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Abstract—Despite the recent research activities in molecular
communication among bio agents, the design of reliable schemes
remains an open problem. One of the challenges is to develop
suitable coding schemes which meet the molecular communica-
tion specific constraints in terms of reliability and complexity. In
this paper, we consider diffusion-based molecular communication
in which the information is encoded into the concentration (e.g.,
on/off keying). Such a communication system operates over a
completely asymmetric channel where one of the bits can be
transmitted without any error while the other can undergo a
random error by the channel. Because of the limitations of bio
agents, we focus on error-detecting schemes which require far
less complexity at the receiver relative to error-correction codes.
We model the detection process at the receiver via an erasure
channel and propose an algorithm that obtains the optimal
codewords efficiently. Then, we consider an error-free sub-family
of such codes, namely constant weight codes, and propose an
implementation specific to the molecular communication. We
analyze the rate of the constant-weight coding scheme and specify
the optimal weights and lengths of such codes. We also show
that this coding scheme, by design, would enable the nodes to
synchronize their communications.

I. INTRODUCTION

Recent developments in nano/bio technology have moti-
vated the researchers from various disciplines to study the
fundamentals of molecular communication systems [1]–[4].
Among the remaining challenges in design of such systems is
the communication reliability, in particular developing codings
schemes compatible with molecular communication require-
ments [5]. In this paper, we are interested in a molecular
communication setting in which the information is encoded
in the concentration of molecules at the receiver. In particular,
we use a model in which the transmitter sends a pulse of
molecules for transmitting the bit “1” and shuts off for the bit
“0” [6]. The molecules traverse the diffusion channel freely
and their concentration is sensed by the receiver. By choosing
the appropriate pulse lengths and shut-off periods in conjunc-
tion with methods introduced to expedite the communication,
such as the use of enzymes in [7], one can assume that the
symbols are decoded independently [6]. Furthermore, in the
absence of other transmitters in the vicinity, the molecules
cannot be produced in either the channel or the receiver and
can only be lost. In other words, unlike the bit “1”, the bit “0”
can be transmitted almost without any error. Hence, we use a
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completely asymmetric channel model (i.e., the z-channel) for
the binary communication setting explained above and develop
practical error-detecting schemes for it.

We focus on error-detecting schemes for two reasons. First,
the envisioned biological communication networks require that
a node acts as sensor that reports its readings (e.g., existence
of a chemical in the environment [5]) to a destination. In such
a context, we need a reliable error-detection capability but
missing some transmissions can be tolerated as the nodes are
perpetually sensing the environment and sending the informa-
tion of interest. The second reason for considering the error-
detecting schemes is to obviates the complexity imposed by
error-correcting codes, especially at the receiver. The primitive
bio nodes only have limited built-in complexity and hence, it
is more practical for a receiver node to discard the erroneous
codewords than trying to correct them as an optimal receiver
would do.

We first, study the general problem of error-detecting coding
schemes in completely asymmetric channels. We show the
trade-off between the rate and probability of error in such de-
tection codes. While using all the possible codewords achieves
the maximum information rate, it also incurs the maximum
probability of error. Here, we want to limit the probability
of error and optimize the chosen codewords under such
constraint. In order to find the optimal codewords, we model
the detection process at the receiver by an erasure channel. We
show that choosing the optimal codewords, in general, is an
intractable problem and hence, employ dynamic programming
to find the optimal codes efficiently under certain assumptions.
We then discuss how constant-weight codewords, a sub-family
of the above constructed codewords, can be implemented in
molecular communication. Constant-weight codes, notably the
four out of eight codes, have been commonly used for error
detection in completely asymmetric channels in the context
of conventional communication systems [8]. In such channels,
the fixed weight of the codewords is the perfect error detection
mechanism as the codeword weights can only decrease by
error and hence, any error can be detected.

Coding schemes for molecular communication has been
briefly discussed in the literature. In [9], a new distance mea-
sure for molecular communication has been studied. Authors
in [10] apply convolutional coding schemes, by making use of
memory units and XOR gates, to improve the probability of
error in molecular communication. The use of Hamming codes
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for molecular communication is discussed in [11] in which
logic gates are used for encoding and decoding. The field of
synthetic biology is still in its infancy [12], and it is unclear
how practical it would be to develop stable bio circuits for the
coding purposes. Unlike the above schemes, we introduce a
scheme that does not use logic gates or any storage. Hence,
it is suitable for molecular communication in terms of both
complexity and functionality of the nodes.

