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Abstract—Molecular communication between biological enti-
ties is a new paradigm in which biological nodes sense the
environment, communicate and cooperate with each other. Lig-
and receptors are among the most common mechanisms used
by biological entities such as bacteria to sense the molecular
signals in their surroundings. In such a mechanism, molecules
(i.e., ligands) bind to certain proteins (i.e., receptors) and activate
a signaling cascade inside the cell. In this paper, we study
the distortion in sensing and estimation of the concentration
of molecular signals by ligand receptors in biological agents.
The sensing distortion is caused by both the randomness in the
ligand reception and the quantization of the final receiver output.
The random measurement of the signal by the binding activity
differentiates this case from classical quantization problems. We
propose an optimal random quantization technique that mini-
mizes the overall distortion described above. The performance
of this optimal technique is compared with a uniform quantizer
design and the regions where the optimal quantizer can offer a
considerable advantage are identified. Furthermore, we analyze
the effect of the number of the output levels (i.e., the output
rate) on the overall distortion compared with the theoretical limit
given by Shannon. Following this, the best practical number of
levels beyond which no significant improvement can be made is
presented.

I. INTRODUCTION AND BACKGROUND

Molecular communication is a paradigm in which molecules

are used in some forms to encode, transmit and decode

information. Recent advances in synthetic biology have en-

couraged the applications of primitive bio agents (e.g., the

engineered bacteria) as the basic components of communi-

cation networks [1], [2]. As such, primitive bio agents are

designed to behave collaboratively for performing the tasks

that would be impossible otherwise. This paradigm is inspired

by existing molecular communication in nature in various

forms. Quorum sensing, for instance, is used by bacteria

to sense the concentration of specific types of molecules in

order to estimate bacteria population density, communicate

their estimate to each other, and synchronize their collective

actions [3].

Among the most promising envisioned applications of

molecular communication is the design of biological com-

munication networks in which a node acts as a sensor who

measures and reports the existence and/or the intensity of

specific types of molecules in the environment [4]. Ligand
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reception is among the most common mechanism through

which the biological entities sense the molecules at their vicin-

ity. In this context, the receptors are trans-membrane proteins

on a receiving cell that are bound by their corresponding

ligand to form a complex molecule, and hence, stimulating

the cell to activate specific genes. These genes, in turn, trigger

further reactions inside the cell indicating the reception of

the molecule. The simplest reaction between a ligand and its

receptor can be written as a two-way process [5]:

Ligand + Receptor ↔ Complex

In this paper, we focus on the equilibrium behavior of the

ligand reception in which the rate of removal of the ligand by

the cell is equal to rate at which new ligands are supplied by

diffusion [5].

There are two main sources that lead to distortion in sensing

the concentration of molecules by a node via ligand receptors.

The first is due to random discretization of the continuous

concentration of molecules through the inherent discrete nature

of ligand reception described above. As the concentration of

molecules at the vicinity of receptors increases, the probability

of ligand binding increases as well. Hence, the number of acti-

vated receptors is a random discrete indicator for inferring the

concentration of signal molecules. As we will see, we model

this source of distortion with a binomial random variable

which represents the mapping from the continuous binding

probability (or equivalently the corresponding concentration

of molecules) onto a discrete level of activated receptors. The

second source of the distortion is due to the limited number

of output levels at the sensor node. As a primitive bio sensor,

the node needs to map multiple levels of activated receptors to

a single output representation value. We view this distortion

as quantization of the discrete binomial random variable from

the previous stage.

Optimal Quantization techniques have been discussed ex-

tensively in the classical literature. Max in [6] described the

optimal choice of quantizing intervals and the reconstruction

points that result in minimum average quantization error for

an arbitrary signal distribution. Uniform quantization (i.e.,

having uniform quantization levels) is the most common and

practical quantization method [7]. Authors in [8] showed

that the uniform quantization is asymptotically optimal with

the number of quantization levels. Universal quantizers have

been introduced for the cases where the input distribution is
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unknown beforehand [7]. A universal quantizer in the minimax

sense (i.e., minimizing the distortion for the distribution that

yields the maximum error) is also introduced in [9].

