1588

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

Packet-Level Network Compression: Realization and
Scaling of the Network-Wide Benefits

Ahmad Beirami, Student Member, IEEE, Mohsen Sardari, and Faramarz Fekri, Senior Member, IEEE

Abstract—The existence of considerable amount of redundancy
in the Internet traffic at the packet level has stimulated the deploy-
ment of packet-level redundancy elimination techniques within the
network by enabling network nodes to memorize data packets. Re-
dundancy elimination results in traffic reduction which in turn
improves the efficiency of network links. In this paper, the con-
cept of network compression is introduced that aspires to exploit
the statistical correlation beyond removing large duplicate strings
from the flow to better suppress redundancy. In the first part of
the paper, we introduce “memory-assisted compression,” which
utilizes the memorized content within the network to learn the
statistics of the information source generating the packets which
can then be used toward reducing the length of codewords de-
scribing the packets emitted by the source. Using simulations on
data gathered from real network traces, we show that memory-as-
sisted compression can result in significant traffic reduction. In the
second part of the paper, we study the scaling of the average net-
work-wide benefits of memory-assisted compression. We discuss
routing and memory placement problems in network for the re-
duction of overall traffic. We derive a closed-form expression for
the scaling of the gain in Erdés-Rényi random network graphs,
where obtain a threshold value for the number of memories de-
ployed in a random graph beyond which network-wide benefits
start to shine. Finally, the network-wide benefits are studied on In-
ternet-like scale-free networks. We show that non-vanishing net-
work compression gain is obtained even when only a tiny fraction
of the total number of nodes in the network are memory-enabled.

Index Terms—Dijkstra's algorithm, Erdés-Rényi random
graphs, memory-assisted compression, network memory, random
power-law graph, redundancy elimination.

I. INTRODUCTION

ASSIVE amount of data is daily produced and trans-
mitted through various networks. A very high fraction
of the cost of dealing with such massive data is associated with

Manuscript received April 29, 2014; revised November 18, 2014; accepted
March 27, 2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor A. Markopoulou. Date of publication May 22, 2015; date of current ver-
sion June 14, 2016. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1017234. This paper was pre-
sented in part at the 2011 IEEE Information Theory Workshop (ITW 2011) and
the 2012 IEEE International Conference on Computer Communications (IN-
FOCOM 2012).

A. Beirami was with Georgia Institute of Technology, Atlanta, GA 30332
USA, and is currently jointly affiliated with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC 27708 USA, and the Re-
search Laboratory of Electronics, Massachusetts Institute of Technology, Cam-
bridge, MA 02139 USA (e-mail: ahmad.beirami@duke.edu; beirami@mit.edu).

M. Sardari was with Georgia Institute of Technology, Atlanta, GA 30332
USA, and is now with Electronic Arts, Inc., Redwood City, CA 94065 USA
(e-mail: sardari@gatech.edu).

F. Fekri is with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332 USA (e-mail: fekri@ece.gatech.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2015.2418296

the transmission. Hence, any mechanism that can provide traffic
reduction would result in huge cost benefits. Several studies
have examined real-world network traffic and concluded the
presence of considerable amounts of redundancy in the traffic
data [1]-[6]. From these studies, redundancy elimination has
emerged as a powerful technique to improve the efficiency of
data transfer in data networks.

Currently, the redundancy elimination techniques are mostly
based on application-layer content caching [7], [8]. However,
several experiments confirm that the caching approaches, which
take place at the application layer, do not efficiently leverage the
network traffic redundancy which exists mostly at the packet
level [2], [5]. Furthermore, caching approaches are incapable
of suppressing redundancies that exist across multiple connec-
tions. They even lose opportunities for suppressing redundancy
within one connection because of issues such as small content
size. To address these issues, a few recent studies have consid-
ered the deployment of redundancy elimination techniques in
the network layer (i.e., layer 3) [2], [5], [9], [10], where the in-
termediate nodes in the network have been assumed to be ca-
pable of storing the previous communication in the network and
also data processing. These works demonstrate that redundancy
in the data is so high that even a simple de-duplication method
(i.e., removing the repeated segments of the packets) can pro-
vide considerable bandwidth savings. Motivated by these bene-
fits, in this work, packet-level redundancy elimination is inves-
tigated from an information-theoretic point of view.

Information theory has already established the fundamental
limit in the compression of infinite-length sequences for the
class of universal schemes [11]-[13]. Entropy is the fun-
damental limit (also called Shannon limit) of compression;
sequences generated by a source cannot be compressed with
a rate below entropy and uniquely decoded. A compression
scheme is called universal if it does not require any prior
knowledge about the source statistics. Hence, it is clear that
from the practical point of view, the universal family is more
interesting than the non-universal one. However, as shown
in [14], [15], there is a significant penalty, i.e., gap from the
asymptotic limit, when finite-length sequences are compressed
under a universal scheme. More precisely, there is no hope of
developing source coding algorithms that can compress short
sequences to their entropy [15]. Also, in [15], [16], we showed
that the compression of small network packets requires more
than 100% compression overhead, beyond the Shannon limit.
There is no way to get around this limit in the absence of side
information.

It is natural to ask whether it is possible to improve com-
pression rates by taking advantage of side information about
the source provided by the memorized sequences from previous

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

traffic. In the finite block length regime of practical interest, it
was demonstrated that by adding only 4 MB of memory at the
router it is possible to learn enough about a stationary source to
overcome the fundamental limits of universal compression in
the finite-length regime and approach the Shannon limit [16].
This is referred to as memory-assisted universal compression,
where a side information sequence of length m (that can be
thought of as the aggregate of the previous traffic stored in
the network node) is obtained from the information-generating
source. This length m sequence that is stored both at the encoder
(i.e., the source) and the decoder (i.e., the memory-enabled net-
work node) is called “memory” and conveys important infor-
mation about the source statistics.

Even if the gain of memory-assisted compression is justified
on a link, it remains an open problem how such a gain would
scale if memory-assisted compression is adopted in the Internet
on the router level. Several studies have inferred that the Internet
(at the router level) can be very well modeled using a scale-free
network [17]-[21]. In particular, these studies provide evidence
that although the Internet is growing dynamically, its properties
can be well modeled through a stationary state described using
the scale-free network model. Therefore, the end goal of this
paper would be to understand the scaling of the network com-
pression gain on Internet-like scale-free networks.

In the first part of this paper (through Section IV), we discuss
practical algorithms for implementation of memory-assisted
compression and confirm the non-trivial gain of memory-as-
sisted compression on data gathered from real network traces.
This is the achievable improvement in a link between the
encoder and the decoder which both have a shared side in-
formation (or memory) of the previous communication and
compare against the existing redundancy elimination tech-
niques. The memory-assisted compression is performed using
both dictionary-based compression, e.g., gzip (also referred to
as LZ77) [11] and statistical compression, e.g., LPAQ [22],
and context tree weighting (CTW) [12]. These results provide
a foundation for the network compression, which extends the
idea of memory-assisted compression beyond a single link.

In the second part of this paper (from Section V), we extend
our work to find achievable network-wide gain of memory-as-
sisted compression (also referred to as network compression
gain). In this context, we demonstrate that memory placement
in the network poses some challenges to traditional shortest
path routing algorithms, as the shortest path is not necessarily
minimum cost route in networks with memory requiring mod-
ification in routing. Further, we show that optimal memory
placement in a network is non-trivial and vital to achieving
network-wide benefits from memory deployment. To determine
how the network compression gain scales with the number
of memory-enabled nodes in the network, we theoretically
quantify the scaling behavior of the benefits of memory-en-
abled nodes, Erdds-Rényi (ER) random network graphs [23].
Considering ER random network graphs simplifies the problem
significantly as the memory placement problem is trivial due to
the symmetry and the analysis yields to a closed-form solution.
The exact analysis reveals that there exists a threshold value
for the number of memories deployed in a random graph below
which the network-wide gain of memorization vanishes and
above which it is fully accessible. Finally, network compres-

1589

sion gain is studied in Internet-like scale-free networks (which
are modeled in this paper using random power-law graphs).
Through analysis on random power-law graphs, it is demon-
strated that non-vanishing network-wide gain of memorization
is obtained even when the number of memory units is a tiny
fraction of the total number of nodes in the network.

Our contributions in this paper are summarized below.

* The concept of memory-assisted compression for redun-
dancy elimination is introduced and its benefits are vali-
dated on real network data. In particular, memory-assisted
compression gain is also defined which is the fundamental
benefit that is obtained from memory in the network packet
compression.

* Network compression gain is defined and optimal routing
strategy and memory placement algorithms in the presence
of memory-enabled nodes are presented to maximize the
network compression gain when the objective is the reduc-
tion of the aggregate traffic in the entire network.

* The average case scaling of network compression gain
is studied on Erddés-Rényi random network graphs. It is
shown that even with deployment of memory-enabled
nodes that scale sublinearly with the total number of
nodes in the network, non-negligible benefit from network
compression is achievable on the average.

* The average case scaling of network compression gain is
studied on scale-free networks modeled using Internet-like
random power-law graphs, and it is demonstrated that sig-
nificant network-wide benefits are obtained when only a
tiny fraction of the network nodes are memory-enabled.

The rest of the paper is organized as follows. In Section II,

the related work in network traffic reduction (redundancy
elimination) is reviewed. In Section III, memory-assisted uni-
versal compression is introduced. In Section IV, the benefits
of memory-assisted compression for redundancy elimination
are investigated through simulations on data gathered from
real network traces. In Section V, the issues of extending
memory-assisted compression to a network are described
and the network compression gain is defined. In Section VI,
the optimal routing and memory placement are investigated
for maximizing the network-wide gain. In Section VII, net-
work compression is studied for Erdds-Rényi random graphs.
In Section VIII, network compression is investigated for
random power-law graphs. Finally, the conclusion is given in
Section IX.

II. RELATED WORK

A. Content-Centric Networking

Recently, there has been a lot of attention regarding the effi-
cient utilization of memory units inside network. One related
line of work is the content-centric networking (CCN) [24], [25].
In CCN, content is segmented into individually addressable
pieces, and these individually addressable data segments are
cached in the network. However, there are several fundamental
differences between our work on network compression and
the previous research on CCN. The first difference is that our
approach deals with the data itself, as opposed to the content
name. As a simple example, two independent servers gener-
ating the same content but with different names would still be

1590

able to leverage the memory-assisted compression, but not the
CCN. The second difference is that CCN has a fixed granularity
of a packet, whereas one of the core features of compression
algorithms is their flexibility to find redundancy in the data
stream with arbitrary granularity. In fact, it is suggested that
packet level caching, which most of the current techniques are
approximately reduced to, offers negligible benefits for typical
Internet traffic [5], due to this predefined fixed granularity.