The rest of the paper is organized as follows. In Sec-
tion II, we present the model for the general problem of
finding the optimal codewords for an error-detecting scheme
in a completely asymmetric channel. Section III introduces
an algorithm based on dynamic programming to solve the
problem of finding the optimal codewords. In Section IV, we
introduce and analyze a perfect error-detecting scheme specific
for molecular communication . Finally, Section V concludes
the paper.

II. OPTIMAL ERROR-DETECTING CODING SCHEME FOR
COMPLETELY ASYMMETRIC CHANNELS

We consider a molecular communication setting in which
the diffusion channel inputs and outputs are the binary set
{0, 1}. The transmitter releases a pulse of molecules in order
to transmit the bit “1” and shuts off for the bit “0”. By
using appropriate waiting times and/or expediting the reseting
process through use of specific enzymes [7], one could assume
the independent decoding of the symbols. As shown in [6],
the probability of error in the reception of the molecules
approaches zero when the concentration of molecules is close
to zero (i.e., sending bit “0”). On the other hand, there exists a
non-zero probability of error pe in transmission and decoding
of the bit “1”, which depends on the duration length and
magnitude of the pulse. Note that pe is due to both the
communication channel and the uncertainty induced by the
reception itself. As such, we use a completely asymmetric
channel model (i.e., z-channel) with the parameter pe to
account for the molecular communication from the transmitter
to the receiver.

Our objective is to find the optimal codewords for an error-
detecting scheme in the above z-channel. We denote by S
our codeword set where S ⊆ {0, 1}n, and the codewords by
Xn ∈ S where Xn are length n binary vectors. In order to
capture the transition between the codewords in the aforemen-
tioned completely asymmetric channel, we define a codeword
transition matrix P where Pi.j = Prob(Xn

i → Xn
j ). As an

example, the general transition matrix is as follows for n = 2
(illustrated for the hypothetical case of S = {0, 1}2):





(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 1 0 0 0
(0, 1) pe 1− pe 0 0
(1, 0) pe 0 1− pe 0
(1, 1) pe2 pe(1− pe) pe(1− pe) (1− pe)2





At the receiver side, any vector that is not in S is erroneous
and hence, discarded. In order to capture this behavior, we

TABLE I
THE EFFECT OF REMOVING EACH CODEWORD FOR n = 2

(0, 0) (0, 1) (1, 0) (1,1)
R(bits/codeword) 1.2076 1.2118 1.2118 1.2592
Pavg 0.0436 0.0615 0.0615 0.0647

model all such received vectors as an erasure symbol E.
Hence, the received set would be {S′} = {S} ∪ E. The
average probability of error in such a setting can be written as
Pavg =

∑K
i=1 pi

∑
j:Xn

j <Xn
i
Pi,j where pi is the probability

of sending Xn
i , and Xn

j < Xn
i if and only if i &= j and

for every “1” in Xn
j , the corresponding position in Xn

i is
“1” as well. The new transition matrix by considering the
E symbol can be obtained by reducing the general transition
matrix and removing the rows corresponding to the vectors
Xi /∈ S and adding the corresponding column to the E
column. For example, the reduced transition matrix resulting
from removing the vector (0, 0) from S = {0, 1}2 is given by:





(0, 1) (1, 0) (1, 1) E

(0, 1) 1− pe 0 0 pe
(1, 0) 0 1− pe 0 pe
(1, 1) pe(1− pe) pe(1− pe) (1− pe)2 pe2





Our goal is to find the detection code set S (and equivalently
the set S′) that is optimal in the sense that a given probability
of error is satisfied and the information rate of the detection
scheme is maximized. We model the detection process as a
channel where the input symbols are the codewords Xn ∈ S,
the outputs are the received words Y n ∈ S′ and the channel
is represented by the codeword transition matrix P (Y n|Xn)
described above. With the above setup, the problem of finding
an optimal error detection code resembles Shannon’s channel
capacity problem with the difference that we are not given
the channel input symbols. It is worth clarifying that by
information rate of the detection scheme, we mean I(Xn;Y n).
This quantity would be the theoretical limit for the rate of
any error detection coding scheme. Note that without the
probability of error constraint, using all the codewords (i.e.,
S = {0, 1}n) would achieve the maximum rate objective.

