Georgialmatitutte offTechnology

ECE4270 Fundamentals of DSP Lecture 1 Introduction & Overview

School of Electrical and Computer Engineering Center for Signal and Image Processing Georgia Institute of Technology

Overview of Lecture 1

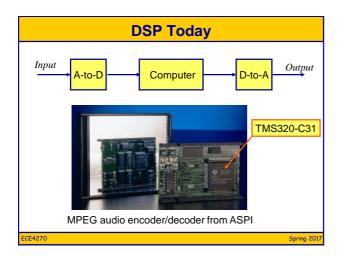
- What is DSP?
- · Discrete-time signals
 - Examples
- Discrete-time systems
 - Examples
 - Properties
- Testing for properties
- · Linear time-invariant systems (LTI)

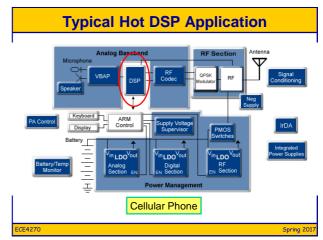
 What is DSP??

 Input
 A-to-D
 Computer
 D-to-A
 Output

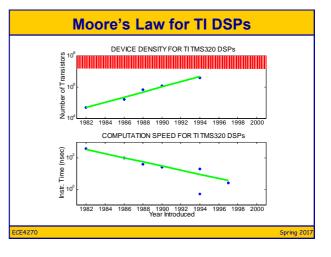
 "That discipline which has allowed us to replace a circuit previously composed of a capacitor and a resistor with two anti-aliasing filters, an A-to-D and a D-to-A converter, and a general purpose computer (or array processor) so long as the signal we are interested in does not vary too quickly."
 Thomas P. Barnwell, III Circa 1976

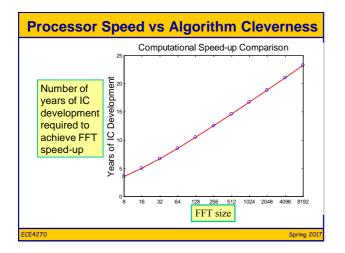
Spring

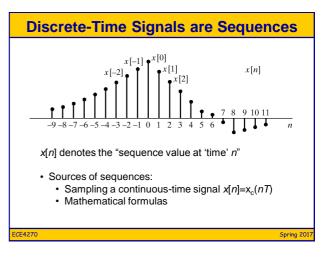


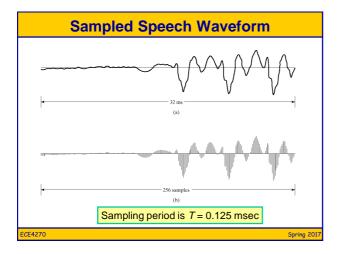


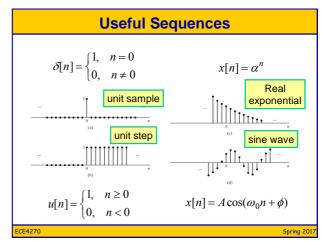
Advantages of Digital Representation	ions
Input A-to-D DSP Chip D-to-A Converter	Output →
Permanence and robustness of signal representations	
Advanced IC technology works well for digital systems	
Virtually infinite flexibility with digital systems * Multi-functionality	
* Multi-input/multi-output	
ECE4270	Spring 2017

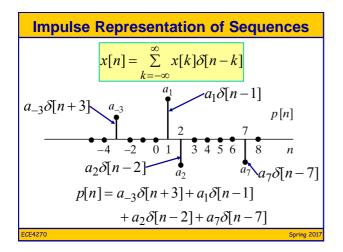


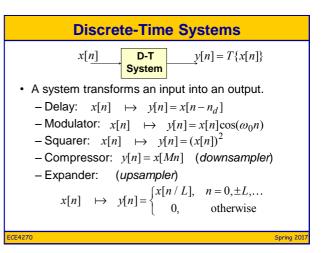












More Discrete-Time Systems
$x[\underline{n}] \qquad \textbf{D-T} \qquad \underline{y[n]} = T\{x[n]\}$ System
L-point moving average system:
$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$ = $\frac{1}{L} (x[n] + x[n-1] + \dots + x[n-L+1])$
Accumulator system: $y[n] = \sum_{k=-\infty}^{n} x[k]$
ECE4270 Spring 2017

Properties of D-T Systems
 A system is linear if and only if
$T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}$
 A system is time-invariant if and only if
$x_1[n] = x[n-n_d] \implies y_1[n] = y[n-n_d]$
 A system is causal if and only if
$y[n]$ depends only on $x[k]$ for $k \le n$
 A system is BIBO stable if every bounded input
produces a bounded output; i.e.,
when $ x[n] < B_x < \infty$ for all n,
then $ y[n] < B_y < \infty$ for all n
ECE4270 Spring 2017

Moving Averager: $y[n] = (1/L) \sum_{i=1}^{L-1} x[n-k]$
Linearity: ves
$\frac{1}{L}\sum_{k=0}^{L-1} (ax_1[n-k] + bx_2[n-k]) = a\left(\frac{1}{L}\sum_{k=0}^{L-1} x_1[n-k]\right) + b\left(\frac{1}{L}\sum_{k=0}^{L-1} x_2[n-k]\right)$
Time-invariance: _{yes}
$\frac{1}{L}\sum_{k=0}^{L-1} x[n-k-n_d] = \frac{1}{L}\sum_{k=0}^{L-1} x[(n-n_d)-k] = y[n-n_d]$
Causality: yes
$y[n] = \frac{1}{L}(x[n] + x[n-1] + \dots + x[n-L+1])$
Stability: $\begin{aligned} y \in \mathbf{S} \\ \ y[n]\ &= \left \frac{1}{L} \sum_{k=0}^{L-1} x[n-k] \right \le \frac{1}{L} \sum_{k=0}^{L-1} x[n-k] \le B_x \end{aligned}$
ECE4270 Spring 2017