B. Redundancy Elimination Using De-Duplication

Another very related line of work considers the benefits of the
deployment of packet-level redundancy elimination in the net-
work [2]-[6], [26]. The mechanism considered for redundancy
elimination is mainly based on de-duplication. The de-duplica-
tion mechanism identifies the largest chunk of data that appears
in memory and replaces it with a pointer [27]. It is common for
network traffic to contain large repeated blocks, e.g., traffic from
users that watch the same video.

The core to de-duplication is an efficient value-based finger-
printing algorithm that is used to identify repeated chunks of
data. In [28], Karp and Rabin originally presented their pattern
matching algorithm for string searching; the algorithm answers
whether a particular pattern sequence exists in a packet of length
n by an efficient value-based fingerprinting [1], [29]. The finger
printing process facilitates the de-duplication by providing an
easy to compute function that can quickly lead to identification
of duplicates in the packets.

De-duplication works well when the redundancy across the
packets is in the form of large repeated chunks from a previ-
ously communicated packet. However, redundancy in data ex-
ists beyond simple repetitions in the form of statistical depen-
dencies between symbols. This motivates our information-theo-
retic investigation of more efficient redundancy elimination al-
gorithms based on data compression that target to leverage these
statistical dependencies. We stress that the benefits of de-dupli-
cation and memory-assisted compression are complementary to
each other as de-duplication provides a fast and efficient way of
removing large repetitions whereas such repetitions would go
mostly undetected using memory-assisted compression. On the
other hand, universal compression targets to leverage statistical
dependencies between symbols in a sequence that would not be
well detected using the de-duplication techniques. This obser-
vation is confirmed experimentally in Section [V-B.

C. Compression (Source Coding)

While relevant, the network compression problem is different
from those addressed by distributed source coding techniques
(i.e., the Slepian-Wolf problem) that target multiple correlated
sources sending information to the same destination [30], [31].
In the Slepian-Wolf problem, the gains are achievable in the
asymptotic regime. Further, the memorization of a sequence that
is statistically independent of the sequence to be compressed
can result in a gain in memory-assisted compression, whereas
in the Slepian-Wolf problem, the gain is due to the bit-by-bit
correlation between the two sequences.

Finally, as described in the introduction, fundamental limits
of finite-length packet compression using memory-assisted
compression were theoretically studied in [15], [16] for a
single source-destination link. This work extends the concept

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

of memory-assisted compression to networks and aims at in-
vestigating the achievable network-wide compression benefits.
Network compression requires new types of compression tech-
niques that would take into account what is already memorized
in the memory units and try to achieve the abovementioned
fundamental limits laid down in [15], [16].

D. Network-Wide Issues of Redundancy Elimination

In [2], [4], Anand et al. discussed network-wide issues
of implementing redundancy elimination techniques, where
they devise redundancy elimination-aware routing techniques
for ISPs. This is done for traffic engineering objectives
more advanced than the conventional minimum bit X hop
routing. In contrast, we demonstrate that even addressing the
minimum bit X hop routing is non-trivial for memory-as-
sisted compression and leave the extension to more advanced
traffic engineering as an open future research direction. Since
memory-assisted compression is complementary to the de-du-
plication based redundancy elimination, some of the solutions
of [2] for the latter probelm could be adapted to the network
compression problem as well. We stress that the goal of this
paper is to investigate the average case scaling behavior of
the network compression in an abstract sense as a function of
the number of nodes in scale-free networks assuming that the
practical implementation would be feasible.

As discussed in [4], redundancy elimination in a net-
work-wide setting results in non-trivial deployment challenges.
First, since redundancy elimination requires the intermediate
nodes to operate on the incoming packets, any solution must
take into account the physical constraints and limitations of
the available resources to carry out such operations. As such,
in Section III-C, we address the tradeoff between compression
rate (performance) and compression complexity (required
resources) of the developed memory-assisted compression.
Another issue that needs to be addressed is that the architecture
should be flexible so that network operators can choose and
meet their overall network-wide goals using redundancy elimi-
nation. Although, in this paper, we only focus on overall traffic
reduction as the simplest objective of network compression,
more general objectives can be considered for network com-
pression leading to different routing and memory deployment
strategies. Lastly, the architecture should be designed in such a
way that it can be adopted in an incremental fashion, i.e., you
can equip network nodes with redundancy elimination capa-
bility one-by-one. We believe this latter issue can be addressed
using the same techniques developed in [4] for redundancy
elimination based on de-duplication.

III. MEMORY-ASSISTED UNIVERSAL COMPRESSION

Consider an information source node S which generates
content to be delivered in the form of packets to a destination
(client) node D € D connected to S through memory node y,
as shown in Fig. 1. Further, the client nodes in D request various
sequences from the source over time. Let " = (21,...,2,)
be a sequence of length n, where each symbol z; is from the
alphabet A. For example, for an 8-bit alphabet that has 256
symbols, each z; is a byte. Note also that ™ may be viewed
as a packet at the network layer generated by source S. Let

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

o 0 ©

Fig. 1. The basic source S, memory g, and destination D configuration, where
D represents a set of clients receiving packets from S.

Memory-Assisted Compression and
Classification/Clustering Module

Compressed Data

Fig. 2. Network Compression architecture which includes the classification/
clustering module.

E[l,(X™)] denote the expected length resulting from the
universal compression of 2™.

Here, we consider two compression scenarios, as follows:

1) Universal compression of an individual sequence with no
memorization (Ucomp), in which a traditional universal
compression is applied on the sequence 2™ without context
memorization, and

2) Memory-assisted universal compression with side infor-
mation (UcompM), in which the encoder (e.g., server S
in Fig. 1) and the decoder (e.g., at the intermediate node
(¢ in Fig. 1) both have access to a common side informa-
tion (memory) y™ from the same information generating
source (to be explained), and they utilize memory for com-
pression of the sequence z™.

In Ucomp, the intermediate nodes simply forward source
packets to the client DD in sub-network D. As such, compres-
sion takes place in the source and decompression is performed
in the destination. Assuming a universal compression at the
source, E[l,,(X™)] would be the length of the compressed
sequence, which has to travel within the network from S to the
destination D through the intermediate node wu. Since every
client in D requests a different sequence 2" (but statistically
dependent) over time, the source must encode each sequence
2™ independently and route through g. As such, clearly Ucomp
does not utilize the correlations across different packets. Now,
consider the second scenario in which the intermediate node
u, while serving as an intermediate node for different contents
destined for different clients, memorize the contents and also
constructs a model for the source S. As both source S and the
intermediate node y are aware of the previous content sent to
another client in D, they can leverage this common knowledge
for the better compression of the new packets sent over the S
— u portion of the path.

Here, perhaps, there is need for some clarifications. First, the
memorization and learning from traffic takes place at the net-
work layer because the routers (or the intermediate relays) are
observing the packets at the network layer. Therefore, network
compression should reside beneath the transport layer and above
the network layer, at layer 3.5, as shown in Fig. 2. Second, the
intermediate node p must decode and re-encode as the client at
destination lacks memory, and hence, the client would not be
able to decode a packet that is encoded using memory-assisted

1591

compression. This implies that if there are multiple routers or
relay nodes on the path from the source to the destination, the
last memory enabled router (i.e., the one that is closest to the
client) must decode the packet using memory-assisted decoding
and (possibly) re-encode the result using traditional universal
compression before forwarding it to the client. Third, it is rea-
sonable to assume that the client often lacks memory with the
source. This is because the client is not connected to the source
as often, and hence, even if it has obtained some packets from
the source in the past, they may be outdated to carry information
about source contents. Whereas, the routers are to observe the
source packets much more often and hence have memorized and
learned the source contents. Therefore, due to lack of memory
at the client, the memory-assisted compression should not be
applied end-to-end; from the source all the way to the client.

Specifically, assume that previous sequences (packets)
™, ..., 2™ are sent from S to clients Dy,... Dy, in the
sub-network D via z. Under UcompM, the node p constructs
a model for the source S by observing the entire length
m = my + --- + my, sequence. Note that forming the source
model by node g is not a passive storage of the sequences
a™ . ..,2™L. This source model would be extracted differ-
ently for different universal compression schemes that will
be used as the underlying memory-assisted compression al-
gorithm. UcompM, which utilizes the memorized sequences
of total length m, strictly outperforms Ucomp. This benefit,
offered by memorization of the previous traffic as side infor-
mation at node p, would provide savings on the amount of data
transferred on the link S — p without incurring any penalty
except for some linear computation cost at node y. Please note
that the memorization is used in both the encoder (the source)
and the decoder (node). Thus, source model is available at
both S and p. From now on, by memory size we mean the
total length 1 of the observed sequences from the source at the
memory unit. We also stress that the network compression gain
only applies after the initial memorization phase in which the
memory-enabled routers populate their memory with packets
from previous communication.

Let F[l,),, (X™,Y™)] be the expected code length for a se-
quence of length n given a side information sequence Y™™ of
length m that is available to both the encoder and the decoder.
The gain of memory-assisted compression g (n, m) is defined
as

o Bl (X"
E[lnlm(Xn7 Ym)] '

g(n,m) 1)
In other words, g(n, m) is the compression gain achieved by
UcompM for the universal compression of the sequence x”
over the compression performance that is achieved using the
universal compression without memory (i.e., Ucomp) when the
encoder and the decoder have a common side information se-
quence of length m.

The memory-assisted compression gain has been theoret-
ically investigated in [16] where bounds on the achievable
memory-assisted compression gain are provided for stationary
parametric sources. It has been shown that with a memory size
of 4 MB from the same parametric source, it is possible to
obtain more than two-fold gain in the compression rate of a
new sequence. On the other hand, the purpose of this work is to

1592

validate such benefits on data gathered from real traffic traces
using practical algorithms. Practical compression algorithms
can be divided into two categories: statistical compression
methods and the dictionary-based compression methods, which
are discussed in Sections III-A and III-B, respectively. In
Section III-C, we present the tradeoffs between the performance
and complexity of memory-assisted compression algorithms.

A. Statistical Compression Methods

The essence of statistical compression methods is to find an
estimate for the statistics of the source based on the currently
observed sequence or an external auxiliary sequence. As such,
the compression engine follows a two part design, a predictor
followed by an arithmetic coder [32]. The predictor estimates
the statistics of the source and a model is created using the pre-
viously seen symbols; based on this model predictions about the
probability of the next symbol are issued. In short, the encoding
of every new symbol entails:

1) Estimating the likelihood of the symbol (e.g., byte) based

on the model and context (previously seen symbols).
2) Passing the estimated likelihood to the arithmetic encoder,
which encodes the symbol.
3) Updating the model using the new symbol.
The decoding process is very similar to the encoding. Modern
statistical compression algorithms such as Context Tree
Weighting (CTW) [12], [33], Prediction by Partial Matching
(PPM) [34], [35], and PAQ [22], [36] mix multiple simple
models constructed sequentially to achieve better compression.