In order to obtain the optimal distribution and hence, the
maximum rate for each choice of S, we use the Blahut-
Arimoto (BA) algorithm [13] on the corresponding codeword
transition matrix. As a toy example, for n = 2 and S =
{0, 1}2, the maximum rate and the corresponding average
probability of error are obtained as R = 1.525 bits/codeword
and Pavg = 0.089. The resulting average probability of error
Pavg and optimal rate R achieved by removing only one vector
from the general transition matrix, are shown in Table I. Here,
the vector in the column is removed from S = {0, 1}2. As
we observe in this Table, there exists a trade-off between
the rate and the probability of error. We also observe that
perturbing the error constraint may result in a completely
different subset of codewords and hence, greedy algorithms
that remove the most ”suitable” codeword at each step won’t
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Fig. 1. The codeword graph for n=3

necessarily result in the final optimal codewords. In other
words, different constraints on Pavg may result in different
orders that the vectors are removed. It can be shown that
finding the optimal codewords in the above general scenario
is an NP-hard problem. In order to solve the problem for a
more specific case, we model it on a directed graph. We have
shown the codeword transition graph for n = 3 in Fig. 1. In
such a directed graph, each potential codeword is represented
by a vertex and the vectors are arranged from the highest
weight to the lowest such that vectors with the same weights
are on the same level (i.e., drawn on the same horizontal level).
The edges of the codeword graph represent the transition of
a vector to another with only a single bit error. A vector
can be transformed to another if and only if there exists a
directed path between input and the output vectors. Due to
the asymmetric nature of the channel, the transformations can
only happen from a codeword to the ones with lower weights
located on lower levels of the graph. The probability of such
transformation pt can be written as:

pt = phe (1− pe)
w−h (1)

where w is the transmitted vector weight and h is the number
of hops in the directed path to the received vector.

We can also observe that the transformation probability is
unique regardless of the path. The reason is that at each hop,
the vector weight decreases by 1. Since traversing to above
or across nodes is not possible, the number of hops is always
equal to the difference in vector weights and independent of
the chosen path. Based on the above description, the problem
of finding the optimal code would map to finding the optimal
subset of vertices of the above graph that satisfies the error
probability constraint.

III. DYNAMIC-PROGRAMMING BASED ALGORITHM TO
OBTAIN THE OPTIMAL CODEWORD SUBSET

In order to provide an algorithm rather than brute-force
search to find the optimal codewords, we make two simpli-
fying assumptions:

1) We relax the average probability of the detection error
constraint and instead we use an upper limit on the maxi-
mum probability of the detection error. The advantage of

this assumption is that we will be able to set a minimum
distance h∗ between each pair of chosen codewords and
hence, can decide whether a subset is a viable code set
before running the BA algorithm.

2) We confine ourselves to small enough pe such that the
transition probability between two codewords of the
distance more than h∗ is negligible. This assumption,
as shown later, makes choosing the optimal codewords
of two subsets with distance more than h∗ independent
of each other.

In the first phase of the algorithm, we need to obtain the
minimum edge distance of the codewords in order to satisfy
the maximum error probability constraint. Edge distance of
two codewords is the directed distance between their cor-
responding vertices on the codeword graph. Since we only
consider small pe, it suffices to only consider the transition to
the immediate neighbor of each codeword as the sole cause
of error.

Lemma 1 In order to comply with the maximum error prob-
ability pmax, the codewords must be at least in the distance h∗

from each other where h∗ is the minimum integer that satisfies

maxw
(w
h

)( pe

1−pe

)h
(1− pe)w ≤ pmax for 0 ≤ w ≤ n.

Proof. Consider the codeword cw with the weight w. Since
the weight of the vectors at the distance h from cw is w− h,
there are

(w
h

)
vectors at distance h that cw can be transformed

to. Using (1), in order to satisfy the error constraint for all the

graph, we need maxw
(w
h

)( pe

1−pe

)h
(1 − pe)w ≤ pmax where

0 ≤ w ≤ n. Note that for the small values of pe, w = n
maximizes the above criterion.

In the second phase of the algorithm, we employ dynamic
programming [14] to find the optimal codewords given the
minimum edge distance h∗.

