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Abstract—Traces derived from real-world traffic show that sig-
nificant redundancy exists at the packet level in mobile network
traffic. This has inspired new solutions to suppress the redundancy
present in the packet data to manage the explosive traffic. In this
paper,weproposeanovelapproachtoperformingredundancyelim-
ination by employing universal compression using memory-enabled
overhearing helpers without backhaul connectivity, referred to as
wireless network compression. The helpers overhear the data pack-
ets previously sent by the wireless gateway to various mobile clients
within their coverage and use them as side information to reduce
the overall communication cost. We study wireless network com-
pression via overhearing helpers from an information-theoretic
point of view and conclude that this approach potentially offers
a threefold benefit: 1) offloading the wireless gateway and hence
increasing the maximum number of mobile nodes the gateway
can reliably serve; 2) reducing the average packet delay; and
3) improving the overall throughput in the network.

Index Terms—Cooperative communication, network compres-
sion, overhearing helper nodes, redundancy elimination, two-part
codes, wireless network.

I. INTRODUCTION

M OBILE data efficiency is an important feature of wire-
less communication. It increasingly draws attention as

providers face the difficulty of handling the growing demand
and look for solutions to reduce the data delivery costs in
wireless networks. One potential solution is to eliminate the
redundant data that is being transmitted to clients through the
bottleneck of the network, the most important being the last
hop: the wireless link from the wireless gateway to the mobile
client. IP-layer redundancy elimination (RE), in the form of
repetition suppression for a single client, has been successful
in traffic reduction [1]–[8]. In particular, it was found that RE
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can suppress as much as 20-50% of the data traffic when 50%
redundancy is present in the data [1], [5], [6]. In another study
[8], based on data traces collected from both laptop and smart-
phone users over a span of three months, authors show that an
average of 20% traffic reduction is achieved within each user’s
data trace using redundancy elimination techniques. On the
other hand, these redundancy elimination solutions are confined
to de-duplication of repeated patterns. While de-duplication is
effective in removing long repeated bit sequences, it ignores the
sub-packet level statistical dependencies in the data that are not
mere repetitions (see [9]).

In [9], we established that redundancy in network traffic
exists in the form of statistical dependencies beyond exact
duplicates. As such, in [9]–[11], we took the first steps towards
characterizing the achievable benefits of compression-based
redundancy elimination. Data compression (source coding)
is a natural candidate for statistical redundancy elimination.
However, traditional compression techniques would not be very
effective when applied to network packets. The reasons are
the following: 1) redundancy within a packet cannot be effec-
tively removed due to small size of the packets [12], [13];
and 2) traditional compression methods cannot leverage the
redundancy across clients as they compress each packet inde-
pendently from other packets [9]. In [9], [10], we formulated
the redundancy elimination as network compression and intro-
duced a new framework for compression of network data called
memory-assisted compression. It was shown that universal
compression-based methods can complement de-duplication-
based redundancy elimination techniques to suppress an even
more substantial amount of redundancy in the network. This
was also experimentally confirmed on real data gathered from
network traffic [9]. Note that a combination of memory-assisted
compression and parallel compression techniques that achieve
high compression rate as well as high compression speed make
compression-based redundancy elimination feasible on high
rate links as well [14], [15].

In this paper, we propose wireless network compression
via memory-enabled overhearing helpers, which is inspired
from compression-based redundancy elimination but differs
significantly in the network architecture by using passive over-
hearing helpers without backhaul connectivity. This was first
presented in [16]. Fig. 1 demonstrates the most basic sce-
nario involving a single wireless gateway S, a mobile client C
and a helper M . The memory-enabled helpers are small, pos-
sibly cooperative nodes with sufficiently large storage space,
that are used to memorize the overheard packets previously
transmitted from the wireless gateway to mobile clients. The
overhearing capability of helper nodes comes at no extra cost
(in terms of bandwidth usage) due to the broadcast nature of
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Fig. 1. An illustrative example of a wireless network with a single helper
(deployed memory-enabled helper). A short-lived connection to the source by
a mobile client is shown by a solid arrow. Overhearing is shown by a dashed
arrow. The link supplementing side-information is shown by a thick solid arrow.

the wireless communication. The overhearing nature of the
helper also eliminates the need for backhaul connectivity while
offering throughput enhancement by theing the gateway.1 The
motivating assumption behind this work is that the communi-
cation in the helper-client link is less costly than that of the
gateway-client link.

We analyze the achievable average codeword length region
defined as the pair of codeword lengths communicated by the
server and the helper nodes to the client node; and we derive
converse bounds that quantify what codeword length pairs are
hopeless to achieve. We further propose a coding strategy based
on two-part codes that can achieve close to optimal perfor-
mance in certain scenarios, and show that more than 50% cost
reduction may be achieved by offloading the wireless gate-
way. The error-prone wireless environment makes it difficult
to guarantee that the sender node and the helper node (that
has overheard the previous communication of the source with
other mobile clients) share the same model for the information
source. This is because the error recovery mechanism is imple-
mented between the source and the client to which the packet
is destined to, and no error recovery mechanism is assumed in
the gateway-helper (S-M) link. This can potentially result in
a mismatch between the source model at the encoder and the
decoder, which in turn makes the memory-assisted compres-
sion challenging. The impact of mismatched memory is also
addressed in this paper.

The rest of the paper is organized as follows. In Section II,
we present the background on universal compression. In
Section III, we present the abstraction of the wireless net-
work compression via memory-enabled overhearing helpers. In
Section IV, we define the achievable codeword length region for
the problem and present the converse bounds. In Section V, we
present a two-part coding scheme whose performance is close
to optimal in certain scenarios. In Section VI, we present sim-
ulation results performed in ns-2 simulator. In Section VII, we
study the impact of mismatched memory. Finally, Section VIII
concludes the paper.

1The focus of this paper is to increase bandwidth efficiency and we ignore
the deployment cost and power requirements of the helpers.

II. BACKGROUND AND RELATED WORK

In this section, we first review the background on universal
compression that is needed for the technical presentation of our
results and then review the related work.

A. Background on Universal Compression

Let S be an i.i.d. (memoryless) source over alphabet X, with
a (|X| − 1)-dimensional parametric vector θ which takes val-
ues in the d-dimensional simplex � ⊂ R

d of all d-dimensional
probability vectors, where d = (|X| − 1) denotes the dimen-
sion of the unknown source parameter vector. One may extend
this model to a more realistic setup for real-world sources by
considering a mixture of parametric sources (with finite mem-
ory) as described in [17], [18]. Note that the side information
(through memorized packets) primarily helps to remove the uni-
versal compression overhead, which is already significant for
short memoryless sources. See Appendix A for a more detailed
discussion on parametric source models.

Let μθ be the probability density function of the source
parametrized by the d-dimensional parametric vector θ . Let
xn = (x1, . . . , xn) be a sequence generated by the source with
probability μθ(xn). By this setup, for example, for a Bernoulli
(binary memoryless) source which is represented with a single
parameter θ = P[X = 1], the probability that the source would
output the sequence xn with k ones and (n − k) zeroes is given
by μθ(xn) = θk(1 − θ)n−k .

If the parameter vector θ ∈ � was known, the ideal code
length of a packet xn , obtained from the Shannon code [19]
(ignoring the integer code length requirement), would be
log(1/μθ (xn)).2 On the other hand, since in practice the param-
eter θ is not known a priori, we wish to encode the packet using
a universal probability distribution P(xn) that does not depend
on the true θ , while it is “close” to the true unknown proba-
bility distribution μθ(xn) for all θ ∈ �. Although there is an
extensive literature in the source coding community to address
this problem, due to reasons that will be revealed in the sequel,
we are interested in the universal two-part codes that provide
a practical solution to this problem with close to optimal code
lengths (see [13], [20], [21]).