1) Context Tree Weighting (CTW): A simple yet effective
predictor can be constructed using tree models; Context Tree
Weighting (CTW) algorithm is a well-known example of this
approach [12], [33]. CTW is used in part of the experiments in
this paper. In CTW, a tree of fixed depth ¢ is formed to represent
the source model; the nodes on the tree correspond to estimates
for the statistics of the source. Each bit is compressed according
to the previous 4 bits called context. Context bits determine a
path in the tree that leads to one of the leaf nodes. The prob-
ability of the next bit is predicted by the information stored in
the leaf node. The predicted probability is then sent to a binary
arithmetic coder for compression. The tree nodes along the path
are then updated using the next bit.

The generalization of the CTW encoding/decoding algorithm
for the case of memory-assisted compression is immediate. As
previously discussed, in memory-assisted compression, a se-
quence from the source is available to both the decoder (at)
and the encoder (at .S). This sequence is the concatenation of
all the packets sent from S to p in Fig. 1. Therefore, using this
sequence, a context tree can be constructed that will be further
updated in the compression process. Note that the source and
memory node should always keep the context tree synchronized
with each other. In practical settings, a simple acknowledgment
mechanism (such as the one in TCP/IP) suffices for the context
synchronization.

2) Lite PAQ (LPAQ): LPAQ is a “lite” version of PAQ, about
30 times faster than PAQS [22] at the cost of some compres-
sion (but similar to high-end PPM compressors [34], [35]). The
input sequence is processed sequentially and bit-wise. It follows
the two part design discussed in Section III-A. The predictor in

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

LPAQ employs seven models: k-gram Markov models of or-
ders 1, 2, 3, 4, 6, and a “match” model, which predicts the next
bit in the last matching context. The independent bit probability
predictions of the seven models are combined by a mixer, then
arithmetic coded. The k-gram Markov models consist of the last
k whole bytes plus any of the 0 to 7 previously coded bits of the
current byte starting with the most significant bit.

PAQ mixer works with a binary alphabet and emits the prob-
ability of the next bit being 1. The estimates are geometrically
weighted [37] and combined. It can be verified that PAQ solves
an instance of iterative gradient descent [37], [38]. When the
input sequence is stationary, the weights can be shown to con-
verge to the true statistics of the source.

B. Dictionary-Based Compression Methods

Unlike the statistical compression methods that rely on the
estimation of the source statistical parameters, dictionary-based
compression methods select sequences of symbols and encode
each sequence using a dictionary of sequences that is generally
constructed using the previously compressed symbols. The dic-
tionary may be static or dynamic (adaptive). The former does
not allow deletion of symbols from the dictionary, whereas the
latter holds symbols previously found in the input stream, al-
lowing for additions and deletions of symbols as new input is
being read.

Dictionary-based compression algorithms have root in the
seminal work of Lempel and Ziv [11], [39]. This algorithm is
based on a dynamically encoded dictionary that replaces a con-
tinuous stream of characters with codes. The symbols repre-
sented by the codes are stored in memory in a dictionary-style
list. Dictionary-based algorithms are widely used in practice and
can be implemented efficiently and fast. However, the compres-
sion performance of these algorithms is considerably worse than
a properly implemented statistical compression method.

Gzip (LZ77): In this work, we use memory-assisted gzip,
which is implemented based on the open-source DEFLATE al-
gorithm. A sequence of length m is assumed to be available
at both the encoder and the decoder. The previously seen se-
quence is then used as the common dictionary. The new data to
be compressed, is appended to the end of the dictionary at the
source and fed to the gzip (LZ77) encoder. The output is sent to
the decoder. Similarly, the decoder can reconstruct the intended
stream by appending the transmitted symbols to the end of the
dictionary and perform the gzip (LZ77) decoding algorithm.

C. Compression Complexity

The speed and performance of different compression algo-
rithms varies widely. The statistical compression algorithms
are tailored to offer superior compression performance, how-
ever, the compression speed of this class of compression
algorithms is considerably lower than dictionary-based com-
pression algorithms. There are several high-speed dictionary
based compression algorithms all of which can be considered
variants of gzip, such as [40]-[43]. These algorithms are the
key part of some of the massive parallel computation systems,
for example, Snappy [41] is used in Google infrastructure. The
main goal in the design of such high-speed algorithms has been
to adapt LZ77 compression to achieve highest possible speed
and through this process compression performance is traded for

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

speed. As such, the compression performance of high-speed
algorithms suffers, for example, compression of the first 1 GB
of the English Wikipedia using Snappy [41], and Gipfeli [40]
has resulted in 530 MB (in 2.8 sec) and 410 MB (in 4.3 sec),
respectively. However, the implementation of gzip that we
experimented on would compress the same input to 320 MB
(in 41.7 sec).! In contrast, PAQS, CTW, and lite PAQ compress
the 1 GB English text input to 134 MB (in ~ 30 ksec), 211 MB
(in =~ 13 ks), and 164 MB (in = 1 ksec), respectively. We note
that improving compression speed and reducing the complexity
of compression while maintaining acceptable compression rate
is the subject of active research in the compression community
(cf. [44] where the authors improve both compression perfor-
mance and compression speed by using parallel compression).
In conclusion, the high-speed compression algorithms are suit-
able where communication throughput is high and processing
power is limited, e.g., 128 MB/sec for Ethernet 1 Gigabit/sec
connection. The high-performance statistical compression
algorithms are more suitable for in a link where the commu-
nication speed is lower (6.5 MB/sec for 802.11g) and higher
compression rates are desirable.

IV. MEMORY-ASSISTED COMPRESSION GAIN ON REAL
NETWORK TRACES

A. CNN Website Test Scenario

In this section, we first demonstrate the shortcomings of uni-
versal compression methods (without side information) for net-
work packet compression. The data used in this experiment is
downloaded from CNN website (which is mostly text and script
files). To capture the packet, we used wget and wireshark [45]
open-source packet analyzer together and stored the IP packets.
We captured more than 18,000 data packets from the website.
All packets have the same size of 1,434 bytes. In the first part of
the experiment, we concatenated the packets to derive varying
size super-packets and applied gzip (LZ77) and CTW on them.

As shown in Fig. 3, a modest compression performance can
be achieved by compression of a packet when the super-packet
length n is small to moderate size. For example, for a data packet
of length n = 1 kB, the compression rate is about 5 bits per
byte. Note that the uncompressed packet requires 8 bits per byte
for representation. Observe that as the packet length n increases
(here we have concatenated several packets payloads to achieve
varying size packets), the compression performance improves.
For very long sequences, the compression rate is about 0.5 bits
per byte. In other words, comparing the compression perfor-
mance between n = 1 kB and n = 16 MB, there is a penalty of
factor 10 on the compression performance (i.e., 5 as opposed to
0.5). Please note that the main reason this data set is compress-
ible by more than 10 times is that it mostly consists of text files
and scripts.

Next, we applied memory-assisted versions of LZ77 and
CTW on the same data packets as depicted in Fig. 4. To obtain
the results in this plot, the first 4 MB worth of packets from
the data is used as memory. Then, 100 sequence are chosen

IThe execution time is measured on an Intel Xeon W3690 CPU. The execu-
tion time of the statistical compression methods is measured on a Intel core i5
processor using only one of the cores.

1593

-
o

o
2

= No Compression
owmw 17277
B8 1 CTW

(2]

IS

N

0 M|
256B 1kB 4kB 16kB 64kB 256kB 1MB 4MB 16MB
n

Compression rate (bits per byte)

Fig. 3. The compression rate of a sample web trace (obtained from CNN web
server) as a function of the sequence (i.e., packet) length, obtained using LZ77
and CTW compression algorithms.

5} ¢ NYm=0
= N
:-‘f 4 % \ um=1kB
s, i 2 ®m=10kB
) \ & =m=4MB
n=100 1kB 10kB 100kB n=100 1kB 10kB 100kB
@ ()

Fig. 4. The compression ratio (bits/Byte) achieved by memory-assisted
universal compression algorithms. (a) Memory-assisted CTW. (b) Memory-as-
sisted gzip (LZ77).

“@=CTW
=un] 777

g(n,4MB)

1.5 EmmEaw,,
",

.--.....

10kB 100kB

1
100B 1kB

Fig. 5. The gain g of memory-assisted compression over traditional compres-
sion (Ucomp), for memory size of 4 MB for CTW and LZ compression algo-
rithms. This gain is achieved by utilizing memory on top of the performance of
the conventional compression.

from the rest of the data for compression and the average
performance is reported in Fig. 4. As expected, the size of the
compressed sequence decreases as memory size m increases.
For example, for a data sequence of length n = 100B (which
is obtained by manually extracting 100 B from the payload of
the packet), without memory, the compressed sequence has
an average length of ~ 87B, while using a memory of size
m = 4 MB, this data sequences can be compressed on average
to 31 B; almost 3 times smaller. This validates the theoretical
predictions in [16] about the improvements achieved using
memory-assisted compression.

The actual gain of memory-assisted compression g (defined
in (1)) for memory size 4 MB is depicted in Fig. 5. As can be
inferred, the memory-assisted CTW (which is a statistical com-
pression method) outperforms memory-assisted LZ77 (which
is a dictionary-based method) in both the absolute size of the
compressed output and also the gain of memory, i.e., the gain

1594 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016
8
7 \ :
N Y
N N
@5 \ \
2 N N 3 Lo
§ 4 - \ § % @ DD (de-duplication)
2 | N .
2 3 N u Gzip
24 & DD+Gzip
1 S DD+LPAQ
0 - T T p ey T T T T T T T [T T T T
1 2 3 4 5 7 8 9 10 11 12 13 14 16 17 19 20 22 23 24 26 27 28 29 30
User ID

Fig. 6. Performance of various compression algorithms on the data set used in the wireless users test scenario in Section IV-B.

achieved on top of the gain of conventional compression, by uti-
lizing memory. On the other hand, as discussed in Section I11-C,
the suitable compression method has to be chosen based on
the specific compression complexity requirements that need to
be satisfied.

B. Wireless Users Test Scenario

In this test scenario, we consider the data set used in [6]. The
data set includes network traffic collected from 30 different mo-
bile users consisted of smartphone users and laptop users. The
laptop users relied only on WiFi connectivity for their network
access. The smartphone users relied on both WiFi and 3G con-
nectivity. The data collection spanned a period of 3 months and
yielded over 26 Gigabytes of unsecured down link data. Users
accessed the Internet as per their normal behavior. More details
about the acquisition process can be found in [6].