Lemma 2 If one vector with weight w is chosen for the
optimal code, all the vectors with the same weight must be
chosen.
Proof. First, we observe that since all the vectors with the
same weight are on the same level in the codeword graph,
the minimum edge distance remains intact by exhausting all
the codewords in that level. Hence, the maximum probability
of error constraint would still hold. Secondly, adding more
codewords to a subset of codewords can only increase the
information rate of the detection scheme. The reason is that
the optimal distribution for the original subset can be achieved
by setting the probability of the new codewords to zero. Hence,
the rate obtained by the old set is always sub-optimal to the
one obtained by the new set.

Hence, the problem of finding the optimal code amounts to
finding the optimal codeword weights. Note that this alone
reduces the number of viable sets, i.e., number of BA al-
gorithm runs, from O(2(2

n)) to O(2n). Now, we resort to
dynamic programming to obtain the optimal weights with
O(n) runs of the BA algorithm. We assume Ck to be the
set of weight-k vectors, Sk to be the optimal codeword set
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using only the weights lower than or equal to k, and R∗
k to be

the corresponding optimal rate. Moreover, we denote by R(Π)
the rate of the set Π. Our objective is to obtain Sn and R∗

n.
The algorithm works as follows:

• Initialize S0 by C0 and Sk by the empty set for k < 0.
• Initialize R∗

k to zero for k ≤ 0.
• for k = 1, 2, 3, . . . , n, do:

R∗
k = max(R(Ck ∪ Sk−h∗), R(Ck ∪

Sk−h∗−1), R∗
k−1, R

∗
k−2..., R

∗
k−h∗+1) and update Sk

accordingly to either Ck ∪ Sk−h∗ , or Ck ∪ Sk−h∗−1, or
Sk−1,. . . , or Sk−h∗+1.

The above algorithm ensures that the minimum edge dis-
tance between the codewords is always held at h∗ and builds
upon the solutions to the smaller sets in order to obtain
the optimal solution of the larger ones. Note that at the
maximization step, the average probability of error can be
calculated since the optimal distribution of the codewords is
already obtained by the BA algorithm at that step. Hence,
one could discard the choices that yield average probability of
error greater than a threshold with no additional cost. In order
to obtain R∗

n and Sn, in each iteration, we need two runs of
the BA algorithm and O(h∗) comparisons which is negligible
compared with the BA algorithm cost. Hence, we have reduced
the total number of BA algorithm runs from O(2n) to O(n).
It is worth noting that the overall performance of the above
algorithm is not linear in n as the BA algorithm itself has
exponential complexity with respect to n. Before we prove
the correctness of the above algorithm, we need the following
lemma.

Lemma 3 Assume the codeword subsets S1 and T1 are the
optimal subsets of the sets S and T , respectively, which satisfy
the maximum error detection probability constraint. If there
exists no transition probability between the codewords of the
sets S and T , S1 ∪ T1 would be the optimal codewords for
S ∪ T under the same constraints.

Proof. First, notice that since there is no transition probability
between the codewords of S1 and T1, the overall transition

matrix is in the form of C =

[
T1 0
0 S1

]
. Hence, this

transition matrix can be viewed as two independent parallel
channels with overall rate of R(S1 ∪ T1) = R(S1) + R(T1).
Now imagine there were subsets S2 ⊂ S and T2 ⊂ T which
S2 ∪ T2 would give the optimal rate for the set S ∪ T ,
i.e., R(S1 ∪ T1) < R(S2 ∪ T2). Since the transition matrix
of S2 ∪ T2 has a similar form as above, we would have
R(S1) + R(T1) < R(S2) + R(T2) which would mean that
either R(S1) < R(S2) or R(T1) < R(T2), or both. Imagine
the first case was true. Since S2∪T2 is assumed to satisfy the
maximum error probability, each one of the individual sets
must satisfy the constraint individually. Hence, there would
exist a subset S2 ⊂ S that achieves a higher rate than the
optimal subset S1 under the same constraint, which is a
contradiction.

Theorem 4 The dynamic algorithm described above, ensures

finding the optimal codewords under the maximum error
probability constraint.