The analysis of the ligand reception process in molecular

communication has been discussed to some extent in the

literature. The capacity of ligand reception has been obtained

in the steady state [10] and in the transient mode [11].

In [12], a noise model was also proposed for the ligand-binding

reception. The capacity of a molecular communication system

with ligand receptors, under various assumptions, has been

analyzed as well [13]–[15].

In this paper, we study the fundamental problem of imposed

distortion in sensing a molecular signal through the ligand

reception process described earlier. An optimal quantization

technique is proposed that minimizes the distortion caused by

both the reception and output reconstruction processes. We

compare the performance of this optimal technique with an

uniform quantizer and identify the regions where the optimal

quantizer has superior performance. We also compare the

distortion resulted by using different number of output levels

with the theoretical limit given by Shannon and obtain the

optimal number of outputs.

The rest of the paper is organized as follows. In Section. II,

the ligand reception model that we use is introduced and the

optimization problem formalized. In Section. III, we solve the

aforementioned optimization problem and discuss the main

results. Finally, Section. IV concludes the paper.

II. OPTIMAL RANDOM QUANTIZATION

We consider a molecular node consisting of N receptors

acting as a sensor node. The node senses the presence of

a type of molecules in the environment through the ligand

receptors at its surface and maps the continuous concentration

of signal molecules to one of the discrete output levels. There

is an abundance of literature describing the chemical reac-

tions concerning the the ligand receptor activation mechanism

(e.g., [16]). The equation for a single receptor is described by

dp(t)

dt
= k+A(t)(1− p(t))− k−p(t), (1)

where A(t) is the concentration of signal molecules at the

vicinity of the receptor, p(t) is the binding probability, and

k+ and k− are two constants corresponding to binding and

unbinding of molecules. Here, we focus on the steady-state

behavior of the node. Hence, the steady-state probability of

receptor activation p∗ is obtained as:

p∗ =
k+A

∗

k+A∗ + k−
, (2)

where A∗ is the steady-state concentration of molecules. In

this paper, we consider a node that comprises N ligand

receptors that act independently to measure the steady-state

concentration of molecules. We wish to measure the distortion

imposed on the system by both the ligand reception process as

well as the output representation with finite number of levels

and ignore the distortion due to the latter stages of the output

production. Hence, the measured distortion would be a lower

bound for any node who uses ligand reception to sense the sig-

nal molecules. We will also introduce an optimal quantization

scheme that minimizes the aforementioned distortion.

Upon being stimulated by the concentration of molecules

A∗ in the steady state (or equivalently, the activation probabil-

ity p∗), a random S number of the receptors will be activated

where S ∼ Binomial(N, p∗). From now on, we drop the

superscript ∗ when referring to the steady-state values. The

quantized value of p (i.e., the corresponding value of A in (2))

is inferred by observing the quantized value of S as the final

output. Hence, the distortion on p has two sources: 1. Random

and discrete nature of S in measuring p, and 2. Quantization

error in representing S.

We formalize the problem as follows: Given the random

variable corresponding to the number of activated receptors

S ∼ Binomial(N, p), where p is an instantiation of P with

the density function fP (p), and k quantization levels at the

output, the objective is to find an optimal (the notion of

optimality will follow) mapping π from N + 1 levels of S
to k levels of the node output. In other words, we need to

find the optimal mutually exclusive sets Si, i ∈ {1, . . . , k}
and Si ⊂ {0, 1, . . . , N}, where

k⋃
i=1

Si = {0, 1, . . . , N}. This

would correspond to finding the optimal quantization intervals

in a classical quantization problem [7]. Further, we need to find

the optimal reconstruction points pi, i ∈ {1, . . . , k}, corre-

sponding to each Si. note that each Ai can then be computed

from (2). Here, the optimality is defined as minimizing the

modified distortion rate [7] for a noisy source. In other words,

we minimize the conditional expectation E[d(P, p̂)|S = s]
where d() is a distance measure, which is assumed to be the

squared error in this paper.