In the absence of side information, xn is universally coded
using c : Xn → {0, 1}∗ with the length function denoted by
l(xn) that is prefix-free (no codeword is the prefix of any other
codeword). l(xn) is simply the length of the codeword associ-
ated with xn . It is well known that a necessary and sufficient
condition for the existence of a prefix-free codeword is that
l(xn) satisfies Kraft’s inequality:

∑
xn∈Xn exp(−l(xn)) ≤ 1.

Let Hn(θ) be the entropy of the parametric source induced
by μθ as given by

Hn(θ) = E

[
log

1

μθ(xn)

]
=

∑
xn

μθ(xn) log
1

μθ(xn)
.3 (1)

The performance of the employed compression is measured
in terms of the average code redundancy, which is given by

2In this paper, all logarithms and exponentiations are performed at base 2.
3In this paper, E denotes the expectation operation using the probability

measure μθ .
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TABLE I
SUMMARY OF THE FREQUENTLY USED NOTATIONS USED THROUGHOUT THIS PAPER

R(l, θ) = E[l(Xn)] − Hn(θ). Redundancy is the penalty term
associated with the universality of the coding scheme. The
average minimax redundancy, defined as

R(n,�) = min
l

max
θ

R(l, θ),

is a performance measure for universal lossless coding
schemes. It is shown in [22], [23] that for a memoryless source
with d unknown parameters, we have

R(n,�) �
d

2
log n + C�, 4 (2)

where C� is an absolute constant with respect to n that depends
on the geometry of the set in which the parameters of the source
live. Roughly speaking, (2) states that the cost of universality
is linear in the unknown parameters of the parametric model
and is logarithmic in the length of the sequence that needs to
be compressed. Therefore, the model cost per source symbol is
asymptotically O(log n/n) and uniformly vanishes for all θ ∈
�. See Appendix A for a more detailed discussion. A summary
of the frequently used notations used in this paper is presented
in Table I.

B. Related Work

In [9], we studied memory-assisted compression, which
refers to universal compression where side information (in the
form of previously communicated packets) is available to both
the encoder and the decoder. In this case, the memorization and

4Throughout this paper, we have used the following asymptotic notations:
• f (n) = o(g(n)) iff | f (n)| ≤ |g(n)|ε, ∀ε,
• f (n) = O(g(n)) iff | f (n)| ≤ |g(n)|k, ∃k,
• f (n) = ω(g(n)) iff g(n) = o( f (n)),
• f (n) = �(g(n)) iff g(n) = O( f (n)),
• f (n) � g(n) iff f (n) ≤ g(n) + o(1),
• f (n) � g(n) iff f (n) ≥ g(n) + o(1), and
• f (n) � g(n) iff f (n) = g(n) + o(1).

learning from traffic takes place at the network layer because
the routers (or the intermediate relays) are observing the packets
at the network layer. Therefore, if the client has been in contact
with the server for a long time and its physical constraints allow
forming a common memory with the server, techniques similar
to [9] could be applied to eliminate the redundancy on the hop
between the wireless gateway and the client. Furthermore, with
sufficiently large side information (4MB or more), there is no
need for the use of a helper as the source can compress the
packet close to its entropy and transmit to the client.

On the other hand, we assume that the client often lacks
memory with the source. This is because the client is not con-
nected to the source as often, and hence, even if it has obtained
some packets from the source in the past, they may be outdated
to carry information about source contents. Finally, physical
constraints on the mobile client may prevent storing previous
communication. Hence, due to lack of memory at the client,
the memory-assisted compression is not applicable end-to-end;
from the source all the way to the client. This work consid-
ers the case where the shared memory between the encoder
and the decoder is no longer present as we are concerned
with redundancy elimination in the last hop between a wireless
gateway and a client who is assumed to share no memory with
the wireless gateway.

Parallel to this work, opportunistic routing ideas have shown
to be very effective in increasing throughput by avoiding the
transmission of redundant data chunks destined to different
clients sharing part of their path in multi-hop wireless networks
using network coding (see ExOR [24] and COPE [25]). The
nature of the redundancy that is tackled in the network cod-
ing is due to the same (or correlated) contents traversing the
same edges in the network in order to reach spatially-separated
clients in the network. On the other hand, the redundancy that is
addressed in this work is due to the statistical dependencies and
duplicates that exist even within a unicast session. Therefore,
the two approaches (network coding and compression) are
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Fig. 2. The abstract illustration of the traffic reduction problem via net-
work compression. The memorized sequence ym represents the total past data
overheard by M from S to the clients.

orthogonal and one can expect to benefit from both when redun-
dant data are being transmitted in a multi-hop wireless network
scenario.

Finally, the use of helper nodes in wireless networks is stud-
ied in various contexts from femto-cell network architectures
[26] to device-to-device collaboration in wireless networks
[27], [28]. Our use of helper nodes in the network is inspired
by these designs. We also note that the network compression
solution developed in [9], [10] is not applicable to the last hop
in wireless networks. This is mainly because the broadcast
nature of the wireless networks and also the asymmetric cost
of transmission in different links that need to be incorporated
in the network compression framework while guaranteeing that
all packets are recoverable in a strictly lossless manner at the
clients.

III. WIRELESS NETWORK COMPRESSION VIA

MEMORY-ENABLED OVERHEARING HELPERS

The idea of wireless network compression via overhearing
helpers is to deploy memory-enabled (non-mobile) helpers that
are capable of overhearing communication from the wireless
gateway to all the mobile clients inside the coverage area of the
wireless gateway. The overhearing comes at no extra cost due to
the broadcast nature of the wireless communication. Although
this can be applied to every cellular or WiFi access network,
one realization of such memory-enabled helpers can be in
femto-cell network design combined with traditional macro-
cell networks, as in [26]. Note that the backbone connectivity of
the helpers are not included in the problem setup, first because
the learning process of helper nodes is performed only based
on the overheard data which is available for free and secondly,
solutions that rely on helper connectivity should include provi-
sions to deal with intermittent connectivity and the impact of
the extra load imposed on the backbone.

The abstract model of the problem is shown in Fig. 2, for
a single helper and a single client. We consider the traffic
reduction (compression) over the down-link, where the data are
delivered from the wireless gateway S, which is the source in
our abstraction, to the mobile client C in unicast sessions. The
memory-enabled helper M is assumed to overhear the commu-
nication from S to C . The overhearing memory-enabled helper
is also assumed to be capable of transmitting information to
those mobile nodes in its vicinity.

In our abstraction of the problem, node S may be viewed
as an i.i.d. memoryless source (see Section II) that sends
independent sequences of length n to the clients in the cell. Note
that the source parameters are a priori unknown to the clients
requiring the compression procedure to be universal. Extension
to non-stationary scenario is outside of the scope of this paper
and can be found in [18].

Assume that several sequences (packets) have already been
destined to some other clients via unicast from S, but due to
the broadcast nature of the wireless environment, the helper M
also overheard a subset of these sequences. Let ym denote a
sequence of length m, which is formed by the concatenation
of all previously sent sequences to the other clients by S. Note
that since the source is assumed to be i.i.d., Xn and Y m are
independent of each other given the source parameter vector
θ . However, since θ is unknown they are correlated through
the information they carry about the unknown source param-
eter vector. Throughout this paper, we assume that m = ω(1),
i.e., the length of the memorized sequence is sufficiently large
for our analysis to hold. It was demonstrated in [9] that a few
megabytes of memory is sufficient for the benefits of network
compression to be applicable.