We also used the implementation of de-duplication from [6]
for the sake of comparison with memory-assisted compression.
The results are presented in Fig. 6, where the first bar shows
the outcome of de-duplication, denoted by DD in short, and the
second bar is the compression result of the trace data using gzip
algorithm. The results are presented for each user in the data set.
The packet size in each trace varies and is not fixed, however the
packets are always less that 1,500 bytes. Each trace of each user
is processed individually and the compression is performed on
the entire trace data. As expected, the performance of varies for
different users. In particular, in some cases, redundancy elimi-
nation is capable of reducing the input size by half whereas in
some other cases little reduction can be observed.

Although gzip slightly outperforms de-duplication on most
users, it is important to note that compression-based redundancy
elimination in some cases performs worse than the de-dupli-
cation, e.g., on traces of Users 10 and 12. To understand this
difference in behavior, we further analyzed the data for Users
11 and 12. For User 11, gzip outperforms de-duplication and
for User 12, it is the other way around. By analyzing the con-
tents, we discovered that for User 11 long repeated sequences
are scarce. Hence, the redundancy mostly exists in the form of
statistical dependencies that can be captured using compression-
based methods. On the other hand, the data for User 12 abounds
with long duplicates that are of tens of megabytes long. In such
cases, de-duplication can more efficiently eliminate the existing
redundancy. This confirms that de-duplication and compression
target different types of redundancies in the data.

TABLE 1
SUMMARY OF THE COMPRESSION RATE (BITS/BYTE) OF VARIOUS
DE-DUPLICATION AND MEMORY-ASSISTED COMPRESSION ALGORITHMS.

De-duplication (DD)
6.80

DD+LPAQ
527

Gzip
6.24

DD+Gzip
5.61

Next, we consider the interplay between de-duplication and
memory-assisted compression As described in Section 1I-B,
de-duplication can be used to identify and remove the long
repeated chunks of data. Removing these repeated chunks
before feeding the input sequence to the compression engine
provides two major benefits for memory-assisted compression.
First, the use of relatively fast de-duplication can speed up the
high-performance but low-speed statistical data compressors.
Second, the large repeated patterns would impact the predictor
as it will try to learn and adapt to them while these patterns are
not part of the existing statistical dependencies.

The results of applying de-duplication before memory-as-
sisted compression are presented in Fig. 6. As can be seen,
the combination consistently outperforms both de-duplica-
tion and memory-assisted compression on all traces. Further,
Table I presents the average traffic reduction over all users. As
can be seen, de-duplication achieves 15% traffic reduction over
these users compared with 22% achieved by gzip memory-as-
sisted compression. What is perhaps more interesting is the fact
that when the two are applied in tandem, 30% traffic reduction
is achieved reaffirming that the two techniques target different
types of redundancy in the data. Further, as expected the best
performance is attributed to de-duplication in tandem with
LPAQ memory-assisted compression achieving around 34%
traffic reduction on this data set.

C. Memory Requirements

To investigate the impact of the amount of physical memory
on the compression performance, we derived the average com-
pression performance of gzip, CTW, and LPAQ for different
memory sizes. By increasing the memory size of gzip beyond
4 MB (which is its standard memory size), compression perfor-
mance improves and gets to close to the statistical compression
methods with the cost of added complexity, which scales lin-
early with the memory size. On the other hand, the main purpose
that gzip may be adopted is when fast compression is desired.
For the statistical compression methods, we discovered that in
both CTW and LPAQ, less than 2% performance improvement

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

is achieved when the memory size is increased from 4 MB to
800 MB (on the wireless users data set). Therefore, in this paper,
in most of the experiments we chose to use a memory of size
4 MB.

We stress that it is reasonable to expect that a router that
is sitting in the core of the network might see traffic from
several different sources (users), which might be drastically
different. Therefore, one might expect that the required memory
size would then become much higher for such a router. For
example, when a completely uncorrelated side information
sequence is used for the compression of the current sequence,
there is no hope in exploiting the side information for better
compression. On the other hand, in [46], we showed if the side
information data is sufficiently correlated, high compression
gains would be expected for a broad range of degrees of cor-
relation. Further, in [47], we mixed the data from the wireless
users (to simulate what happens to a core router that sees all
the data). We observed that using only 5 models, we can very
well compress any sequence from all of these sources. Hence,
we believe that although 4 MB memory would probably be
insufficient for a core router, the required memory size would
not be unbounded either.

V. NETWORK-WIDE GAIN OF MEMORY-ASSISTED
COMPRESSION

Thus far, we demonstrated that significant gain can be
achieved using memory-assisted compression for redundancy
elimination on the link level. The goal of the second part
of this paper is to investigate how these benefits scale when
memory-enabled nodes are deployed in a large-scale network.
Specifically, the question that we are interested in answering is:
“Given the memory-assisted compression gain g, and a number
of memory-enabled nodes capable of performing memory-as-
sisted compression, and their placement, what is the achievable
network-wide gain?” Note that traffic traversing different paths
in the network would see different gains at different time
instances. On the other hand, we stress that our goal is present
an average case study. Hence, in this section, we assume that
each time a packet is compressed using memory-assisted com-
pression, it experiences a gain g (on the average). Although
our assumptions do not provide much information about an
individual traffic packet, we can draw conclusions about the
average traffic reduction in the entire network and such con-
clusions become more and more relevant as the size of the
underlying large-scale network grows larger.

We represent a network by an undirected graph G(V, E)
where V is the set of N nodes (vertices) and F = {uv : u,v
€ V'} is the set of edges connecting nodes v and v. We consider
a set of memory-enabled nodes g = {y1;}4, chosen out of N
nodes where every memory node p; is capable of memorizing
the communication passing through it. In this paper, as the first
step, we assume that the total size of memorized sequences for
each p; is assumed to be equal to 7 and also assume that these
nodes have similar resource constraints. Hence, we can assume
that each memory unit will provide the same memory-assisted
compression gain g on the link from the origin node of the
flow to itself. The extension to meet resource limitations of
individual nodes is left as an interesting future direction.

1595

We focus on the expected performance of the network by av-
eraging the gain over all scenarios where the source is chosen to
be any of the nodes in the network equally at random. In other
words, we assume that the source is located in any node of the
network uniformly at random, i.e., each node would be selected
with probability % and the destination is independently selected
uniformly at random as well. In this paper, as the first step,
we focus on minimizing the total cost of communication be-
tween the source and destinations in the network, measured by
bit x hop. As will be shown, even this simplest objective raises
non-trivial challenges. To meet more complex overall goals, one
should refer to the techniques developed in [4].

Consider the outgoing traffic of the source node .S with the
set of its destinations D = {D;}~ ;' each receiving different
instances of the source sequence originated at S. Let fp be the
unit flow from $' destined to D € D. The distance between any
two nodes u and v is denoted by d(u, v), which is measured as
the minimum number of hops between the two nodes. As we
will see later, introducing memories to the network will change
the lowest cost paths, as there is a gain associated with the S
— p portion of the path. Therefore, we have to modify paths
accounting for the memory-assisted compression gain. Accord-
ingly, for each destination D, we define effective walk, denoted
by Wp = {S,u1,...,D}, which is the ordered set of nodes in
the modified (lowest cost) walk between S and D. Finding the
shortest walk is the goal of routing problem with memories that
minimizes the bit x hop cost.

We partition the set of destinations as D = D; U D5, where
D, ={D;: dpp, € Wp, } is the set of destinations observing
a memory in their effective walk, and

d ,
fp, = argmin {M + d(p, Di)} .
pep g

The total flow Fs of node S is then defined as

3 (@d(S, o) + fo,d(o,, Dz-))
D;eD; g

+ Y fp,d(S,D;).

D;eDs

Fs 2

(AA)

Using (AA), we define dp, called the effective distance from S
to D, as

D e D,

i, = { Hitn) +d(pp, D))
P D < D..

d($, D)

In short, the effective distance is in the presence of gain g ob-
tained from memory-assisted compression. By definition, dp <
d(S,D) VD.

In a general network topology, the network compression gain
(denoted by G) as a function of memory-assisted compression
gain ¢ is defined as follows:

sgv .7:2 Sze:v DZG:D 4(5, D)
A — _ 3
G(g) S 75 SN 3)
Sev SeV DeD

where F¢ is the total flow in the network by node S without
using memory units, i.e., Fa = Y- pep d(S, D). Inother words,
@G is the gain observed in network achieved by memory-assisted

1596

Fig. 7. Example of routing in networks featuring memory: introducing
memory-enabled nodes can lead to changes in the effective shortest paths
(shown by dashed lines). Here, g = 3.

scheme on top of what could be saved by universal compres-
sion (without memory) applied at the source and decoded at the
destination. Alternatively, G(g) can be rewritten as

> > d(S,D)EL.(X")
SEV DD

G(9)

SeV DeD

To demonstrate the challenges of the memory deployment
problem and clarify the discussion, we consider one simple ex-
ample network, which is presented in Fig. 7. Consider the desti-
nation node Dy, and let ¢ = 3. The effective walks from the
source to destinations are obviously the shortest paths when
there is no memorization (Ucomp coding strategy defined in
Section III). As shown in the figure, when the node # is memory-
enabled, the effective path to D; changes from the shortest
path. Prior to memory deployment, the shortest path to Dy was
two hops long, while enabling x with memorization completely
changes the effective distance to 1 to be dp, = % +1=2
as depicted in the figure. Note that in this example, we assumed
no bandwidth constraint on the links. If D;-p link has a rel-
atively small bandwidth, then the effective shortest path while
minimizing the bit x hop might result in violating the bandwidth
constraint on this link as the link would need to be used twice
for passing one bit D;. Taking such constraints into account
would further complicate the problem and is not considered in
this paper. The interested reader is referred to [4] for further de-
tails on such issues. Now, considering D2, the cost of routing
counter clockwise is 3, whereas it is 2 = % + 1 by passing
through the node i clockwise. This example shows that intro-
ducing memory-enabled nodes can result in an effective shortest
path that does not resemble the conventional shortest-path at all.

VI. OPTIMAL ROUTING AND MEMORY PLACEMENT PROBLEM
IN NETWORKS COMPRESSION

As demonstrated in the previous section, the deployment of
memory-enabled nodes in the network gives rise to a number
of questions and also brings some new challenges. We saw that
the shortest path is not necessarily minimum cost route in net-
works with memory-enabled nodes, and hence, the well-known
routing methods like Dijkstra's algorithm, in their original form
are not optimal for networks with memory-enabled nodes.

We aim at answering two fundamental (and related) ques-
tions regarding memory-assisted network compression. In
Section VI-A, we derive the best strategy to route packets
between the source and destination nodes given the network
topology, the location of the memories, and the gain g of
memorization using a modification of Dijkstra's algorithm.

T % [0S, 1) Bl (X) + d{pp, D) Bl (X))

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

In Section VI-B, we consider the problem of finding the best
M nodes (out of N) to maximize the benefits of memory
deployment.