Following the footsteps of [17], we solve the above op-

timization problem, which can be shown to be convex, by

simultaneously solving the following two problems: 1. For

a given set of reconstruction points p1, . . . , pk, find the best

quantization sets S1, . . . , Sk, and 2. For a given set of Si’s,

find the best corresponding reconstruction points pi’s. If we

order the reconstruction points pi in increasing order, Fine has

shown that optimal Si sets can be described as follows [17]:

Si = {s : pi + pi−1

2
≤ E[P |S = s] ≤ pi + pi+1

2
}, (3)

where i ∈ {1, . . . , k} and we define p0 and pk+1 to be negative

and positive infinity, respectively. Note that (3) resembles the

first optimality criterion in a classical quantization problem [6]

which declares each interval end point must be halfway

between the reconstruction points immediately before and after

that.

In the second step of the algorithm, we need to find the

optimal reconstruction points for each Si set. In other words,

we need to minimize E[(P − pi)
2|S ∈ Si]. It can be easily

shown that the conditional mean of P minimizes this error.

Hence, we have:

pi = E[P |S ∈ Si], i ∈ {1, . . . , k}. (4)
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Rewriting (4) for our problem using the Bayes formula

results in:

pi =

∫ 1

0
p P(S ∈ Si|p)fP (p)dp

P(S ∈ Si)

=

∑
s∈Si

(
N
s

) ∫ 1

0
ps+1(1− p)N−sfP (p)dp∑

s∈Si

(
N
s

) ∫ 1

0
ps(1− p)N−sfP (p)dp

, (5)

where we have exchanged the order of summation and inte-

gration at the end. In the next section, we solve (3) and (5)

simultaneously and compare the resulting distortion with both

a simple uniform quantizer and the rate-distortion function.

Note that we have focused on the distortion in estimating

p, instead of concentration of molecules A. The main reason

is the simplicity it offers for the presentation of equations but

in fact, (2) can be viewed as the compressor in a common

compander quantizing system where the signal is mapped to

the unit interval [0,1] through a nonlinear function G() and

then is quantized. The output reconstruction Â can then be

obtained by Â = G−1(q(G(A))) where q is the quantization

scheme used for the normalized signal P [18]. The distortion

D(q) on the original signal, A, can be obtained by the

”Bennett’s integral” [7] as follows:

D(q) ∼= D0

∫
fA(a)

g2(a)
da, (6)

where D0 is the distortion in detecting the normalized signal,

fA(a) is the input probability distribution and g(a) = dG
da .

The optimal compressor has been described in the quantization

literature [7]. The performance analysis of G() in (2) as a

compressor is outside of the scope of the current study.

III. MAIN RESULTS

We define the distortion D(N, k) as the expected value of

squared error over the input probability distribution. Hence,

we have:

D(N, k) = EP [(P − p̂)2] = ES [EP |S [(P − p̂)2|S]]

=
N∑
s=0

∫ 1

0

(p− pπ(s))
2P(S = s|P = p)fP (p)dp

=
N∑
s=0

(
N

s

)∫ 1

0

(p− pπ(s))
2ps(1− p)N−sfP (p)dp, (7)

where π(s) is the optimal mapping from [0,. . . ,N] to [1,. . . ,k]

introduced in the previous section. Note that we have used the

Law of total expectation and the Bayes rule to obtain (7).