Proof. In order to show the correctness of the algorithm,
we need to show that given the optimal answer for the
sub-problems 1, 2, . . . , k − 1 , the algorithm gives the opti-
mal answer for the kth problem. First, assume the weight-
k vectors Ck are not included in Sk. Since the minimum
edge distance of the codewords must be h∗, R∗

k would be
max(R∗

k−1, R
∗
k−2, . . . , R

∗
k−h∗+1) and Sk would be the cor-

responding subset. Note that R∗
k−h∗ cannot be the optimal

answer as adding Ck to Sk−h∗ would increase the optimal rate
while we assumed Ck is not included in Sk. Now consider the
case where Ck is indeed in the optimal codeword set Sk. We
consider two sub-cases:

First, consider the case that Ck−h∗ is not included in
Sk−h∗ , i.e., Sk−h∗ = Sk−h∗−1. Here, the set Sk−h∗ ∪ Ck

would be the optimal set because the minimum edge distance
between Ck and Sk−h∗ is greater than h∗ and since we ignore
the transition between two codewords of edge distance more
than h∗, using Lemma 3, choosing Ck does not impact the
optimality of Sk−h∗ . Next, consider the case that Ck−h∗ is
actually included in Sk−h∗ , and hence, picking Ck could
possibly impact the optimality of Sk−h∗ for the smaller
problem. This could possibly result in evicting Ck−h∗ from
the optimal set. If so, the rest of the codewords are in distance
at least h∗ + 1 from Ck, and hence, Sk−h∗−1 would be the
optimal subset for the smaller problem. If Ck−h∗ is not evicted
from the optimal set, since other codewords in Sk−h∗ are not
impacted by the presence of Ck (as their distance is more
than h∗), Sk−h∗ remains optimal. Hence, we need to consider
R(Ck ∪ Sk−h∗) and R(Ck ∪ Sk−h∗−1) in the maximization
step of the algorithm for the case that Ck is included in the
optimal set as well as R∗

k−1, R
∗
k−2, . . . , R

∗
k−h∗+1 for the case

that Ck is not included.
In Fig. 2, we have shown the optimal rate at each step of the

algorithm for n = 8, pe = 0.1, different values of h∗, and the
corresponding maximum error probability. Note that h∗ = 1
corresponds to the case that all the vectors can be used. We can
observe the amount of forgone rate in order to achieve lower
maximum error probabilities. Further, the incremental value
of the higher-weight vectors diminishes at each step. On the
other hand, in order to show the negative effect of high-weight
codewords, we have plotted the average probability of error
for the optimal codewords at each step of the algorithm in
Fig. 3. As we can see in this plot, the average probability of
error continues to increase even where there is no significant
improvement in the rate by including more high-weight vectors
in the code set. This suggests stopping the algorithm when the
rate improvement is negligible by increasing k.

IV. CODING SCHEMES FOR PERFECT ERROR DETECTION
AND SYNCHRONIZATION IN MOLECULAR

COMMUNICATION

In this section, we study and analyze the constant-weight
codes for molecular communication. These codes are sub-
family of the general optimal codes discussed in the previous
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Fig. 3. optimal codewords’ average probability of error at each step

section, by constraining the maximum probability of error to
zero. This coding scheme is suitable for the low complexity
requirements of the molecular communication especially for
the communication systems that need perfect error detection.
As discussed before, the binary (on/off) molecular commu-
nication works as follows: In order to send symbol “1”, the
transmitter sends pulses of duration T of signal molecules
(AHL) and shuts off for the same period of time in order to
send symbol “0”. The duration T must be long enough to
give the receiver sufficient time to sense the concentration of
the AHL molecules. It must also provide enough time for the
channel to reset from high to low. The optimal value of T is
studied in [6]. It is also shown in [7] that specific enzymes can
be used to expedite this process. Hence, we assume that the
symbols can be decoded independently at the receiver. Hence,
as in the previous section, symbol “0” can be transmitted
impeccably while there is a non-zero probability of error pe
in transmitting “1” (i.e., the completely asymmetric channel).

One of the main constraints in designing a coding scheme
for molecular communication is the low complexity require-
ments in encoding and decoding. In addition, unlike the
common case in molecular communication literature, we do
not assume the existence of an additional mechanism to
synchronize the transmitter and the receiver [15], and instead,
we seek to provide synchronization using the proposed code.