Note that one can potentially think of a more sophisticated
information structure, in which Xn and Y m are correlated
given the parameter vector θ . This is a viable model where
the sequences are noisy observations of the same phenomenon
(e.g., readings of two sensors of the temperature of the same
room, or two different images of the same object). On the other
hand, it is extremely hard to determine whether the packets
are related in such fashion a priori. If one does not have prior
knowledge on how Xn and Y m are correlated then the simplest
hypothesis is to assume they are independent, which falls back
onto the model considered in this paper. We emphasize that
in practice one would need to consider the packet generating
source to be a mixture of not necessarily i.i.d. models in order to
achieve the best compression results. This is beyond the scope
of the present paper and is the subject of the study in [18].

The correlation structure between the overheard packets and
the new information packet to be sent to client breaks down if
the information source is encrypted. In such scenario, no gain
would be expected from the overheard traffic as the goal of
encryption is to remove all correlations and make the encrypted
message appear random. Therefore, the analysis in this paper
applies only if either the traffic is unencrypted or the helper and
the gateway share the encryption/decryption key. The details of
such design is beyond the scope of this paper. Note that the
issue with encrypted traffic is not specific to wireless network
compression and the same applies to any other redundancy
elimination mechanism that uses helper nodes.

Although the link between S and C is lossy due to the
wireless channel, we assume a proper feedback for packet
retransmission would take care of packet losses on the S-C link.
On the other hand, the loss on the S-M link would not be taken
care of (as there is no feedback in place). In the absence of era-
sure caused by overhearing, S and M would share a common
side information ym . We assume that a fraction E of the sym-
bols in ym are erased before they reach the helper (0 ≤ E ≤ 1).
Let em ∈ {0, 1}m be a binary sequence that is the indicator of
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symbol loss, where ei = 1 would mean that yi is lost on S-M
link and hence is not available to the helper. We also assume
that em is selected uniformly at random from the (m

mE) pos-
sible sequences for which

∑m
i=1 ei = mE. Let zm denote the

side information sequence that is available to M , which for all
1 ≤ i ≤ m is defined as

zi =
{

yi if ei = 0

ε otherwise
, (3)

where ε denotes an erasure. Further let Z � X ∪ {ε} denote the
alphabet of the side information sequences at M , and hence,
zm ∈ Zm .

We assume an erasure channel where the helper would be
able to infer if an erasure has happened. The inference is
obtained via the private sequence numbers designed into appli-
cation layer, sequence numbers (transport layer), time stamps
(network layer), and hints from lower layers, such as the PHY.
Thus, we assume that the helper knows the sequence em . We
also assume that S knows the total number of erasures that have
occurred in the S-M link, i.e., E is known to S. This can be
done by a single one-time feedback sent from M to S every
time that the side information between the two nodes needs to
be synchronized. In particular, if the source is “stationary.” then
the statistics of the source do not change with time. Hence, M
can wait until its packet store is filled up and then M can send a
one-time feedback to S and identify the packet numbers of the
missing packets. This is a very insignificant overhead compared
with the size of the packets as the feedback size grows logarith-
mically with the size of the packet store. However, in reality, the
statistics of the packets is not stationary requiring a packet store
update with time. The frequency at which such synchronization
should take place depends on the nature of the traffic and how
quickly the statistics of the source are changing.

After the transient period in which the packet stores at S
and M are populated, S wishes to send a new sequence xn

to C . Recall that the traffic (i.e., the packets) destined to dif-
ferent mobile clients from the gateway S are highly correlated
as observed in [9]. Therefore, the memory-enabled overhear-
ing helper M can learn about the source model by using the
overheard packets from the past communication between the
cell tower (or the WiFi access-point) and mobile nodes. This
extracted source model can then be used as a side information
(if provided to the client) improving the compression perfor-
mance on the future traffic from the gateway S to any new
mobile client C . In other words, the memory-enabled helpers
can possibly help to reduce the transmission load of the wire-
less gateway by transmitting the side-information about the
data traffic to the clients using a less costly memory-client
M-C link. Note that the compression based redundancy elimi-
nation technique misses the opportunity to suppress exact large
duplicates. As such, wireless network compression and de-
duplication based redundancy elimination can be employed
together to complement each other in traffic reduction.

As mentioned before, since we wish to reduce the load of
the gateway, we have an asymmetric situation where a higher
cost is associated with the channel from the source to the client
than from the helper to the client. This asymmetry between

the channel costs is motivated by real-world cellular networks
where a single base-station serves a large number of clients.
Hence, if the load of the base-station by each client is reduced,
it can potentially serve a larger number of clients. For exam-
ple, the S-C link from the base-station to the client (and hence
the overhearing link S-M) can operate in a frequency dif-
ferent from the M-C link. Whenever the base-station hands
off the connection to the mobile client (and the overhearing
memory-enabled helper), its frequency slot frees up and a new
client can be served. Further, due to a lower communication
radius, the frequency slot allocated to the M-C link can be
reused within a cell for the link between some other memory-
enabled helpers with nearby clients. This architecture together
with the proposed network compression offers a novel oppor-
tunity for traffic reduction so as to deliver xn by exploiting the
side-information shared between S and M .

IV. ACHIEVABLE CODEWORD LENGTH REGION

In this section, we will analyze the degree at which we can
offload the gateway when the helper transmits a certain num-
ber of bits to the client. Let xn be a packet of length n to be
delivered from the source to C . The problem of interest, in its
general form, is how would the encoder of S encode xn know-
ing that a side information would be transmitted from M to C
such that the aggregate communication cost on the link S-C
together with the cost of supplemented bits on the link M-C
would be minimized. The other important requirement is that
xn should be recovered at the client error-free. Following the
notations in Section II, let lS and lM denote the (prefix-free)
length functions of the codewords transmitted to the client C
from the source S and the helper M , respectively. The length
functions are also a function of the side information sequence,
i.e., lS(xn, ym) and lM (n, zm). Recall that the summary of the
notations used in this paper can be found in Table I.

Definition 1 (Achievable average codeword length pair):
The pair (L S, L M ) is called an achievable average codeword
length pair (in short achievable pair) if there exist codes cS and
cM with length functions lS and lM such that E[lS(Xn, Y m)] =
L S and E[lM (n, Zm)] = L M and there exists a decoder dC

(available to the client) such that for all xn ∈ Xn , ym ∈ Xm , and
zm ∈ Zm , we have

dC (cS(xn, ym), cM (n, zm)) = xn .

Observe that from Definition 1 it is clear that the decoder
only has access to cM (n, zm), which is a function of zm whereas
the encoder has encoded xn using the side information ym .
Despite this discrepancy, the decoder has to decode xn correctly
for any possible values of xn ∈ Xn , ym ∈ Xm , and zm ∈ Zm . In
the rest of this paper, we use L S = L S(n, m) and L M (n, m) to
denote the average codeword lengths transmitted by S and M ,
respectively, where the expectation is performed with respect to
the true distribution μθ over all realizations of (xn, ym, zm) ∈
Xn × Xm × Zm .

Definition 2 (Achievable average codeword length region):
For a given sequence length n and memory size m, the
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achievable average codeword length region (in short achiev-
able region) is defined as the union of all achievable average
codeword length pairs (L S, L M ).