In Fig. 1, we have shown the average distortion versus the

number of quantization levels k for different values of N
using the optimal technique described above. We have chosen

fP (p) to be uniform in [0, 1] but the following observations

can be easily extended for any arbitrary distribution. As we

observe in the plot, the effect of using larger quantization

levels in reducing the overall distortion diminishes after a

certain point. On the other hand, for small values of k, the

distortion is approximately the same regardless of N . In

particular, at k = 1 which corresponds to representing the
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Fig. 1. Distortion versus number of quantization levels for different values
of N
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Fig. 2. Asymptotic distortion of optimal random quantizer versus N

input distribution with its expected value, the distortion is

equal to the distribution variance, here 1
12 . These behavior

can be explained by the observation that we made about the

sources of the overall distortion in the previous section. The

second source which stems from the size of the quantization

levels and is independent of N , is the dominant term for small

values of k but its effect diminishes in the form of 1
k2 . The first

source of the overall distortion which is due to the randomness

in the observation of S, is enduring and the same for all the

values of k. Hence, it becomes approximately the sole source

of distortion for high values of k.

Here, we take a closer look at the first source of the overall

distortion due to randomness in the observation of S. Given

N and observing the value of S = s, from classical statistics,
s
N is the sufficient statistics for estimating the input p. For

large values of k, this statistic can be represented with a near

perfect precision. Hence the average asymptotic distortion D∞
in inferring the value of p becomes the expected value of the

variance of S
N . In other words:

D∞ ∼=
∫ 1

0

p(1− p)

N
fP (p)dp, (8)
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where we have used the fact that Var[ SN ] = p(1−p)
N . Here, we

consider two input distributions fP (p). First is the uniform

distribution discussed above which results in D∞ ∼= 1
6N .

The second distribution is the Jeffreys prior for a Binomial

observation given by:

fP (p) =
1

π
√

p(1− p)
, 0 < p < 1. (9)

In [10], it has been shown that the Jeffreys prior is the

capacity-achieving distribution for the receiver model in which

a continuous concentration of molecules is mapped to a

Binomial observation. Calculating (8) for the distribution in (9)

results in the asymptotic distortion D∞ ∼= 1
8N . Moreover,

based on (8), the worst case asymptotic distortion is resulted

by the probability distribution having all its probability mass

at p = 1
2 which would result in D∞ ∼= 1

4N . In Fig. 2, we

have shown the asymptotic distortion of the optimal random

quantizer for both the uniform distribution and the Jeffreys

prior. We can observe perfect match of the two curves with the

asymptotic distortion D∞ ∼= 1
6N and D∞ ∼= 1

8N , respectively,

as obtained above.

In order to show the advantage of using the optimal random

quantizer, we compare its distortion performance with the per-

formance of a uniform random quantizer where the binomial

observations are uniformly assigned to the quantization levels

and also, the reconstruction levels are uniformly picked in

the interval [0, 1]. We have plotted the normalized difference

between the distortion of the optimal and uniform random

quantizers versus the number of quantization levels k for the

uniform distribution in Fig. 3. As we can see in Fig. 3, the

two techniques result in approximately the same distortion for

small values of k where the quantization error is dominant. The

relative advantage of the optimal random quantizer becomes

more apparent in this case for larger values of k but falls

sharply for k = N + 1. This latter case corresponds to the

point where a one-to-one mapping from the receptor outputs

and the reconstruction levels becomes possible and the optimal

quantizer loses its advantage in picking the optimal mapping.

We can also observe from the plot that the overall advantage

of using the optimal quantizer diminishes for large values of

N and k. This reinforces the observation in [8] that uniform

quantization is asymptotically optimal.

In Fig. 4, we have made the same comparison for the case of

the capacity-achieving distribution in (9). As we can observe

in the plot, except for k = 1 which corresponds to representing

the distribution with its expected value, the optimal quantizer

outperforms its uniform counterpart considerably for small

values of k. Moreover, unlike the uniform distribution case,

the optimal quantizer advantage is even more accentuated for

larger values of N . This phenomenon can be explained by

the observation that for small k and large N , the optimal

distribution can fully take advantage of the asymmetric nature

of the distribution in (9). Moreover, similar to the previous

case, the uniform quantizer approaches its optimal counterpart

for large values of N and k. Note that in both Fig. 3 and Fig. 4

, the curves have been smoothed to offset the illegibility due
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Fig. 3. Comparison of the optimal versus uniform random quantization for
the uniform distribution
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Fig. 4. Comparison of the optimal versus uniform random quantization for
the Jeffreys prior

to their discrete nature.