A. Routing in Networks Featuring Memory

We consider an instance of network with a source node and
fixed memory-enabled nodes and solve the routing problem in
that instance of the network. Note that characterizing G involves
computing both FY and JF, which in turn requires finding the
shortest paths and effective shortest paths between all pairs of
nodes. The shortest path problem in a network without memory-
enabled nodes is readily solved using Dijkstra's algorithm.

Finding the shortest path using the Bellman-Ford algorithm
relies on the so-called principle of optimality: if a shortest path
from u to v passes through a node w, then the portions of the
path from u to w and from w to v are also shortest paths. It
is notable that in the networks with memory-enabled nodes the
modified principle of optimality reads as: given a shortest path
from u to v, the portion of the path from v to w is still a shortest
path whereas the portion from w to v is not necessarily a shortest
path (This can also be seen in the example presented in Fig. 7).
Hence, we will use this modified principle of optimality to find
the effective shortest path using the well-known Bellman-Ford
algorithm which is obtained by repeatedly applying the prin-
ciple of optimality. The Bellman-Ford algorithm is used in dis-
tance-vector routing protocols. The distributed version of the
algorithm is used within an Autonomous System (AS), a collec-
tion of IP networks typically owned by an ISP. While Bellman-
Ford algorithm solves the shortest path problem in networks
with memory and the solution for routing within an AS, the more
efficient Dijkstra's algorithm is used more widely in practice,
most notably in IS-IS and OSPF (Open Shortest Path First) and
hence we also visit the challenges of determining the effective
shortest path in networks with memory-enabled nodes using the
Dijkstra's algorithm.

The Dijkstra's algorithm solves the single-source shortest
path for a network with positive edge costs, and hence, the
bit x hop cost problem is a special case in which all the edge
costs are equal to 1. Here, we present a modified version of
Dijkstra's algorithm that determines the effective walk from all
the nodes in a network to a destination D, in a network with
a single memory-enabled node. Iterating over all nodes will
provide the effective walk between every pair of nodes in the
network. The extension to arbitrary number of memories is
straightforward and skipped for brevity. In a nutshell, to handle
the memory node, we define a node-marking convention by
defining a set M which contains the marked nodes. A node is
marked if it is either a memory node, or it is a node through
which a compressed flow is routed. The modified Dijkstra's
algorithm starts with finding a node v closest to node D. Then,
it iteratively updates the effective distance of the nodes to D.
The algorithm is summarized in Algorithm 1. The notation
cost(vD), used in Algorithm 1, is in fact the effective distance.
At the beginning, the costs are initialized to cost{v.D) = oo for
nodes v not directly connected to D, and then it is calculated for
v in every iteration. After finding the effective distance between
every pair of vertices via the modified Dijkstra algorithm, we
can calculate J and then determine the network compression
gain G.

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

Algorithm 1 Modified Dijkstra’s Algorithm

M=pn
while V' # ¢ do
v = the closest neighbor of D.
for Vv € V' \ {v, D} do
if v ¢ M then
cost(vD) = min{cost(vD), cost(vv) + cost(vD)}
else
cost(vD) = min{cost(vD),
M= MUw
end if
end for
V< Vv
end while

cost(vv)

=, +cost(vD)}

Fig. 8. The placement of memory units on a line network: the source node S is
placed at one end of the line and the -th memory is placed at ¢; from the source
and 7; is its left-coverage.

B. Memory Placement in a Network Graph

The network compression gain depends on the number of
memory-enabled nodes and also the locations they are de-
ployed in the network. Since in practical scenarios only a select
number of nodes have the storage and computational capability
to function as a memory-enabled node, it is important to find
the optimal location for such nodes. Let the total number of
memory units be M. The goal of the memory deployment is
to find the best set of A/ out of V vertices in the network such
that the network compression gain G(g) is maximized. It can
be shown that this problem can be reduced to the well-known
k-median problem, and hence, it is an NP-hard problem on a
general graph. In other words, no tractable optimal placement
strategy exists for a given general graph.

In this section, we demonstrate the challenges of the memory
deployment problem by considering the class of line networks
for which we can obtain closed-form solutions. Solving the
memory placement problem on this simple network topology
will reveal why this problem is hard in general. Consider a line
network with the source node S placed at one end of the line
and the destinations placed along the line as shown in Fig. 8.
Therefore, we have a total number of N nodes on the line and
the total length of the line is N hops. As mentioned before, we
assume traditional universal compression would give one unit
of flow, to be sent to each destination. We consider the deploy-
ment of M memory units on the line such that the memory ;
is placed at hop-distance ¢; from the source. Without loss of
generality, we also assume that ¢; < ¢; for i < j, as shown
in Fig. 8. We find ¢;'s such that total flow F is minimized (or
equivalently, G(g) is maximized). A related problem of finding
“en-route” memory deployment on line networks is studied
in [48]. En-route memories are those which are only located
along routes from source to receivers. An en-route memory

1597

hop-distance/ N

0.1 ==t (hop—distance of memory from the source)
0 ==1 (left coverage of the memory)
5 10 15 20
g

Fig. 9. Variations of ¢ and 7 vs. g for a line network.

intercepts any request that passes through it along the regular
routing path. The solution to the en-route memory placement
problem as discussed in [48] is £; = 1\1—4 Vs

On the other hand, the memory deployment problem for net-
work compression on a line network is more challenging. The
difficulty arises from the fact that each memory-enabled node
can serve some of the destination nodes that are located at a
smaller hop-distance from the source than the memory node it-
self. As shown in Fig. 8, for a memory p; located at ¢;, there
is a left-coverage hop-length of 7; towards the source to cover
the destinations on the left side of the memory. The following
lemma shows how ¢ and 7 are affected when the memory-as-
sisted compression gain g chanes.

Lemma 1: For the case of M = 1 and a line of hop-length
N, the optimal memory location t and coverage T are given by

29
= N 1
_g-1
77®+1N+Oﬂ) (5)

Proof: The total flow can be written as

t—1 1-1
.7::/ ;vdx—l—(u—!-/ ldl)
0 g 0
+<t—7+/ xdx) 6)
g 0

The first term in (6) is the flow to all points on the line not
covered by memory. The second term is for the right coverage
of memory and the third term accounts for the left coverage of
memory (7). The result in (4) follows by taking the derivative
of F and equating to zero, i.e., %]—' =0and BB—T]-" =0.]

Fig. 9 shows the plot of £ and 7 versus g. as can be seen, as
the gain g increases, the optimal place for the memory is on %N
distance from the source and the left coverage approaches %N ,
whereas for ¢ = 1, the problem degenerates to that considered
in [48], i.e., the left-coverage is zero and the optimal place for
memory is at %N .

Lemma 2: The network-wide gain of placing a single memory
(M = 1) on a line network of bit-hop length N as N — oo
converges to

3g+1)?2

Glo) = s I
392+ 10g+ 3

Further, for g > 1 this converges to

lim G(g) = 3.
g0

1598

Proof: The proof is immediate from Lemma 1 and the fact
that for line Fy = 1/2. |
According to Lemma 2, if only one memory is deployed in
the network, even if the memory-assisted compression gain is
infinite (i.e., effectively no bits need to be sent from the source
node .S to the memory node z), the network compression gain is
finite. This reveals that to achieve proper network-wide scaling,
the number of memory-enabled nodes would also need to scale.
Following the results of deployment of a single memory on a
line network, we can extend the result and solve for the general
problem of deployment of A memory-enabled nodes on a line
network.
Theorem 3: Consider deployment of M memory-enabled
nodes on a line where memory, where ; is placed at t; and the
left-coverage is denoted by t;. Then,

ti = HZN+0(1)
o= LLN+0(1) ™
T 2gM .
Furthermore as N — oo, we have
2¢°M
g@)fzﬂAﬁ+n+g2+1
and for g > 1 we have
lim G = 2M. (8)
g—oo

Proof: Similar to the proof of Lemma 1, we can write

N~ [Y rde
ffz gn—}— A zdz

m=1
t; tmtl—Tm4+1—t:
+g(tm+1_7_m+l_ti)+/ rdx| .
0

Again, by taking the derivative of J with respect to {; and 7;
and solving the system of equations we arrive at

T — tit1+ti_1
? - 2
{Ti = (i —ti1)

29

where (9) results in a tridiagonal matrix which in turn results in
(7) for large M. Further, (8) follows from (7) and Fy = 1/2 for
line networks.]

Thus far, we showed that the memory deployment problem
is non-trivial even on a line network and the optimal solution is
indeed not very intuitive at the first glance. Furthermore, these
problems would need to be modified when other constraints
such as link bandwidths are present [4].

©)

VII. NETWORK COMPRESSION IN ERDOS-RENYI RANDOM
NETWORK GRAPHS

In this section, we would like to analyze the minimum
number of memory-enabled nodes required for the net-
work-wide benefits of memory-assisted compression to be
achievable in a large-scale network. In one extreme, if all of
the network nodes are memory-enabled, almost automatically,
the link gain would translate to the network-wide gain. On
the other hand, if only a constant number of nodes participate,
the performance improvement would not scale properly (as
observed also for a line network in Section VI-B). This section
aims at addressing what happens in between these extremes. To

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

do so, we use Erdds-Rényi (ER) random network graphs. The
main reason is that the symmetry in these network graphs yield
to analytic closed-form solution that can be insightful when
considering general network graphs.

A. Background on ER Random Graphs

Before we can state our main results, we need to cover the
background on ER random graphs.

Definition 1: An ER random graph G(N, p) is an undirected,
unweighted graph on N vertices where any two vertices are
connected with an edge with probability p.

Definition 2: Let u,v € G be any two vertices. The diameter
of a connected graph is defined as max,, ,, d(u,v). Further, the
average distance of a connected graph is defined as E[d{u, v)].

The following properties hold for ER random graphs [49]:

1) G(N,p) contains an average of (2’) p edges.

2) Ifp < (176?#, then G(N, p) almost surely (a.s.) has
isolated vertices and thus disconnected.

3) Ifp = % for some constant ¢ > 1, then G (N, p) is
a.s. connected and every vertex asymptotically has degree
clog N [50].

4) The diameter of G(N, p) is almost surely 125@3 .

5) The average distance in G(N, p), denoted by d, is

- log N
I= 1+ o))

(10)

provided that lzogng,vp — o0 as N — oo (this condition is

satisfied in the connected regime).

B. Main Result

To characterize the network compression gain, we consider
connected G(N,p), p = CIOTgN, with a single source node S
and all other nodes as destinations (uniformly at random). Since
the expected degree of all nodes in ER graph is equal and every
vertex is chosen as a destination with equal probability, the op-
timal memory selection problem in this case disappears, and we
select memories {; }£, uniformly at random. Theorem 4 pro-
vides the scaling of G(g) with respect to M.