Lemma 1: The achievable codeword length region is convex,
i.e., if (L1

S, L1
M ) and (L2

S, L2
M ) are achievable codeword length

pairs then (λL1
S + (1 − λ)L2

S, λL1
M + (1 − λ)L2

M ) is also an
achievable codeword length pair for any 0 < λ < 1.

Proof: Let the code be constructed as follows. Use the pair
(L1

S, L1
M ) for communication with probability λ and the pair

(L2
S, L2

M ) for communication with probability (1 − λ). Hence,
the average codeword length sent from S is going to be λL1

S +
(1 − λ)L2

S as desired. �
Lemma 2: Let (L1

S, L1
M ) and (L2

S, L2
M ) be two achievable

pairs such that (L1
S, L1

M − ε) and (L2
S, L2

M − ε) are not achiev-
able for any ε > 0. In other words, (L1

S, L1
M ) and (L2

S, L2
M )

belong to the boundary of the achievable rate region. Then,∣∣∣L2
S − L1

S

∣∣∣ ≤
∣∣∣L2

M − L1
M

∣∣∣ . (4)

Proof: Note that any bits that are sent by the helper to
the client could have also be sent by the wireless gateway as
well (since the wireless gateway has access to the same memory
and is able to generate the same bits). Therefore, if (L S, L M ) is
achievable then (L S + d L S, L M − d L S) is also achievable for
any d L S > 0. Now assume that (L2

S, L2
M ) is an achievable pair

such that L2
S < L1

S . Then, (L1
S, L2

M + L1
S − L2

S) is also achiev-
able. On the other hand, we know that (L1

S, L1
M − ε) is not

achievable for any ε > 0. Hence,

L2
M + L1

S − L2
S ≥ L1

M . (5)

The proof goes through similarly for L2
S > L1

S . �
Lemma 2 states that in order to reduce any single bit that

needs to be sent on the S-C link, we need to send at least one
bit on the M-C link. In other word, the bits sent by S are at least
as useful as the bits sent by M which was intuitively expected.
Next, we will state a converse for the achievable codeword
length region.

Theorem 3: If E < 1 is fixed, then all pairs (L S, L M ) in the
achievable codeword length region would need to asymptoti-
cally satisfy either P1 or P2.5

P1. For some t = ω(1):{
L S � Hn(θ) + d

2 log
(
1 + n

dt

)
L M �

d
2 log t

, (6)

P2. For some t = O(1):{
L S � Hn(θ) + R(n,�) − d

2 log t

L M �
d
2 log t

. (7)

See Appendix B for the proof.
Theorem 3 provides a converse bound on what can be hoped

to achieve using wireless network compression via overhearing
helpers. In other words, it is hopeless to try to do better than the
bounds stated in the theorem. We will study the code design to

5See Footnote 4 for a summary of the asymptotic notations used in this paper.

achieve good codewords that perform close to the stated bounds
in Section V.

In the case where E = 1, i.e., no side information is available
to M , we can state a tighter converse.

Proposition 4: If E = 1, then for all L M

L S � Hn(θ) + R(n,�). (8)

Proof: In this case since there is no memory available,
everything falls back onto the traditional setup of universal
compression and the result is then straightforward. �

One thing to note here is that we conjecture that the converse
that is provided in Theorem 3 is not tight for E > 0.

Corollary 5: If (L S, L M ) is an achievable pair, then we have

L S � Hn(θ). (9)

This is readily deduced from Theorem 3. It is also intuitive as
there is no way to drive the average codeword length required
to encode a sequence below its entropy.

In this paper, we are interested in evaluating the communi-
cation cost. We assume that the total cost function is linear in
L S and L M , i.e., communicating each bit on the S-C and M-C
links have constant costs that do not vary with time. Extension
to the time-varying costs is left as an open future direction. Let
κ denote the ratio of the cost of communicating one bit in the
M-C link to that of the S-C link. As described in the intro-
duction, it is expected that κ < 1, i.e., offloading the gateway
by transmitting through the helper is beneficial, which is the
main motivation of this paper. This is because S serves sev-
eral femto-cells but a helper node only serves the clients within
a single femto-cell. Let L(κ) denote the total communication
cost (normalized to the communication cost in the S-C link) as
given by

L(κ) = L S + κL M . (10)

Remark: Thus far, we ignored the cost associated with the
client. It is evident that the client would need to receive both
sequences and hence an average codeword length of L S + L M ,
which is linear in L S and L M . Hence, the client-side cost can
also be incorporated in the overall total cost by modifying κ .

As a corollary to Theorem 3, we state the following result on
the total cost of communication.

Corollary 6: For all κ ≥ 0, we have

L(κ) � Hn(θ). (11)

Note that we have assumed that Xn and Y m are indepen-
dent given the parameter vector θ . If Y m and Xn were further
correlated given θ , then one would expect to push the cost fur-
ther down and asymptotically achieve a cost H(Xn|Y m) which
could be smaller than the entropy of the sequence Xn . See
[29] for further discussion on this point. This is where there is
opportunity for taking advantage of de-duplication based redun-
dancy elimination techniques to complement wireless network
compression by suppressing the big repeated chunks.

Proposition 7: If κ ≥ 1, then the communication cost L(κ)

is minimized by the pair (L S, L M ):{
L S � Hn(θ) + R(n,�)

L M � 0
. (12)
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Proof: For any pair (L ′
S, L ′

M ) with cost L1 = L ′
S + κL ′

M ,
according to Lemma 2, (L ′

S + L ′
M , 0) is also achievable. On

the other hand, the cost associated with the latter pair is L2 =
L ′

S + L ′
M ≤ L1 as κ ≥ 1. Now, observe that this falls back to

the problem of universal compression for which it is known
that the optimal codeword length satisfies the average minimax
redundancy in (2), which completes the proof. �

V. TWO-PART CODE DESIGN FOR MATCHED

MEMORY CASE (E = 0)

In this section, we present a code design based on the adap-
tation of the two-part coding (see [13], [30], [31] and the
references therein) for the matched memory case (i.e., E = 0).
In this case, ym is available to both the encoder and the decoder.
In other words, zm = ym . We defer the impact of the mis-
matched side information to Section VII. The adaptation of
two-part codes is natural for this problem since the compressed
codeword describing xn is consisted of two parts that can be
separately sent to the end-user, i.e., the client node C ; one
part from the source S and the other from the memory-enabled
helper M . See [13], [30], [31] for a detailed review of the
two-part coding scheme.

In this case both M and S share the memory ym after the
memorization phase. We use a two-part statistical compres-
sion method for coding. A model of the unknown parametric
source μθ is created at S and M using the (shared) side infor-
mation ym . In the compression of a new packet xn , the server
S would only send (to the client C) the output of the arithmetic
encoder which compresses xn using the model. To complement
the compressed sequence sent by S, the memory-enabled helper
M forwards (to the mobile client C) the corresponding source
model used by the arithmetic encoder. Hence, the mobile client
would be able to decode xn although the client did not have
access to the side information (i.e., the source model).

