stationary
source, the consistency of BIC context tree estimators are
shown in [12] and [13].

In this paper, we extend the above results to the mixture of
ergodic stationary sources. In section II, we show that under
some conditions, our proposed algorithm can determine the
source models and the mixture distribution as number of ob-
servations increases. Next, in section III, the compression and
entropy of mixture source is addresses. Finally, the simulation
results are provided, followed by conclusion.

li.e. it is unknown that each data sequence is generated by which source.
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A. Notations

Let E,(.) denotes the expectation taken with respect to the
distribution given by p. For two stochastic processes given by
p and ¢, the Kullback-Leibler divergence (KLD) is defined as
D(pllq) = nh%rrgo L D™ (p||q) where D™ (p||q) is the KLD for

sequences of length n, given by

D™ (pllg) = Y pla")log
zeA™

p(X")
q(X™)

p(x") _
q(z™)

where log represents the base-2 logarithm.

P

II. MIXTURE CHARACTERIZATION

Consider the mixture source @ = (S, w) as defined earlier.
Suppose that we have observed N data samples, x1,...,Xxn,
where x; is a sequence of length [(x;) generated by an
(unknown) source, independently from other samples, i.e.

N
p(X1,...,XN|O) :Hm@(xi) 2)
i=1
Our goal is to use these IV observation sequences and find the
underlying mixture distribution; i.e. finding number of sources
K, the prior distribution of sources w, and each source’s
statistics p(.]9;). Note that there is no general straight-forward
method to find the number of sources in the mixture. It is
usually done by running the “algorithm” for different values
of K and comparing the “results” to determine the optimum
value. Hence, in the following, we assume that K is fixed and
the optimization is done with respect to @ = (w, S).
Assume that y; is the index of the source that generated the
sequence X;. Therefore, for 1 < k < K,

p(y; = k|®) = wy, (3a)
p(xilyi =k, ®) = p(x;|Sk), (3b)
p(yi = k|xi, ©) = wy, p(x;]Sk)/me(x;) (3c)

If the class of the sources’ models were known, the EM
algorithm would have been a method of choice to find the
statistics by iteratively maximizing the log-likelihood of data

N K
m(gxﬂ(w, S) = m(gxizzllog (,; wkp(xi|5’k)>

Specifically, if the estimated parameters are ®7 = (w7, S7)
at the j™ iteration of the algorithm, the updated parameters at
the (j + 1)™ iteration are given by

N
. 1 )
wltt = ~ ZP(% = klx;, ©)

i=1

and the parameters of the £ source are found by maximizing
SV p(yi = klxi, ©7) logp(x;|S) over S.

However, when the exact source model is unknown, the
maximum likelihood approach tends to consider the most
complex model as it gives the highest likelihood. This over-
estimation of the sources is undesirable when the length
of sequences are not enough to reliably estimate model’s
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parameters, we are interested in finding the exact source model
or, as in compression applications, when it is required to
send source parameters as well as data. Therefore, we need
a reliable approach to find the “simplest” model that best
describes the mixture source.

We consider the context tree 7 of a stationary source, S.
The tree 7 consists of all sequences t such that none of
them is a suffix of another sequence in 7. Additionally, for
all sequences xo_oo, there exists a unique t € T such that
ps(XO = .’IZ‘0|X:éO = .’17:4130) = pS(XO = x0|X:Z1(t) = t) The

restriction of tree to depth D, denoted by 7 |p, is defined as

Tlp ={t € T, I(t) < D}U
{t, I(t) = D, t is a suffix of some t' € T}
We would like to find a consistent estimation of the tree 7T
and its parameters 8 = {0(t,a) : Vt € T,Va € A} where
0(t,a) :=ps(Xo = a\X:ll(t) =t).
Denote the numbers of occurrences of sequence t followed
by letter a in the observation x = =7 by

nx(t, a) = Hz LI() < i <Ux), 2Tk =t = a}’
Let nx(t) = >, c4 nx(t;a) and nx = ), nx(t). Hence
py1S) o [T IT (0t @)™ @)

teT acA

The maximum likelihood of sequence x™ with respect to tree
T is defined by maximizing the right hand side of (4):

(55

teT ,aeA
with the convention that (%)0 =1.