Theorem 4: Suppose M memory-enabled nodes are deployed
on an ER random graph and let € > 0 be a positive real number.
Then,

@) If M = O (%-6), then G(g) ~ 1.2

) IfM = (N%ﬂ), then G(g) ~ x5
Sketch of the Proof: We first find an upper bound on the
number of destinations benefit form each memory. This upper
bound is sufficient to derive part (a) of the theorem. For the
second part, we find a lower bound on the number of benefiting
destinations. |
To characterize G(g), we first need to find Fp. The average
distance from the source to a node is d. Thus, F; = Nd. For
large N, (10) results in

Nlog N
" loglog N’

2Throughout this work, we have used the following asymptotic notations:
—f(z) = o(g(x)) iff |f(z)| < |g(x)|e, Ve,

- f(x) = O(g(2)) iff | f(2)] < |g(=)|k, Tk,

= f(z) = Qg(a)) iff | f (x)] > |g(x)|k, 3k, and

z) ~ g(z) iff f(z)/g(x) — 1.

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

Fig. 10. Illustration of memory neighborhood.

Next, we need to find F. For every memory z we consider a
neighbourhood N, (1) as shown in Fig. 10. This neighborhood
consist of all vertices v within distance r from p. We choose r
such that, almost surely, all nodes in N, () would benefit from
the memory node p. Clearly, if d(i—’”’) +r = d(S,v), the benefit
provide by the memory for node v vanishes and only nodes at
distances less than 7 benefit from the memory p. Given g, we
denote this set of nodes benefiting from p by N.. (i, g).

Ny g) = { A 4) < s w>} (1)

Since memory nodes are uniformly placed, the average value of
d(S, i) in d, is equal to d. Similarly, the average of d(.S,v) is
also d. Hence, solving for in (11) and then using the result on
the average distance in (10), we conclude

a.s. 1]\T
RV (ﬁm) (12)

The following lemma, by Chung and Lu [49], gives an upper
bound on the total number of vertices in the neighborhood
|N (445, 9)|, where | - | is the set size operator.

Lemma 5 ([49]): Assume a connected random graph. Then,
for any € > 0, with probability at least 1 — m, we have
IN-(1:,9)| < (14 2e)(Np)", for1 <r <logN.

Using Lemma 5 and (12), we deduce that

N (s, 9)] < (1 + 2¢)(log N) (= 3) (oe)

= (1+2¢)NtYa, (13)

Therefore, the total number of nodes that gain from the memory-
enabled nodes is upper-bounded by

M
>IN (s g)] < ML+ 2)N' Vs,
i=1
From (13), it is clear that the network compression gain vanishes
if M is too small. The value N'/9 is the threshold alue for
the network-wide gain. More accurately, if M = O (N ic

then the memory-assisted compression gain would not result in
any network-wide improvement. This is in contrast to the line
network where with a single memory, we would obtain network-
wide improvements.

Proof of the Main Result

Proof of Theorem 4(a): For all the nodes in N (15, g), we
have a flow gain of g. Let M = Ni— ¢, then we have

Nd
IM|N, (1, 9)| + d(N — M|N, (1, 9)|)

Glg) < (14)

1599
a.s. N
< :
N-(1-1/gpMN1-3)
J— A'AT
SN (N
~1, (15)

where inequality in (14) follows from the double counting of
the destination nodes that may reside in more than one neigh-
borhood. Also, (15) follows from replacing (13) in (14). |

Since we need more than n¥ memory units to have a net-
work-wide gain, the next question is as to how G(g) scales when
the number of memory units exceeds ns. To answer this ques-
tion, we need to establish a lower-bound on the neighborhood
size and the number of nodes benefiting from memory. Further,
we have to account for the possible double counting of the in-
tersection between the memory neighborhoods. We invoke the
following concentration inequality from [49] to establish the de-
sired bound.

Proposition 6 ([49]): If X1, X>, ..., X, are non-negative
independent random variables, then the sum X = > " | X;
holds the bound

)\2
P[X <E[X] -)] <exp (22E[Xf]> .

This inequality will be helpful to show that the quantities of
interest concentrate around their expected values.

The following lemma provides a lower-bound on the neigh-
borhood size N, (i, g)| and the lower-bound on G(g), as we
show, is immediate.

Lemma 7: Consider a set of vertices V of G(N, p) such that
% = ofl). For 0 < e < 1, with probability at least 1 —

- ’e 2
e~ NPIVIE/2 e have

IN- (1, 9)] = (1 —€)(Np)".

Proof: The vertex boundary of V', denoted by T'(V'), con-
sists of all vertices in G adjacent to some vertex in V.

T(V) =

Let X, be the indicator random variable that a vertex « is in
I'(V),ie., P[X, = 1] = Plu € T'(V)]. Then,

(16)

{u:u &V, and uis adjacent to v € V}.

E[I(V)]=) E[Xx
ugV
=Y Puer(v
ugV
=) (1 -1 —p)‘V')
ugVvV
>plVI(N = V) 7
=(1+0(1))Np|V]| (18)

where the inequality in (17) follows from

Pluel(V)]=1—(1—p)"
>1 e PVl
~p|V],

1600

and the second part holds because % = o(1). Since, X,'s
are non-negative independent random variables, by applying

Proposition 6 with A = y/aE[|T'(V)|], with probability at least
1 — e /2 we have

LW ZE[L(V)[] = VaE[I(V)]] (19)

> (1- NIV 0)

By picking a single vertex and applying (19) inductively r times,
and then adding up the number of adjacent nodes, we obtain
(16).]

Now that we have a lower-bound on the number of nodes
benefiting from each memory, we show that by increasing the
number of memories beyond M = N%, memories cover all the
nodes in the graph effectively and hence all the nodes would
gain from the memory placement.

In order to limit the intersection between the neighborhoods,
we reduce 7 to r5 as below:

log N

With this choice of r;, invoking Lemmas 5 and 7, we deduce
that the probability that a random node u € G belongs to the
neighborhood N, (i;, g) of the memory y; is N ~*/9-9 Hence,
the expected number of the covered nodes is

M
E || N (uirg)] = > Plue UM Ny (ui9)]
i=1 ueG
-y (1 - N—I/H)M)
u€G
~N (MN*//H*‘S)
~N, (22)

where (22) holds by choosing M = N1/9+4,

To show that the number of covered nodes is concen-
trated around its mean, we use Proposition 6 again with
A = /aE[JUN,,(u,g)|]. Then, with probability at least
1 — e /2 we have

M
U Nes(iy 9)| = E[JUN,, (i, 9)1] — A (23)
i=1

> (1 — o(1))N. (24)

Hence, the memory-enabled nodes cover, almost surely, all of
the nodes.

Since all nodes are covered with high probability, we can as-
sociate each node with a neighborhood | N, (u, g)|, for which
nodes' distances in the neighborhood from memory are (1 —
o(1))rs.

Proof of Theorem 4(b): Using (22), we can bound the net-
work-wide gain of the memory from below. We have

as. Nd
YO gy 2
1
— 26
g+ (1—1/g—0) (20
1
=1_3 (27)

where (25) holds because the distance of the nodes from
memory is 5, asymptotically almost surely. Observe that as the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

number of memories becomes close to N, i.e., § — (1 — —) ,
the gain G — g¢.]

VIII. NETWORK COMPRESSION IN INTERNET-LIKE
POWER-LAW RANDOM NETWORK GRAPHS

In the previous section, using Erd6s-Rényi random graphs,
we demonstrated that if the number of memory-enabled nodes
M increases like N s ,where N is the total number of nodes, and
g is the memory-assisted compression gain, the network-wide
benefits start to shine. Note that for any ¢ > 1, as N — oo we
have

NE
lim

=0.
N—ooco N

Therefore, even using an asymptotically vanishing number of
memory-enabled nodes, we can obtain network-wide improve-
ments. On the other hand, we expect even better network-wide
scaling when the network has more structure than the Erdds-
Rényi random graphs.

The focus of the study of this section is to extend network
compression to random power-law graph (RPLG) model. The
power-law graphs are particularly of interest because they are
one of the useful mathematical abstractions of real-world net-
works, such as the Internet and social networks. In power-law
graphs, the number of vertices whose degree is x, is propor-
tional to z ~#, for some constant 8 > 1. For example, the In-
ternet graphs have powers ranging from 2.1 to 2.45 [17]-[21].
Accordingly, in the rest of this section we specifically direct
our attention to power-law graphs with 2 < 8 < 3 (which
include the models for the Internet graph), and provide results
for memory deployment on such network graphs. Our study en-
tails first finding the optimal strategy for deploying the memory
units and then investigating the effect of these memory units on
the routing algorithms. The latter is important for the numerical
evaluation of the network-wide gain as well.

A. Random Power-Law Graph Model

A random power-law graph is an undirected, unweighted
graph whose degree distribution approximates a power law
with parameter 3. Basically, 3 is the growth rate of the degrees.
To generate a random graph that has a power-law degree
distribution, we consider the Fan-Lu model [49]. In this model,
the expected degree of every vertex is given. The Random
Power-Law Graph (RPLG), with parameter 3, is defined as
follows:

Definition 3 (Definition of G(3)): Consider the sequence of
the expected degrees w = {wi,wa,...,wn}, and let p =
1/ 3" w;. For every two vertices v; and vj, the edge v;v; exists
with probability p;; = w;w;p, independent of other edges. If

w; = ci T for 10 <1< N+ (28)

then graph G(f3) constructed with such an expected degree se-
quence is called an RPLG with parameter 3. Here, the constant
¢ depends on the average expected degree W, and iy depends on
the maximum expected degree A. That is,

1

N5-T,

<ﬁ—2>)5*1
A1) -

8=2
8-

2
1
i = N(

g

C =

&

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

With the definition above, it is not hard to show that the ex-
pected number of vertices of degree = in G(3) is ~ = 7. In
[49], authors showed that for a sufficiently large RPLG, if the
expected average degree of G(3) is greater than 1, then G(5)
has a unique giant component (whose size is linear in N), and
all components other than the giant component have size at
most O(log N), with high probability. Since we only consider
connected networks, we will focus on the giant component of
G(B) and ignore all sublinear components. Further, by a slight
abuse of the notation, by G(3) we refer to its giant component.
Next, we briefly describe as to how the structure of RPLG pro-
vides insight about the efficient placement of memory-enabled
nodes.