First, let us discuss what is transmitted on the M-C link.
The source model is equivalent to an estimate for the unknown
source parameter vector θ . Let the maximum likelihood (ML)
estimate of the unknown parameter vector from the side
information sequence be denoted by θ̂ (ym). The ML estimate
is formally defined as θ̂ (ym) = arg maxθ μθ (ym). Since the
ML estimate is a sufficient statistics for the source, we assume
that the helper simply encodes a truncated ML estimate of the
unknown parameter vector, denoted by �θ̂ (ym)
l̂(ym ) where

l̂(ym) denotes the number of bits used in the truncated estimate
and is a design parameter to be exploited. Hence, l2p

M (ym) =
l̂(ym). Note that the same truncated parameter vector
�θ̂ (ym)
l̂(ym ) is also available to the encoder. For simplicity of

notation, we often use �θ̂ (ym)
 to denote the truncated estimate
when it is clear from the context that it is a function of ym .

Then, on the S-C link, the gateway simply transmits the
best code associated with the truncated parameter vector to
the client. The length of such codeword (using an arithmetic
code) is

l2p
S (xn, ym) =

⌈
log

1

μ�θ̂ (ym )
(xn)

⌉
+ 1.

Note that there is an inherent tradeoff between the two parts of
the code. By increasing l2p

M (ym), the truncated ML estimate gets
closer to the true parameter θ , and hence, the description length
l2p
S (xn, ym) of the packet to be compressed becomes smaller.

Our goal is to derive the optimal operation point in the tradeoff
that minimizes the overall cost.

There are two main differences between the two-part cod-
ing scheme for wireless network compression and traditionally
used two-part codes. First, the existing two-part codes build
the truncated estimate from xn itself and not ym . Second, the
existing two-part codes equally weigh the two parts of the code
whereas in our case, the truncated estimate sent from M needs
to be weighed with a factor of κ which will affect the sweet spot
in the tradeoff between the two parts of the code. The optimiza-
tion of the traditional two-part codes is extensively studied in
the literature and performance of two-part codes has been char-
acterized (see [13], [22], [23], [30]). In short, one can design
two-part codes that are minimax optimal whose average length
is equal to the average minimax redundancy given in (2). On
the other hand, with a slight compromise in the performance,
one can design two-part codes that perform close to optimal but
are much simpler to implement. In this paper, we take the lat-
ter approach and optimize the code design to achieve the sweet
spot associated with the asymmetric cost.

A. Code Design

Let the total cost of delivering a sequence xn using side
information ym on links with cost ratio κ be denoted by
l2p(xn, ym, κ). We have

l2p(xn, ym, κ) = l2p
S (xn, ym) + κl2p

M (ym)

=
⌈

log
1

μ�θ̂ (ym )
(xn)

⌉
+ 1 + κ l̂(ym) (13)

where κ is the ratio of the cost of transmission on the M-C link
to that of the S-C link. Note that the total average cost (of the
two-part code) denoted by L2p(κ) in Section IV is then given
by L2p(κ) = E[l2p(Xn, Y m, κ)].

The key to constructing a two-part code achieving the mini-
mum communication cost is to discretize � to a countable set
of points 
 ⊂ � such that the maximum likelihood (ML) esti-
mator restricted to 
 achieves almost the same codelength as
the unrestricted ML estimator [30]. The summary of the con-
struction of two-part codes for wireless network compression
via helpers is presented in Table II.

Let L2p
S and L2p

M be the average codeword length on the S-
C and M-C links achieved by the described two-part coding
scheme, respectively. The following theorem determines the
communication cost in the case of network compression via
overhearing helper. We stress that our construction is for E = 0
where ym is available at both S and M .

Theorem 8: Given a memory of size m such that m = ω(1),
and for any 0 < λ < 1, we have{

L2p
S � Hn(θ) + d

2 log
(
1 + n

mλ

) + O(1)

L2p
M � d

2 log mλ + O(1)
.
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TABLE II
SUMMARY OF WIRELESS NETWORK COMPRESSION VIA TWO-PART

CODES FOR MATCHED MEMORY CASE (E = 0)

The proof is provided in Appendix C.
A close look at Theorem 8 reveals that for sufficiently large

m, we can actually achieve the converse bound derived in
Theorem 3 up to a constant term by using the described two-part
coding.

Proposition 9: If m = ω(1), then for any κ < 1, the follow-
ing is achievable:

L(κ) � Hn(θ) + d

2
κ log

(1 − κ)n

κ
+ O(1), (14)

and for κ = 1, then

L(1) � Hn(θ) + R(n,�) + O(1).

Proof: To prove the achievability of L(κ), we use
the achievability pairs (L S, L M ) using two-part codes in
Theorem 8 and optimize over λ. It turns out that the optimum
value is achieved by λ� = 1−κ

κ
n
m for which the cost is obtained

in (14). For κ = 1, it suffices to use the traditional two-part
codes on the S-C link and ignore the memory content at M . �

Corollary 10: If m = ω(1), we have

L(0) � Hn(θ) + O(1). (15)

Remark: Observe that when m is sufficiently large and E =
0, the number of bits transmitted by the wireless gateway (L S)
is close to the entropy of the sequence which is the information-
theoretic lower bound on the average number of bits needed
to be sent by S. Further, the aggregate expected communica-
tion cost (L = L S + κL M ) is close to the entropy, which is
the absolute lower bound on the cost. Hence, we observe that
when κ < 1 for sufficiently large m (asymmetric communica-
tion cost), very large memorized sequences can be employed
to form a maximum likelihood estimate that is communicated
on the M-C link while the total communication cost is still

dominated by the bits transmitted from the server to the client
on the S-C link, which is close to the entropy. Note that the
total number of communicated bits is strictly larger than that of
what would have been sent by the gateway if the helper was not
present but we have saved in the communication cost as the bits
sent from the helper are cheaper.

B. Complexity of Two-Part Codes

We briefly discuss the complexity of the proposed two-part
coding strategy. As described earlier, the first stage (i.e., form-
ing the information source model) involves determining the
best description of the information source using the memorized
sequence of length m. This stage has a complexity linear in size
of m and it only needs to be performed once to form the model
for the compression of all new packets. The second stage, which
is the actual compression of a new packet, involves entropy cod-
ing of a packet of size n which has linear complexity in the
packet size (i.e., n). With regard to the cost of communication,
in this paper we assumed that the cost of transmitting one bit
in the S-C channel is unity and that of the M-C channel is κ

times as costly (where κ < 1). In a practical setting, these costs
can be assigned through examination of power and bandwidth
constraints and our framework can be employed accordingly.

C. Example

To illustrate the trade-offs in Theorem 8, we consider a mem-
oryless source model with alphabet size 256, i.e., each symbol
of the source is 1 byte. For small packet lengths, a memoryless
source model suffices for modeling of the underlying source in
practice so as to avoid overfitting (see [17], [18]). For simplic-
ity, we uniformly discretize the parameter space although better
results would be achieved if the discretization points were opti-
mized [30]. The memorized sequence is used to choose the best
source parameter from the discretized space that minimizes the
description length. The discretization is done such that the sum
of L S and L M is minimized. The length n packet to be com-
pressed together with the estimated parameter is then fed to a
standard arithmetic coder [32].

Fig. 3 shows the ratio (L M/L S) achieved using the two-part
coding scheme with arithmetic encoding as a function of the
sequence length n for a shared memory of 4MB between the
encoder and the decoder (m = 4MB) for the memoryless source
with alphabet size 256. The ratio has been derived for the opti-
mal two-part coding scheme for encoding a sequence of length
n (without the asymmetric cost), i.e., the ratio is optimized for
κ = 1. Further, in Fig. 3, L M is the model cost and L S is the
cost of encoding the sequence using that model.