Next, we review the results for the context tree estimation
for a single source (mainly from [12] and [13]) and then we
present our algorithm for the parameter estimation of a mixture
of sources.

nx(t, a)
Nx(t)

MLy (z") = 5)

A. Single Source

In [12] and [13], the problem of estimating context tree for
ergodic stationary sources has been investigated. For a tree,
T, the Bayesian Information Criterion (BIC) is defined as

BICy(z") = —log MLy (z") + (A= D71 logn

6
5 (6)
and the BIC estimator of the context tree is given by
%BIC (z") = argmin BICr(z") (7
T

Theorem 1 (2.11 [13]). For any stationary ergodic
source with context tree gy, for any constant integer D,
7A'BIC (z™)|p — Tolp almost surely as n — oc.
Further, the maximum likelihood estimates 0(t, a) =
converges to the source parameters ps(alt).

nx(t,a)
Nx (t)

Note that although the above theorem was stated for a
single sequence whose length, n, increases, it still holds if
we consider independent data samples xy,...,xy of lengths
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more than D and let the number of observations, IV, goes to
infinity. Forallt € 7 and a € A, leti(t,a) = va:l nx, (t,a)
and define m(t) and 7, similarly. Therefore,

MLy (x1,...,XN) = H <n7(:27t;z)>”(t’a)
teT ,a€A
BICy(x1,...,xn) = —log MLy (X1,...,XN)
L LA ©
and the BIC estimator is given by
7A—BIC(X1, S XN) = arg;nin BICr(x1,...,xn) (9)

Corollary 2. For any stationary ergodic source with context
tree Ty and for a constant integer D, Tprc(X1,...,XN)|p =
Tolp eventually almost surely as N — oo, provided that
l(x;) > D infinitely often.

Therefore, instead of a long sequence, we can use multiple
(independently generated) relatively short sequences to esti-
mate source’s parameters.

B. Mixture of Sources

Assume that there exist K unknown sources which gen-
erated data samples xi,...,xy, with I(x;) < Iy, for
some constant [,,,,,. When considering maximum-likelihood
estimation of a source Sy, each sequence x; affects the
estimation proportional to p(y; = k[x;, ®). Therefore, it
seems intuitive to use p(y; = k|x;, ©®)ny,(t,a) instead of
Ny, (t, a) for estimation of each source. However, note that at
this point p(y; = k|x;, ®) cannot be computed as it requires
knowing source statistics.

Lemma 3. Assume that data samples x;, 1 < i < N are
generated by a mixture of ergodic and stationary sources with
parameters ® = (S, w). If wy > 0, then

Sy Ply: = 1xi) nx (t.0)
STy Plys = 1) i, (t)

almost surely as N — oo, provided that P(y; = 1|x;) # 0
and 1(x;) > l(ta) infinitely often.

p1(alt) (10)

Proof. See appendix A. ]

For an arbitrary ergodic stationary source Sj (with true
context tree 7) and a hy]]avothetlcal tree 7, for all t € T and
a € A let ng(t,a) = >, ; P(Sk|xi) ni(t,a). Define 7, (t)
and 7y, similarly as before. The maximum likelihood and BIC
for the k™ source with respect to tree 7 are computed as

P _ Tk (t, a)
Oy (t,a) = () (11)
- nk(t,a)
MLy(x,....xnik) =[] <9k(t,a)> (12)
teT ,acA
BICT(x1,...,xn3k) = —log MLy (X1,...,xN; k)
EETE .
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and the BIC tree estimator for source Sy, is given by

ﬁ(xl,...,xN):argminBICT(xl,...,xN;k:) (14)
T
Using lemma 3 with lemmas 3.1 and 3.2 from [12], it can

be shown that

Theorem 4. For a constant D, assume that I(x;) > D.
Then Ti(x1,...,xn)|lp = Tk|p almost surely as N — oc.
Moreover, the maximum likelihood estimates of the parameters
converge to the source parameters.

Using the above theorem to find the sources’ parameters
requires prior knowledge of p(y;|x;) which is not available. As
such, we propose using the EM algorithm to estimate p(y;|x;)
and refine the estimation of wy, T and @y, for 1 < k < K,
at each iteration of the algorithm.