We also compare the performance of the optimal random

quantizer with the theoretical limit given by the distortion-rate

function as defined by Shannon in [19]. Based on Shannon,

D(R) is defined as:

D(R) = min
Q(X̂|X):I(Q(X̂|X))≤R

d(Q(X̂|X)), (10)

where Q(X̂|X) is the conditional probability distribution

over the reproduction alphabets given the source. Moreover,

d(Q(X̂|X)) and I(Q(X̂|X)) are the average distortion and

the average Shannon mutual information associated with

Q(X̂|X), respectively, and are given by:

d(Q(X̂|X)) =
∑
x

∑
x̂

p(x)Q(x̂|x)d(x, x̂),

where p(x) is the input distribution and d() is a distance

measure (here the squared error) and

I(Q(X̂|X)) =
∑
x

∑
x̂

p(x)Q(x̂|x) log Q(x̂|x)∑
x p(x)Q(x̂|x)
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Fig. 5. Comparison of the optimal random quantizer with distortion rate curve

Note that in the ligand receiver model, Q(x̂|x) has been

fixed to be a Binomial distribution. Based on the definition

above, D(R) gives the lower bound on the distortion for any

quantizing methods with the rate limited to R. In order to

solve the constrained optimization in (10), we use the Blahut

algorithm described in [20] which obtains the points on the

rate-distortion curve (or equivalently, distortion-rate curve)

iteratively. In Fig. 5, we have shown the distortion of the

optimal random quantizer versus R = log(k) for different

values of N and compared it with the Shannon distortion-

rate curve. As we can see in the plot, the optimal random

quantizer curves follow the theoretical limit closely for small

R but fall short afterwards and approach their asymptotic

distortion. Also, it is possible to get closer to the distortion-

rate curve by using larger values of N but the curves will

eventually diverge where the random observation error dwarfs

the quantization error. This will also correspond to the best

practical choice for the number of levels k∗(N), i.e., the

minimum k that satisfies k2

N > a where the left side is the

relative variance of the two errors and a is a constant. Hence,

R∗(N) = log k∗(N) = logN
2 + log a

2 . Choosing a = 10,

we observe a good match between R∗(N) and the points of

divergence in Fig. 5.

IV. CONCLUSION

In this paper, we studied the distortion in molecular signal

sensing via ligand receptors. We identified two sources of dis-

tortion, namely the random ligand reception and the receiver

output quantization. We modeled the problem as finding the

optimal quantization of a binomial random variable in order

to infer its parameter with minimum distortion. We proposed

an optimal random quantization technique that minimizes the

overall distortion through optimal mapping of the binomial

output and finding the best corresponding reconstruction lev-

els. We showed that the first source of distortion decreases

inversely with the number of receptors while the second

decreases as inverse squared of the number of quantization

levels. As such, increasing the number of quantization levels

(i.e., increasing the receiver output rate) after a certain point

has negligible effect on improving the overall distortion where

the random observation of the input becomes the dominant

source of the distortion. We compared the performance of

the optimal random quantizer with a uniform quantizer and

showed that even though the optimal technique offers a con-

siderable advantage in certain regions, the uniform quantizer

approachers the optimal one asymptotically. We also compared

the performance of the optimal quantizer with the theoretical

limit given by the distortion-rate curve proposed by Shannon.

We observed that it is possible to approach the distortion-rate

curve in low rates by using large number of receptors but the

curves always finally diverge as the optimal quantizer’s dis-

tortion approaches its asymptotic value which is independent

of the rate.
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