As an example, for a packet length of 1kB, the optimal size
of the parameter estimate L M is roughly the same size as the
compressed packet using the aforementioned arithmetic coder,
i.e., L M

L S
≈ 1. To quantify the improvement obtained using wire-

less network compression via memory-enabled helpers over the
traditional compression, we define

g = L(1)

L(κ)
,
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Fig. 3. Ratio of the output size of the helper L M to the source output size L S
vs. the packet size n for a memoryless source with an alphabet size 256.

TABLE III
SIMULATION PARAMETERS AND VALUES

where the numerator denotes the minimum codeword length
needed with an asymmetric cost to encode the sequence and the
denominator entails asymmetric encoding with cost κ . In light
of Proposition 9, the arithmetic encoding scheme achieves the
optimal cost up to an additive constant, i.e., L(1) = Hn(θ) +
R(n,�) + O(1). For packet sizes of length 1kB where L M

L S
≈

1, when κ < 0.1, we observe that g > 1.5, as the communica-
tion cost of M-C link is much smaller.

VI. SIMULATION

In this section, we simulate an example to evaluate the per-
formance of the proposed wireless network compression via
overhearing helpers using ns-2 simulator [33]. The details of
the example are provided in Table III. Note that this simula-
tion is just one example to demonstrate the potential benefits
of wireless network compression. In reality one should vali-
date the benefits using the specific design constraints of any
particular problem. We employed a flat grid topography with
a wireless base-station (S) at the origin. Further, multiple
memory-enabled helpers (M) are deployed within the coverage
of S. The helpers are uniformly distributed in the coverage of S,
which is assumed to be a circle of radius 250 m. The commu-
nication range of the helpers is 20 m and they are placed such
that they are outside of the communication range of each other.
All the mobile clients are within the communication range of S,
but only a subset is covered by helpers at any given time.

We simulate both Constant Bit Rate (CBR) traffic generator
over User Datagram Protocol (UDP) and File Transfer Protocol
(FTP) which is running over Transport Control Protocol (TCP).

Fig. 4. Maximum number of mobile nodes supported by S vs. the number of
helpers in the network. The packet drop rate threshold is fixed at 10% and the
traffic generator is CBR over UDP, as in Table III.

We considered the case where S shares a common memory
with each of the helpers and that memory is used for compres-
sion of packets sent to mobile nodes within the coverage of
the corresponding helper. Further, each mobile client (if cov-
ered by a helper) only communicates with a unique helper
node. Obviously, if a node is not in the range of any helper,
it receives its packets directly from S (via compression without
memory). For the baseline simulation scenario, we consider the
case where no helper is deployed and all the communication
is conducted by S. Hence, packets are compressed individually
without using any memory, i.e., end-to-end compression. For
FTP simulations, we consider files of size 20kbits for which a
memory packet of size 2kbits is sent from helper to the client.
The details of simulation parameters are given in Table III.

To examine the effectiveness of the memory-assisted com-
pression, with respect to the baseline scheme, we have consid-
ered three performance quantities and evaluated them for both
UDP and TCP scenarios. The first quantity is the maximum
number of nodes that can be supported for the traffic. To obtain
the maximum number of supported nodes in Fig. 4, we have
increased the number of mobile nodes in the environment until
the packet drop rate exceeds a 10% threshold. We observe that
using memory-assisted compression the maximum number of
supported nodes increases from 15 to almost 50, as shown in
Fig. 4. Since the bottleneck of the network is the output band-
width of S, we observe from Fig. 4 that adding helpers beyond
a certain number does not increase the maximum number of
client nodes supported.

In Fig. 5, we have depicted the maximum total through-
put/goodput versus the fraction of the nodes covered by helpers.
For both of the plots in Fig. 5, the number of nodes is chosen
similar to the setup for Fig. 4, that is, the nodes are added to the
network (while keeping the helper’s coverage constant) until
the packet drop rate reaches 10%. The total throughput for UDP
traffic and the goodput for TCP traffic is then measured as the
sum over all the clients in the network. As expected, as helpers
cover more mobile nodes in the network, higher total through-
put is achieved. Since the traffic generation for UDP and TCP
scenarios is different, we observe different amount of increase
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Fig. 5. Maximum total throughput/goodput in the network vs. the fraction of mobile nodes covered by helpers for UDP (left) and TCP (right).

Fig. 6. Fraction of satisfied users in the network vs. maximum allowed average delay of packets for UDP (left) and TCP (right) traffic for different helper coverage
percentages.

in the total throughput/goodput but the trend is increasing for
both scenarios as we increase the density of the helpers.

The third quantity of interest is the Quality of Service (QoS).
To demonstrate the benefit of memory-assisted compression on
QoS, we have considered a simulation scenario with fixed num-
ber of clients and measured the average delay of packets for
each client. The number of helper nodes is changed to obtain
the plots for different helper coverage ratios. The number of
clients per helper is fixed and we have added more helpers to
serve more number of clients. Fig. 6 depicts the fraction of sat-
isfied clients for a given maximum allowable average delay. As
we see, users experience less amount of delay as the fraction of
nodes covered by helpers increases.

VII. IMPACT OF PACKET LOSS

Wireless networks are prone to errors. Packets are lost due
to errors, the wireless channel, limited buffers and congestion.
The effect of the packet loss on redundancy elimination in wire-
less networks is first studied in [6], where the authors show
that high loss rate can be detrimental to the redundancy elim-
ination. However, the data gathered from gateways in North
American and European wireless service providers show that
the average loss rate in the downlink of UMTS providers is
around 3% which is well below the loss rate that causes harm to

redundancy elimination. We should also point that the average
loss rate on the uplink can be as high as 14%, which if not
corrected can render redundancy elimination effectively use-
less. In [6], authors introduced loss recovery schemes which
eliminate the adverse effect of loss on redundancy elimination
when the loss rate is high. In particular, the “informed mark-
ing” scheme, where each receiver signals the sender whenever
it cannot decode a packet due to a missing packet from its cache
memory. The receiver sends a control packet of the missing
packet and the sender blacklists the corresponding packet in its
own cache; in future encoding, any blacklisted packet will be
ignored.

Since the focus of this paper is the compression of the
downlink traffic and the average loss rate in the downlink is
minimal, the coding techniques discussed in previous sections
can be applied in real-world scenarios with little modifica-
tion if informed marking is employed to counter the loss. The
cost would be very little communication overhead between S
and M .

In high loss rate scenarios, more complicated compression
schemes should be developed where one might require the cod-
ing to perform under mismatched side information instead of
trying to make the memory matched [34]. In the following,
we provide a constructive approach which leads to a non-
trivial upper bound on the average minimax redundancy for
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m = ω(1). Instead of a joint encoding we choose to encode
each of the source parameters separately. Consider a sequence
ym ∈ Xm at S with m(a)

S being the number of times a ∈ X

appears in ym . Likewise, let m(a)
M be the number of times a

appears in zm ∈ Zm . Let θ̂S denote the maximum likelihood
(ML) estimate of θ at S and θ̂M be the ML estimate of θ at
M , such that θ̂ is a d-dimensional vector and θ̂ (a) denotes its
component that is associated with a ∈ X. We have

θ̂
(a)
S = m(a)

S

m
,

m(a)
S − r

m
≤ θ̂

(a)
M = m(a)

M

m
≤ m(a)

S

m
. (16)

A strictly lossless compression scheme requires both the
encoder and the decoder to use the same parameter estimate
for encoding each new symbol. To overcome the mismatch in
(16) between θ̂S and θ̂M , we consider the following scheme:
both the encoder and the decoder divide the interval (0, 1) in
which θ̂

(a)
S and θ̂

(a)
M live into bins of size E. Since θ̂M ≤ θ̂S and

|θ̂M − θ̂S| < E, then θ̂S and θ̂M are either in the same bin or in
two adjacent bins. This discrepancy can be resolved with one
extra bit sent by either S to M or vice versa.