Assume that w! and S! = (T!,6.) are the estimated
parameters of the k" source at the [ iteration of the algo-
rithm, giving the estimated mixture distribution ml(x). The
estimations for the next iteration are given by

!
;= klxi) _ w;g P(Xl|Sk)
We use Pl(y; = k|x;) to estimate 7y (t,a), Tx(t) and Ty,
VteT,ae Aand 1 < k < K. Finally,

Pl(y (15)

5 ng(t, a)
0, (t,a) = ik (f, 16a
ko (ta) T (t) (16a)
7;&1 = argmin BIC7(x1,...,Xn; k) (16b)
T

and the weights of sources in the mixture are updated as

5:_1 N ZPI

III. ENTROPY OF MIXTURE SOURCE

= k|xi) (16¢)

For a mixture of K stationary ergodic sources with param-

eters ® = (S, w), by definition, the entropy of sequences of
length n is
H(X"|S,w)=— Z me(z") logme(a") (17)

il EA7L
Using mutual information inequalities, the following upper

and lower bounds can be easily obtained for all choices of w
and S:

Zwa

Note that the lower bound can be interpreted as when
both encoder and decoder know the index of the source that
generated 2™ and use the optimum code designed for that
specific source to compress x”. Similarly, the upper bound can
be seen as if the encoder knows the “active” source, encode
it with entropy H(w) and send it to the decoder along with
that source’s optimum code for z".

To find the asymptotic behavior of the entropy of the
mixture source, we need the following lemma which is an

=

(X"[S;) < H(X™S, w)

=2 u

H(X™|S;)+H(w)
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extension of Thm. 2 in [14] to the more general class of fading
memory sources, J, 2 (which includes finite memory Sources
as well).

Lemma 5. Assume that K stationary sources from JF are
given. If there exists A > 0 such that D(p1||p;) > X for all
i # 1, then, VK and all prior distributions w with wy > 0,

lim D(")(p1||m@) = —log w; (18)
n—oo
Proof. See appendix B. ]

The following theorem is a direct result of the above lemma.

Theorem 6. Assume that stationary ergodic sources in F are
separated from each other, i.e. A\ > 0 such that for all i # j,
D(p;|lp;) > X Then, for any K and distribution w > 0,

K
Tim. (H(X"|S,w) -3 wy H(X"\Sj)) — H(w) (19)
Jj=1

That is, the entropy of mixture asymptotically converges to
the upper bound. Therefore, to achieve optimum compression
asymptotically, it is sufficient to find the index of the source
at the encoder, compress the data with that statistics and send
both the source index and data to the decoder.

Although the per-symbol entropy = H (X"[S, w) converges
to Z;il w; H(X]S;), but the convergence rate depends on the
individual rates at which 1 H(X"|S;) converges to H(X|S;).
For finite memory sources, the convergence rate is O(1/n),
and hence, the per symbol mixture entropy is

1

K
1
SH(X"|S,w) = ;wj H(X|$;)+0(~) @0

A. Memory-Assisted Compression of Mixture Source

In universal compression of data from single sources, it
is known that the redundancy of compressing a sequence of
length n from a Markov source is 2log(n) + O(1) where
d is the number of free (unknown) parameters. It is shown
that using a memory of length m reduces the redundancy to
41og(14 2)+o0(1) [17] and for a mixture of sources, almost
similar results are provided in [18].

One way of achieving the above performance is to estimate
parameters of the mixture. Although, clustering is asymptoti-
cally optimum, it is far from optimum for short data sequences
and using the estimated mixture distribution as the statistical
model is closer to the entropy, i.e. if ® is the estimated param-
eter, the code-length would be approximately mg (x) instead
of the optimal me(x). Note that the estimated parameters can
be accurate enough even for short blocks of data if the number
of training data samples (V) is large enough. The redundancy
of resulting memory-assisted universal compression equals
D™ (me|mg). As aresult of Lemma 5, it can be shown that
if the estimated sources are close enough to the true ones, the
main term of redundancy would be D(w||/w) for large n.

2For the exact definition, see [15]
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IV. SIMULATION RESULTS

To verify our algorithm, we created four random sources
over an alphabet of size 4; an i.i.d., a Markov(1l), a tree
source over 7 = {00,...,30,1,02,...,32,03,...,33} and a
Markov(2). The entropy and prior distribution of each source
is given in table I. The asymptotic per symbol entropy of
the mixture is 1.71. We generated N = 10000 sequences

TABLE I
SOURCES’ MODELS
Source 1 2 3 4
Model iid Markov(l) | Tree 7 | Markov(2)
Entropy 1.4218 1.7053 1.8423 1.8236
Weight 0.2 0.3 0.1 0.4

of length n = 100. Note that the number of free parameters
of a Markov(2) process, 48, is comparable to the length of
each sequence and hence, algorithms based on single sequence
statistics for source estimation or classification usually fail.
To initialize the algorithm, we simply used K random tree
sources and uniform initial wg. The average per symbol code-
length (i.e. normalized log-likelihood of the whole sequences)
is considered as the cost function. Results of simulations for
different values of K are given in table II. We noticed that the