Moreover, since sending the symbol “0” and sending nothing
can seem the same, the receiver cannot differentiate between
codewords such as (0,0,1,1) and (0,1,1,0). To mitigate this
problem and also synchronizing the communication, each
codeword should begin with “1” to signal the beginning of
a codeword. Note that we assume that the least significant
digit is sent first.

Our objective here, is to implement perfect error-detecting
schemes for the above molecular communication by employ-
ing constant weight codes, and to compare the rate loss
compared with the theoretical limit from the previous section.
As an example, considering the synchronization constraint,
the allowed codewords with weight two for n = 4 are:
(0,0,1,1), (0,1,0,1) and (1,0,0,1). Note that since the conversion
of the symbol “0” into “1” is not possible, error among the
codewords of the same weight cannot happen. At the receiver
side, weight of the codewords is examined and in case of a
mismatch with a preset weight, the codeword is discarded.

Here, we explain how the decoding process at the receiver
works. Arriving of the first “1” symbol indicates an incoming
codeword. The following symbols are decoded one by one for
the duration of the codeword length which is known to the
receiver. The output of the receiver agents (e.g., bacteria) is
only produced when symbol “1” is detected and it is in the
form of Green Fluorescent Protein (GFP) [16]. Equipped with
a circuitry, the receiver chamber should have the capability
of detecting the aggregate output produced by the agents
during the entire codeword. In order to check the codeword
weights, the chamber circuitry accepts a codeword only if
the aggregated level of the output surpasses a threshold. This
threshold can be programmed beforehand and should be higher
than the level obtained where the codeword weight is less than
the preset weight. This way, any erroneous codeword can be
detected and discarded when the output is below the threshold.

In order to analyze the general length n family of codes
described here, we denote by w the constant weight of such
codes and by pe the probability of error for transmitting the
symbol “1”. Hence, the codeword probability of error ,which
results in being rejected by the receiver, is Pe = 1 − (1 −
pe)w. Hence, the expected number of transmissions of each
codeword (in order to to be transmitted correctly) would be
equal to 1

(1−pe)w
; using a Geometric r.v. with parameter (1−

pe)w. The number of information bits in such a codeword is
log2

(n−1
w−1

)
as the first bit is always “1”. Hence, the average

rate for such a code would be

R =
(1− pe)w

n
log2

(
n− 1

w − 1

)
. (2)

The code rate versus weight is shown in Fig. 4 for n = 8
and for different values of the probability of error pe. As we
observe in the plot, and shown to be true for other values of
n, the low-weight codes are optimal in high pe but optimal w
approaches n

2 for small values of pe.
In Fig. 5, we have shown the effect of block size n for

different channel probability of error when the optimal weight
is chosen. Since the probability of error is small, w = n

2
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Fig. 5. Optimal code rates versus the code length for different values of pe

is chosen as the optimal weight. As we see in the plot,
the optimal block size increases for a more reliable channel
but the rate eventually approaches zero as the code length
continues to increase. Moreover, we can observe the rate loss
due to perfect error detection by comparing the pe = 0.1
curve in Fig. 4 with the top curve in Fig. 2. We can see that
imposing perfect error detection together with synchronization
constraint result in about 40% loss in the code rate compared
with the maximum theoretical limit obtained by imposing no
constraints on probability of error.

In the above coding scheme, the only complexity imposed
on the receiver node (i.e., the chamber circuitry) is the ability
to read consecutive bio agents’ output, aggregate and compare
it with a threshold, and report the decoded output if it passes
the threshold.

V. CONCLUSION

In this paper, we studied the error-detecting coding schemes
for the molecular communication channel. We considered
diffusion-based molecular communication in which the infor-
mation is encoded into the binary concentration of molecules.
and the communication process was modeled as a completely
asymmetric channel. We showed the trade-off between the rate
and probability of error for such coding schemes. In order to

obtain the theoretical limits, we introduced a dynamic pro-
gramming algorithm that finds the optimal codewords under
the maximum error probability constraint. We then studied
constant-weight codewords, a sub-family of above codes,
which meet the molecular communication specific needs in
terms of both perfect error detection and low complexity. We
showed that through the use of these codes, synchronization
can also be achieved. At the receiver side, the weight of the
codewords is assessed and discarded in case of a mismatch
with a default weight. We also analyzed the optimal weight and
length of such codes and compared the rate with the theoretical
limit obtained earlier.
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