B. Memory Deployment in Random Power-Law Graphs

Although memory deployment problem in a general graph is
a hard one, the RPLG with parameter 2 < 5 < 3 has a cer-
tain structure that leads us to finding a very good deployment
strategy. The RPLG can be roughly described as a graph with
a dense subgraph, referred to as the core, while the rest of the
graph (called periphery) is composed of tree-like structures at-
tached to the core. Our approach to solve the memory deploy-
ment problem is to utilize this property and size the core of G(;3)
and show that almost all the traffic in G(3) passes through the
core. We propose to equip all the nodes in the core with memory
and hence almost all the traffic in G() would benefit from the
memories. The number of memories should be such that the net-
work-wide gain is greater than 1 as N — oo. Showing that al-
most all the traffic goes through the core guarantees that G > 1
as shown in Lemma 9 below. This way, we find an upper bound
on the number of memories that should be deployed in an RPLG
in order to observe a network-wide gain of network compres-
sion. We will also verify that the number of memory units does
not have to scale linearly with the size of the network to achieve
this gain.

From Definition 3, we note that the nodes with higher ex-
pected degrees are more likely to connect to each other and also
other nodes. Therefore, we expect more traffic to pass through
these nodes. In our case, we are looking to size the core, i.e., find
the number of high degree nodes such that almost all the traffic
in the graph passes through them. Theorem 8 below is our main
result regarding the size of the core:

Theorem 8: Let G(8) be an RPLG. In order to achieve a
non-vanishing network-wide gain G, it is sufficient to deploy
memories at nodes with expected degrees greater than [Wwin,
where 1 is obtained from

1

PF - e 0 (29)

2
1-— ﬁ) i;é The set of
nodes with expected degree greater than lwy,, is defined as
core: C = {ulwy, > lwyin }.

Proof of the Theorem 8 follows from the lemmas below.

Lemma 9: Let d be the distance between the nodes A and B.
Let i denote a memory unit fixed on the shortest path between
A and B, with distance d’ from A, i.e., the distance between
and B is d — d'. If the gain of memory-assisted compression is
g>1,thenG > 1.

and the constant vy is equal to (

1601

Proof: If there was no memory on the path, we had one unit
of flow from A to B and one unit of flow for B to A. Therefore,
FY = 2d. When memory-assisted compression is performed,
the flow going from A to B is reduced to % +(d—d'). Similarly,
the flow going from B to A is d’*Td’ + d'. Therefore, F = %’ +
(d—d) + L + d and thus

(o) 2d 2g
9= ad = :
Now, considering that g > 1, the claim follows. |

Our approach to find the core is to remove the highest degree
nodes from the graph one at a time until the remaining induced
subgraph does not form a giant component. In other words, as
a result of removing the highest degree nodes, the graph de-
composes to a set of disjoint islands and hence, we conclude
that the communication between those islands must have passed
through the core. Therefore, from Lemma 9, we conclude that in
RPLG, we will have a non-vanishing network-wide gain if we
choose the core sufficiently big such that the induced periphery
of G(f3) does not have a giant component. The following lemma
provides a sufficient condition for not having a giant component
in RPLG.

Lemma 10 ([49]): A random graph G(3) with the expected
degrees w, almost surely has no giant components if

S wi
i
S
k1

<1 (30)

Lemma 11: Consider a random graph G with the sequence
of the expected degrees w. If U is a subset of vertices of G, the
induced subgraph of U is a random graph with the sequence of
the expected degrees w', where

Zwv

wel

> ow,”

VEG

/
w; = Wy

Proof: The probability that an edge exists between two
vertices of U is equal to the edge connection probability in G.
Consider a vertex u in U. The expected degree of « is

Zwv
pj:ww —w vel
u v u -
w
= > wy
vEG

]

Proof of Theorem 8: Consider a G(8) with the set of

lowest degree nodes U;, all having expected degrees in the

interval {Wmin , /Wmin). According to Lemma 10, to ensure that

the induced subgraph Gy, does not have a giant component,
we should have

2
g w,”/ g w, <1,
vel) vel

Zwv

B vel;
where W, = Wy ————
Nw

1602

. a—
161
I N —e—=2.1
§14 = + ke el L I R -+-g=2.3
BT = B=2.5
=S —-—g=2.7
—%—(3=2.9
1 L,
0.8¢ e & = ©
0.6 ' ‘
ge 10f 107

N

Fig. 11. The scaling of the core size % % 100 versus N for different 5's.

as in Lemma 11. To find w’, we should first obtain), cv, W
According to [49], we have

Z w, &~ Nw(1 —127),

vel;

2
. A 1 g1
Wi Nw? (11— ——) =38,
ZU“ w 8-1) 3-2

vely

€2

From (31), we conclude that w!, = (1—1>=%)w,, forallv € Uj.
Thus we have,

> wl,m Nw(1-12)% (32)
vel;
Similarly,
S wh m Nty P (1 12792 (33)

velly

Combining (32) and (33), we obtain the relation in (29) between
£ and . Having I, we can easily obtain the size of U; by finding
the number of vertices with expected degree less than lwpm,
which is readily available from (28). |

Theorem 8 provides the required information to find the size
of the core and hence the number of memory units. As finding
the closed-form solution for the size of the core is not straight-
forward, we use numerical analysis to characterize the number
of required memory units using the results developed above.

In Fig. 11 the scaling of the core size versus N is depicted for
various [3's. As we see, the core size is a tiny fraction of the total
number of nodes in the network and this fraction decreases as NV
grows. This is a promising result as it suggests that by deploying
very few memory units, we can reduce the total amount of traffic
in a huge network.

C. Simulation Results

To validate our theoretical results, we have conducted dif-
ferent sets of experiments to characterize the network-wide gain
of memory in RPLG. For experiments, we used DIGG RPLG
generator [51], with which we generated random power-law
graph instances with number of vertices between 1,000 and
5,000, and 2 < 3 < 3. The result are averaged over 5 instances
of generated RPLGs. In our simulations, we report results for

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

—pB=2
- -p=22
..... B=24
—pB=26
—--3=2.38

4 6 8 10
|core]
— x 100

Fig. 12. The fraction of the paths passing through the core (FPPC) vs. the core
size, for RPLG of size N = 5, 000.

—pB=2
- -B=22
—--p=24
—p=26
..... £=2.8

0 2 4 6 8 10
|core|
— X 100

Fig. 13. Illustration of the network-wide gain when simple Dijkstra's routing
algorithm is used for ¢ — oc. Note that G is capped to two despite g growing
large.

various core sizes (which is the number of memory-enabled
nodes).

We first verify our assumption that a tiny fraction of the
highest degree nodes observes most of the traffic in the net-
work. Fig. 12 shows the Fraction of the Paths Passing through
the Core (FPPC) for different core sizes and S's. As we ex-
pected, more that 90% of the shortest paths in the graph involve
less than 2% of the highest degree nodes to route the flow.
Although our theoretical result in Theorem 8 is asymptotic
in N, Fig. 12 suggests that the asymptotic result holds for N
= 1,000 already. Therefore, we can place the memory units
at the core and results can be extrapolated for large graphs with
large number of nodes.

To validate the network compression gain, we considered two
RPLGs with sizes N = 2,000 and N = 4, 000. Assume that
each memory node has observed a sequence of length m =
4 MB of previous communications in the network. The packets
transmitted in the network are of size 1 kB. This assumption
is in accordance with the maximum transmission unit (MTU)
of 1,500 bytes allowed by Ethernet at the network layer. From
our results in Section IV-A, we expect that a memory-assisted
compression gain of g = 2.5 is achievable for real traffic traces.
Hence, we use ¢ = 3 in our simulations. Please note that in the
simulations of this section, the impact of the source statistics
and compression is only considered through g.

BEIRAMI et al.: PACKET-LEVEL NETWORK COMPRESSION: REALIZATION AND SCALING OF THE NETWORK-WIDE BENEFITS

1603

3 3 3
BN=2000
EN=4000
p=2 P=2.2 B=2.4 P=2.6 p=2.8 p=2 B=2.2 B=2.4 P=2.6 P=2.8
(@) leorel — 9.5% ®) Le2rel — 59 © leorel — 10%
Fig. 14. Network-wide gain of memory assisted compression G for different core sizes and power-law parameter /3, for g = 3. (a) % =2.5%.(b) % =

5%. (¢) L22rel = 10%.

To verify the results of routing with memory-enabled nodes
in Section VI, we conducted the following experiment. If we
do not use the modified Dijkstra's algorithm in the networks
with memory (i.e., we do not optimize the routing algorithm to
utilize the memories), as Lemma 9 suggests, the network-wide
gain would be bounded by 92% Therefore, even for very large
values of g, the network-wide gain would remain less than
two (as shown in Fig. 13), which is not desirable. Fig. 14 de-
scribes our results for the achievable network-wide gain of
memory-assisted compression. We measured the total flow
without memory. We also obtain the optimal paths when we
have memory units are deployed. We consider three cases in
which the fraction pf nodes equipped with memory increases
from 2.5% of the nodes to 10%. All data has been averaged
over the 5 graphs in each set.

The trendlines suggest that G increases as (3 increases which
is expected since the FPPC increases with 3. In other words,
more traffic between the nodes in periphery has to travel through
the dense subgraph (core) as 3 increases. Further, by increasing
the number of memory units, the network-wide gain increases
and approaches to the upper bound g. It is important to note that
enabling only 2.5% of the nodes in the network with memory-
assisted compression capability, we can reduce the total traffic
in the network by a factor of 2 on top of flow compression
without using memory, i.e., end-to-end compression. We em-
phasize that this memory-assisted compression (UcompM) fea-
ture does not have extra computation overhead for the source
node (in comparison with the conventional end-to-end com-
pression technique in Ucomp). Further, this feature only re-
quires extra computation at the memory units when compared
to Ucomp. The complexity of these operations scale linearly
with the length of the data traffic. Hence, overall with some ad-
ditional linear computational complexity on top of what could
have been achieved using a mere end-to-end compression, net-
work compression has the potential to reduce the traffic by a
factor of 2.

I1X. CONCLUSION

In this paper, we employed the concept of memory-assisted
compression and introduced its implication in reducing the
amount of traffic in networks. The basic idea is to allow some
intermediate nodes in the network to be capable of memoriza-
tion and compression. The memory-enabled nodes observe
the traffic traversing the network and form a model for the
information source. Then, using the side information from this

source model, a better universal compression of the flow is
achieved on the network flow. We investigated, from an infor-
mation-theoretic point of view, the network flow compression
by utilizing memory-enabled nodes in the network and solved
the routing problem for networks with memory units. We
also considered Erdés-Rényi random graphs and Internet-like
power-law graphs to develop theoretical results on the number
of memory-enabled nodes needed to obtain the network-wide
benefits. Finally, our simulations demonstrated that by enabling
memorization on less than 2.5% of the nodes in an Internet-like
random power law graph, we can expect almost all of the
network-wide benefits of memorization providing two-fold
gain over conventional end-to-end universal compression.

ACKNOWLEDGMENT

The authors are grateful to Georgia Tech Networks and
Mobile Computing (GNAN) Research Group for providing
the traces of wireless network users used in the simulations
of this paper. The authors also acknowledge very helpful
discussions with R. Sivakumar about the benefits of combining
de-duplication and memory-assisted compression. The authors
are also grateful to the anonymous reviewers for their detailed
comments that helped to improve the presentation of the paper.