TABLE II
AVERAGE CODE-LENGTH FOR DIFFERENT VALUES OF K
K 1 2 3 4 5
cost || 1.9017 | 1.8207 | 1.802 | 1.7346 | 1.7345

average code length generally decreases by increasing number
of hypothetical sources, K, but for K > 4 the improvement
is negligible. Therefore, by comparing the cost functions, we
conclude that K = 4 is the optimum choice for the number of
sources in the mixture. The sources’ models, found through the
proposed algorithm, are given in table III, which agrees with
the original sources. Note that the case K = 1 approximately

TABLE III
SOURCES’ MODELS FOUND USING THE PROPOSED ALGORITHM
Source 1 2 3 4
Model 1id Markov(l) | Tree 7 | Markov(2)
Weight || 0.198 0.301 0.107 0.394

equals the universal compression using a single model. Hence,
using our proposed algorithm for identification and estimation
of the mixture model, the compression ratio is improved and
becomes within 1.2% of the asymptotic per-symbol entropy
of the mixture. We expect to see higher compression gains
when the alphabet size increases, the length of each sequence
decreases or data is generated from a more complex models.

V. CONCLUSION

In this paper, we proposed an iterative algorithm to find the
characteristics of a mixture of ergodic stationary sources based
on a finite number of observations. We showed that under
some conditions, as the number of observations increases, this
algorithm converges almost surely to the true statistics of the
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mixture. Next, we considered the problem of data compression
for a mixture source and derived some upper and lower bounds
on the optimum coding rates and showed that as the length of
data sequences increases, the entropy of the mixture converges
to > w; H(X"|S;) + H(w), justifying the asymptotic
optlmality of clustering for compression. We can use the pro-
posed algorithm to identify mixture distribution and use it for
memory-assisted compression, which can result in significant
gain over traditional universal compression algorithms.

APPENDIX A
PROOF OF LEMMA 3

First, we assume that all sequences have the same length.
Let n = I(x;) — I(ta). (The generalization to arbitrary length
sequences with [(x;) < ljq. for some constant lq. is
straightforward) Hence, we can assume that x;,...,Xy are
i.i.d. samples from a source with distribution m(x). Clearly,

Epn [nx(t, a) P(S1[x)] = P(51) Es, [nx(t, a)]

By strong law of large number, %Zil P(S1|x;) ni(t,a)
converges almost surely to nP(S1)pi(t,a). Similarly, as
N — o0, & Zfil P(S1|x;)n;(t) converges almost surely to
nP(S1)p1(t). Therefore,

Zf\il P(Sl |Xi) ni(t7 &) a.s.
SN P(S1]x) ni(t)

p1(alt) as N — oo

APPENDIX B
PROOF OF LEMMA 5
Obviously, — logw; > log 2 1(( n)) Therefore,
Xn)
D™ _E, log 22X 21
(pl”m@) P1 Og m@(X") = ngl ( )

To prove the lemma, we need the following result from
[15], for the class of fading memory sources:

Lemma 7. VP, P, € F, if D(Py||Py) > A, for some constant
A >0, then

lim Py(z™: log ") >\ =1
n— o0 n pQ( )
Define B{") = {u": & log B2 > X}, BO) = () B

and C(®) = (B(n))c. From lemma 7, as n goes to 1nﬁn1ty,
Pi(B™) — 1 and hence Py(B(™) — 1.

p1(X™) pi(z")
Ep, log ——~ = pi(z")log ——~  (22)
n B e~ 2 P o
l.'n
F Y nles 200 o)
zneC(n) *
For all z"* € B(™):
m@( An
— < wy + w; 27
pl(xn ' ;
= (22) > —log(w; +27*") Py (B™) 24)
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On the other hand, since — log(.) is a convex function,
(23) > P (C™) log P, (C™) (25)

Therefore, the following lower bound is obtained for
D™ (py||me):

—log(wy 4+ 27*™) Py (B™) 4+ P, (C™) log P, (C™)

As n goes to infinity, the first term approaches — log(w; ) and
the second term goes to zero. Therefore, combining with eqn.

21), we get lim , D™ (p;||my,) = — logw.
n— oo
Corollary 8. Similar arguments show that %ﬁ;) converges

to w1 almost surely (with measure p1) as n — oo.
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