Theorem 11: If m = ω(1), then if E = ω
(

1√
n

)
, the follow-

ing pair is achievable{
L2p

S � Hn(θ) + d
2 log 2n

πe + d log sin−1 E

L2p
M �

d
2 log m + O(1)

,

and if E = o
(

1√
n

)
, we have{

L2p
S � Hn(θ) + d

2 log
(
1 + n

mλ

) + O(1)

L2p
M � d

2 log mλ + O(1)
.

See Appendix D for the proof.
Also, let us consider the case where κ ≈ 0 to see what would

be the maximum achievable benefit from the helper.

Corollary 12: If m = ω(1), then if E = ω
(

1√
n

)
, we have

L(0) � Hn(θ) + d

2
log

2n

πe
+ d log sin−1 E,

and if E = o
(

1√
n

)
, we have

L(0) � Hn(θ) + O(1).

It is straightforward to verify that the bound provided by
Corollary 12 reduces to the trivial average minimax redundancy
bound stated in (2) when d = 1 and E → 1. Further, the bound
derived here is strictly larger than (2) for d > 1 and E → 1 due
to losing the benefits of vector quantization by encoding each
parameter separately [13]. On the other hand, the bound and
the achieved rate is still in the form of Hn(θ) + d

2 log n + O(1).
By comparing with Corollary 10, we conclude that when E =
o

(
1√
n

)
the scheme can work as good as if there was no packet

loss with possibly constant overhead. In other words, when
there is little packet loss, this scheme can automatically achieve
the optimal performance without the need to setup a mechanism
to match the memory between the source and helper nodes.

VIII. CONCLUSION

In this paper, we introduced wireless network compres-
sion via memory-enabled overhearing helpers, which is a new
framework for decreasing the output flow of the wireless gate-
way in a wireless network by eliminating redundancy from the
traffic. The key idea is to deploy a number of memory-enabled
helpers in the coverage area of the wireless gateway that are
capable of overhearing and memorizing previous communica-
tions on the down-link from the wireless gateway to mobile
nodes. These helpers then provide side-information to mobile
clients using which the wireless gateway may send fewer bits
to the client. We adapted two-part codes with the asymmetric
cost of communication from the wireless gateway to the client
(S-C) versus the memory-enabled helper to the client (M-C),
and arrived at optimal two-part codes for the problem. The
ns-2 simulation results show that wireless network compres-
sion holds a great promise for improving the data transmission
efficiency in wireless networks. We observe that network com-
pression increases the maximum throughput significantly while
reducing the average delay of packets (hence better QoS) for
both UDP and TCP traffic.
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APPENDIX A
PARAMETRIC SOURCE MODELS

In this section, we discuss the parametric source models
in more details. Consider a d-dimensional parameter space �

where the true source parameter θ is chosen from. Further,
let the parameter θ be chosen according to a prior density
w(θ) defined over �. Define R(n,�) as the average maximin
redundancy of the parametric source, i.e.,

R(n,�) = max
w(·)

min
l

∫
�

R(l, θ)w(θ)dθ. (17)

The average maximin redundancy is associated with the best
code under the worst prior on the set of all parameter vectors
(i.e., the capacity achieving Jeffreys’ prior). Let R(n,�) denote
the average minimax redundancy, which is defined as

R(n,�) = min
l

max
θ

R(l, θ). (18)

Gallager showed that the average minimax redundancy and
the average maximin redundancy (as defined above) are both
equal to the capacity of the channel defined between the source
parameters and the samples drawn from the source [35]. Let
I(θ) be the Fisher information matrix associated with the
parameter vector θ , i.e.,

I(θ) �
{

lim
n→∞

1

n log e
E

[
∂2

∂θi∂θ j
log

(
1

μθ(Xn)

)]}
. (19)
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Roughly speaking, Fisher information matrix quantifies the
amount of information, on average, that each symbol in a sam-
ple sequence xn from the source conveys about the source
parameter vector. Let Jeffreys’ prior on the parameter vector
θ be denoted by

p�(θ) � |I(θ)| 1
2∫

�
|I(λ)| 1

2 dλ
. (20)

Jeffreys’ prior is optimal in the sense that the average minimax
redundancy is asymptotically achieved (up to a constant) when
the parameter vector θ is assumed to follow Jeffreys’ prior [35]–
[37]. Jeffreys’ prior is particularly interesting because it is also
maximin optimal, which corresponds to the worst-case prior
for the best compression scheme (called the capacity achieving
prior) [35].

We need some regularity conditions to hold for the paramet-
ric model so that our results can be derived.

1) The parametric model is smooth, i.e., twice differentiable
with respect to θ in the interior of � so that the Fisher
information matrix can be defined. Further, the limit in
(19) exists.

2) The determinant of the Fisher information matrix is finite
for all θ in the interior of � and the normalization
constant in the denominator of (20) is finite.

3) The parametric model has a minimal d-dimensional rep-
resentation, i.e., I(θ) is full-rank. Hence, I−1(θ) exists.

4) We require that the central limit theorem holds for the
maximum likelihood estimator θ̂ (xn) of each θ in the
interior of � so that (θ̂(Xn) − θ)

√
n converges to a nor-

mal distribution with zero mean and covariance matrix
I−1(θ).

Denote by R(w, θ) the expected redundancy of a universal
compression scheme with the prior w(θ) on �0 ⊂ �. A result
related to (2) is the following [30], [36]:

R(w, θ) = d

2
log

( n

2πe

)
− log w(θ) + log |I(θ)| 1

2 + o(1),

(21)

where the convergence is uniform in θ ∈ �0. Accordingly,
Jeffreys’ prior on �0 as defined in (20) (i.e., p�0(θ),) is max-
imin optimal. Note that Jeffreys’ prior is also minimax optimal
because it makes the above risk expression constant [12].

Finally, another important relationship that we use in this
paper is the following result due to Gallager [35] which shows
that if μθ is a measurable function of θ , then

R(n,�) = sup
w(θ)

I (Xn; θ), (22)

where I (Xn; θ) is the mutual information between Xn and θ ,
and w(θ) is the prior distribution on θ .

The two-part coding with memory ym is comprised of three
steps. First, the ML estimate of θ is obtained from the memo-
rized sequence; this estimate is denoted by θ̂ (ym). In the second
step, to find a codeword describing the ML estimate the space
� is split into a set of regions R; the center point of each region
R ⊂ R, denoted by φR , is used to discretize �. Let


 =
⋃

R

{φR}

be the discretized space and denote the corresponding ML esti-
mate in 
 closest to θ̂ (ym) ∈ R by φ̂R(ym).6 Let wφR denote
the probability density corresponding to w(θ) in the discretized
space 
. We have

wφR =
∫

R
w(θ) dθ.