REFERENCES

[1] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” ACM SIGCOMM, vol. 30, no.
4, pp. 87-95, 2000.

[2] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet

caches on routers: The implications of universal redundant traffic elim-

ination,” ACM SIGCOMM, vol. 38, pp. 219-230, 2008.

A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy

in network traffic: Findings and implications,” in SIGMETRICS '09:

Proc. 11th Int. Joint Conf. Measurement and Modeling of Computer

Systems, New York, NY, USA, 2009, pp. 37-48.

A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for

coordinated network-wide redundancy elimination,” ACM SIGCOMM,

vol. 39, no. 4, pp. 87-98, 2009.

Z. Zhuang, C.-L. Tsao, and R. Sivakumar, “Curing the Amnesia: Net-

work Memory for the Internet,” Tech. Report Georgia Inst. Technol.,

Atlanta, GA, USA, 2009 [Online]. Available: http://www.ece.gatech.

edu/research/GNAN/archive/tr-nm.pdf

S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon, S. Lakshmanan,

and J. Singh, “Asymmetric caching: Improved deduplication for mo-

bile devices,” in Proc. ACM MOBICOM, 2012.

[7] S. C. Rhea, K. Liang, and E. Brewer, “Value-based web caching,” in
Proc. 12th Int. Conf. World Wide Web, WWW '03, New York, NY, USA,
2003, pp. 619-628.

[8] M. C. Chanand T. Y. C. Woo, “Cache-based compaction: A new tech-
nique for optimizing web transfer,” in Proc. IEEE INFOCOM ‘99, New
York, NY, USA, 1999.

[3]

(4]

(5]

(6]

1604

[9] M. Sardari, A. Beirami, and F. Fekri, “On the network-wide gain of
memory-assisted source coding,” in Proc. 2011 IEEE Information
Theory Workshop (ITW), Oct. 2011, pp. 476—480.

[10] M. Sardari, A. Beirami, and F. Fekri, “Memory-assisted universal com-
pression of network flows,” in Proc. IEEE INFOCOM, Orlando, FL,
USA, Mar. 2012, pp. 91-99.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337-343, May
19717.

[12] F. Willems, Y. Shtarkov, and T. Tjalkens, “The context-tree weighting
method: Basic properties,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp.
653-664, May 1995.

[13] D. Baron and Y. Bresler, “An O(N) semipredictive universal encoder
via the BWT,” [EEE Trans. Inf. Theory, vol. 50, no. 5, pp. 928-937,
May 2004.

[14] N.Merhav and M. Feder, “A strong version of the redundancy-capacity
theorem of universal coding,” IEEE Trans. Inf. Theory, vol. 41, no. 3,
pp. 714-722, May 1995.

[15] A.Beiramiand F. Fekri, “Results on the redundancy of universal com-
pression for finite-length sequences,” in Proc. IEEE Int. Symp. Infor-
mation Theory (ISIT), 2011, pp. 1504—1508.

[16] A.Beirami, M. Sardari, and F. Fekri, “Results on the fundamental gain
of memory-assisted universal source coding,” in Proc. IEEE Int. Symp.
Information Theory (ISIT '2012), Jul. 2012, pp. 1092—-1096.

[17] R. Albert, H. Jeong, and A.-L. Barabasi, “Internet: Diameter of the
world-wide web,” Nature, vol. 401, pp. 130-131, 1999.

[18] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the Internet topology,” in ACM SIGCOMM, 1999, pp.
251-262.

[19] A. Broder et al., “Graph structure in the web,” in Proc. WWW9 Conf.,
2000, pp. 309-320.

[20] A.Vazquez, R. Pastor-Satorras, and A. Vespignani, “Large-scale topo-
logical and dynamical properties of the Internet,” Phys. Rev. E, vol. 65,
no. 6, p. 066130, Jun. 2002.

[21] M. Boguna, F. Papadopoulos, and D. Krioukov, “Sustaining the In-
ternet with hyperbolic mapping,” Nature Commun., vol. 1, p. 62, Sep.
2010.

[22] M. Mahoney, “Adaptive weighing of context models for lossless data
compression,” Tech. Rep. Florida Inst. Technol., Melbourne, FL, USA,
2005.

[23] P. Erdés and A. Rényi, “On random graphs. 1,” Publicationes Mathe-
maticae, pp. 290297, 1959.

[24] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker, and 1. Stoica, “A data-oriented (and beyond) network archi-
tecture,” in ACM SIGCOMM, 2007, pp. 181-192.

[25] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs,
and R. Braynard, “Networking named content,” in Proc. 5th ACM
CoNEXT, 2009, pp. 1-12.

[26] Z. Zhuang, T.-Y. Chang, R. Sivakumar, and A. Velayutham, “Appli-
cation-aware acceleration for wireless data networks: Design elements
and prototype implementation,” /IEEE Trans. Mobile Comput., vol. 8,
no. 9, pp. 1280-1295, Sep. 2009.

[27] J. Bentley and D. Mcllroy, “Data compression using long common
strings,” in Proc. Data Compression Conf., DCC '99, 1999, pp.
287-295.

[28] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM J. Res. Devel., pp. 249-260, 1987.

[29] U. Manber, “Finding similar files in a large file system,” in Proc.
USENIX Winter Tech. Conf., 1994.

[30] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, pp. 471-480, 1973.

[31] M. Sartipi and F. Fekri, “Distributed source coding using short to
moderate length rate-compatible LDPC codes: The entire Slepian-Wolf
rate region,” IEEE Trans. Commun., vol. 56, no. 3, pp. 400411, Mar.
2008.

[32] G.G.Langdon Jr., “An introduction to arithmetic coding,” IBM J. Res.
Develop., vol. 28, no. 2, pp. 135-149, Mar. 1984.

[33] F. Willems, “The context-tree weighting method: Extensions,” IEEE
Trans. Inf. Theory, vol. 44, no. 2, pp. 792—798, Mar. 1998.

[34] D. Shkarin, “PPM: One step to practicality,” in Data Compression
Conf., 2002, vol. 12.

[35] S. Bunton, “On-line stochastic processes in data compression,” Ph.D.
dissertation, Univ. Washington, Seattle, WA, USA, 1996.

[36] D. Salomon, Data Compression: The Complete Reference.
York, NY, USA: Springer, 2007.

[37] C. Mattern, “Mixing strategies in data compression,” in 20/2 Data
Compression Conf. (DCC), Snowbird, UT, USA, 2012.

New

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 3, JUNE 2016

[38] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1999.

[39] J. Ziv and A. Lempel, “Compression of individual sequences via vari-
able-rate coding,” IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 530-536,
Sep. 1978.

[40] R.Lenhardtand J. Alakuijala, “Gipfeli — high speed compression algo-
rithm,” in 2012 Data Compression Conf. (DCC), Snowbird, UT, USA,
2012, pp. 109-118.

[41] S. Gunderson, Snappy [Online]. Available: http://code.google.com/p/
snappy/

[42] A. Hidayat, Fastlz [Online]. Available: http://www.fastlz.org

[43] L. M. Reinhold, Quicklz [Online]. Available: http://www.quicklz.com

[44] N.Krishnanand D. Baron, “A universal parallel two-pass MDL context
tree compression algorithm,” IEEE J. Sel. Topics Signal Process., vol.
9, no. 4, pp. 1-8, Jun. 2015.

[45] Wireshark Packet Analyser. [Online]. Available: http://www.wire-
shark.org/

[46] A.Beiramiand F. Fekri, “A novel correlation model for universal com-
pression of distributed parametric sources,” in 52nd Annu. Allerton
Conf. Communication, Control, and Comput., 2014.

[47] L.Huang, A. Beirami, M. Sardari, F. Fekri, B. Liu, and L. Gui, “Packet-
level clustering for memory-assisted compression of network packets,”
in 2014 Int. Conf. Wireless Communications and Signal Processing
(WCSP 2014), 2014.

[48] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Netw., vol. 8, pp. 568-582, 2000.

[49] F.Chungand L. Lu, Complex Graphs and Networks. Providence, RI,
USA: American Mathematical Society, 2006.

[50] N. Alon andJ. Spencer, The Probabilistic Method, 3rd ed. New York,
NY, USA: Wiley, 2008.

[51] A. Brady and L. Cowen, “Compact routing on power law graphs with
additive stretch,” in ALENEX, 2006.

Ahmad Beirami (S’07) received the B.Sc. degree in electrical engineering from
Sharif University of Technology, Tehran, Iran, in 2007 and the M.Sc. and Ph.D.
degrees in electrical and computer engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2011 and 2014, respectively.

He is currently a Postdoctoral Associate jointly affiliated with the information
initiative at Duke (iiD) and the Research Laboratory of Electronics (RLE) at
MIT. His research interests broadly include information theory, cyber security,
machine learning, statistics, and networks.

Dr. Beirami is the coauthor of a paper that received a Best Student Paper
nomination in IEEE Midwest Symposium on Circuits and Systems (2008). His
Ph.D. work received the Center for Signal and Information Processing Out-
standing Research Award (2014), the 2013-2014 School of ECE Graduate Re-
search Excellence Award, and the 2015 Sigma Xi Best Ph.D. Thesis Award, all
from Georgia Institute of Technology.

Mohsen Sardari received the B.Sc. degree in electrical engineering from Sharif
University of Technology, Tehran, Iran, in 2007. He received the M.S.E.C.E. and
Ph.D. degrees from the School of Electrical and Computer Engineering (ECE),
Georgia Institute of Technology, Atlanta, GA, in 2010 and 2013, respectively.

He is currently a Data Scientist with Electronic Arts, Inc., Redwood City,
CA, USA. His research interests broadly include information theory, signal pro-
cessing, large-scale data analytics, and machine learning.

Faramarz Fekri (M’00-SM’03) received the Ph.D. degree from the Georgia
Institute of Technology, Atlanta, GA, USA, in 2000.

Since 2000, he has been with the faculty of the School of Electrical and Com-
puter Engineering at the Georgia Institute of Technology where he currently
holds a Professor position. His current research interests are in the area of com-
munications and signal processing, in particular source and channel coding, in-
formation theory in biology, statistical inference in large data, information pro-
cessing for wireless and sensor networks, and communication security.

Prof. Fekri received the National Science Foundation CAREER Award
(2001), Southern Center for Electrical Engineering Education (SCEEE) Young
Faculty Development Award (2003), and Outstanding Young Faculty Award of
the School of ECE (2006). He serves on the Technical Program Committees of
several IEEE conferences. In the past, he was on the editorial board of the IEEE
TRANSACTIONS ON COMMUNICATIONS, and the Elsevier Journal on PHYCOM.