Finally, a sequence xn is compressed using a Shannon code
(which is the optimal code when the source parameter vector
is known) with parameter vector φ̂(ym). The description length
of xn using the Shannon code is given by − log Pφ̂(ym )(xn). The

description length of the parameter φ̂(ym) is − log wφ̂(ym ). We
note that the Shannon code is sent by S whilst the parameter
is transmitted from M which is less costly by a factor κ < 1.
Henceforth, the communication cost of transmitting xn from
source to client with memorized sequence ym available to the
memory-enabled helper can be written as

l(xn, ym) = log
1

Pφ̂(ym )(xn)
+ κ log

1

wφ̂(ym )

. (23)

By adding and subtracting a log (1/μθ (xn)) term (which is the
length of the Shannon code using the true source parameter)
and also a log (1/Pθ̂ (ym )(xn)) term (which is the length of the
Shannon code using the maximum likelihood parameter after
ym is observed) from (23) and then taking expectation, we
can write the expected communication cost as in (29) for the
purpose of the proof of Theorem 8.

APPENDIX B
PROOF OF THEOREM 3

The proof of Theorem 3 is divided into two parts that are
presented in the sequel.

Fort the first part, consider t = ω(1). Then, let L M �
d
2 log t

be the number of bits sent by M to C . Also notice that the ML
estimate θ̂ is a sufficient statistic for the source parameter vec-
tor in this case (see [18]), which converges in distribution to
a jointly Gaussian random vector with mean θ (See Appendix
A). Hence, we only need to encode θ̂ . On the other hand, also
observe that the rate distortion function of a random variable
gives us the minimum number of bits that are needed to encode
the random variable such that it could be recovered subject to a
given distortion level [19]. Since θ̂ is a Gaussian random vec-
tor, the rate distortion function is logarithmic in the number of
bits that is available to describe. Note that both the covariance
matrix of θ̂ and the redundancy (which induces the distortion
measure) scale with I(θ)−1. Therefore, we can think about
the best code as having sent a memory of td previous sym-
bols, where d appears because of the vector quantization gain.
According to Theorem 2 of [29], in this case d

2 log
(
1 + n

2t

)
is

the minimum number of bits that need to be communicated
to the client on top of entropy such that the codeword can be
uniquely decoded. Putting all these pieces together proves the
first part.

Considering the second part of the Theorem for d
2 log t =

O(1), we can invoke Lemma 2 to directly obtain the desired
result.

6The subscript R is dropped when it is clear from the context.
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APPENDIX C
PROOF OF THEOREM 8

Before we proceed with the proof, we need to state a lemma
that is going to be used in the proof of the theorem. The lemma
is a generalization of Theorem 2 of [29].

Lemma 13: If m = ω(1) and l̂(ym) = d
2 log mλ + O(1),

then

E

[
log

μθ(Xn)

μ�θ̂ (Y m )
(Xn)

]
� d

2
log

(
1 + n

mλ

)
+ O

(
1

m
3
2

)
.

Proof: Note that

E

[
log

μθ(Xn)

μ�θ̂ (Y m)
(Xn)

]
= E

[
log

μθ(Xn)

μθ̂(T mλ)(Xn)

]

+ E

[
log

μθ̂(T mλ)(Xn)

μ�θ̂ (Y m )
(Xn)

]
, (24)

where T mλ is a sequence of length mλ generated independently
from Xn by the same source μθ . The first term on the right hand
side is studied in Theorem 2 of [29] and is known to be

E

[
log

μθ(Xn)

μθ̂(T mλ)(Xn)

]
= d

2
log

(
1 + n

mλ

)
. (25)

We finish the proof of the lemma by showing that the sec-
ond term in (24) is o(1). This intuitively makes sense because
�θ̂ (Y m)
 contains about 1

2 log mλ accurate bits about each of
the unknown source parameters, which is similar to that of
θ̂ (T mλ). To pursue a formal proof, consider the Taylor’s expan-
sion of the term − log μθ(Xn) around the ML estimate obtained
from ym (which exists and converges to the true parameter
because of our assumptions on the parametric source model
discussed in Appendix A). We have

E
[− log μθ(Xn)

] = E
[
− log μθ̂(Y m)(Xn)

]
+ E

[(
∇ log

1

μθ(Xn)

)
(θ − θ̂ (Y m))

]

+ n

2
E

[
(θ − θ̂ (Y m))TI(θ̂)(θ − θ̂ (Y m))

]
+ O

(
1

m
3
2

)
,

where I(θ̂) is the expected Fisher information matrix evaluated
at θ̂ , defined as

Ii j (θ̂) = E

[
− ∂2

∂θi∂θ j
μθ(Xn)

]
θ=θ̂

. (26)

The second term in the Taylor’s expansion is zero as the ML
is the maximizer of the likelihood function. For probability
densities from the exponential family, the Fisher information
matrix is inversely proportional to the covariance matrix, i.e.,
Eθ

[
(θ − θ̂ (Y m))T(θ − θ̂ (Y m))

] = 1
m I−1. Now, the catch is to

realize that when we replace m with mλ, the error term becomes
1

mλ
I−1. On the other hand, when we truncate the estimate at

d
2 log mλ + O(1) bits, it means that we the estimate for each
parameter at 1

2 log mλ + O(1) bits. This can generate an extra
square error that is at most 1

mλ
I−1 and hence, the total square

error is upper bounded by
(

1
m + 1

mλ

)
I−1. Now, since m =

ω(1), the difference between the two uniformly converges to
zero completing the proof. �

Now, we are ready to present the proof of Theorem 8.

Proof of Theorem 8: Fix l̂(ym)= d
2 log mλ + O(1), which

is only a function of m and not the particular ym to be
compressed. Hence,

L2p
M = E[l̂(Y m)] = d

2
log mλ + O(1).

It suffices to show that the two-part coding scheme described in
this paper achieves the desired bound. We have

l2p
S (xn, ym) =

⌈
log

1

μ�θ̂ (ym )
(xn)

⌉
+ 1

≤ log
1

μ�θ̂ (ym )
(xn)
+ 2,

and hence

L2p
S = E[l2p

S (Xn, Y m)] (27)

≤ E

[
log

1

μ�θ̂ (Y m)
(Xn)

]
+ 2 (28)

= E

[
log

1

μθ(Xn)

]
+ E

[
log

μθ(Xn)

μ�θ̂ (Y m )
(Xn)

]
+ 2. (29)

The first term in (29) is by definition the entropy, i.e., Hn(θ).

The second term is bounded by Lemma 13, which results in the
desired result. �

APPENDIX D
PROOF OF THEOREM 11

Consider a case where we form bins for each of the source
parameters. Let �i = ((i − 1)E, iE) be the i-th bin. If E =
ω( 1

n ), then each bin will contain ω(1) estimate points for the
two-part coding, and hence, according to (21), the redundancy
of a compression scheme, with the side information that the
source parameter is chosen from �i , can be obtained as

R(n,�i ) = 1

2
log

( n

2πe

)
+ log

∫
�i

|I(θ)| 1
2 dθ + o(1),

where we have I−1(θ) = θ(1 − θ) for a binary memoryless
source parameter. On the other hand, it is evident that the redun-
dancy is maximized if the parameter vector lives in the endpoint
bins. Hence, ∫

�i

|I(θ)| 1
2 dθ ≤ 2

π
sin−1 E. (30)

Putting these together completes the proof of the first part.
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Now, considering the case where E = o( 1√
n
), then size of the

bin �i is also o( 1√
n
). Let θ� ∈ �i , then,

R(n,�i ) = E[log μθ(Xn) − log μθ�(Xn)]

= nD(μθ ||μθ�)

(i)= n

2
(θ − θ�)2I(θ) + o(1)

(i i)= o(1), (31)

where D(·||·) is the KL divergence between two probability
measures. In (31), equality (i) follows from the second order
approximation of the KL divergence term and (i i) follows from
the fact that (θ − θ�)2 < 1

n .
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