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Discrete-time systems (from Lecture #1)
— Properties
— Testing for properties
Linear time-invariant systems (LTI) (from Lecture #1)
— Convolution sum
Example of evaluation of discrete convolution
Stability of LTI systems
Causality of LTI systems
Cascade and parallel connections of LTI systems
Difference equations
Initial rest conditions and LTI
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Announcement

More Discrete-Time Systems

* Homework will be assigned weekly on Thursdays and
will be due the following Thursdays.

Link to the class web page:

x[n] D-T
System

Y] =Tix[n]}

* L-point moving average system:

LS =]
IR
L—o

v[n]

%(x[n]+x[n—l]+---+x[n—L+1])

 Accumulator system:

Minl= % x[k]

k=—o0
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http://fekri.ece.gatech.edu/course_ece4270.html

Properties of D-T Systems

» A system is linear if and only if
T{ax;[n]+bx,[n]} = aT {x[n]}+ bT {x,[n]}
+ A system is time-invariant if and only if
x[ml=xln—-ns] = y[n]=yln-n,]
« A system is causal if and only if
v[n] depends only on x[k] for k<n

+ A system is BIBO stable if every bounded input
produces a bounded output; i.e.,
when [x[n] < B, <o for all n,

then [y[n] < B, <o for all n

. L-1
Moving Averager: y(n)=(1/L)3 x[n ~ k]|
k=0
* Linearity: yes
1L-1 1L-1 1L-1
- (axl[n—k]+bx2[n—k])=a(f > xl[n—k]j +b(f > xz[n—k]j
Li=o Li-o Lo
+ Time-invariance: yes
1L-1 1 L-1
- X xn—k=ngl=— % x[(n—ng)—kl=yn-nyl
L =0 L=
* Causality: yes
y[n]:%(x[n]+x[n—1]+-~~+x[n—L+1])
* Stability: ygisL_l
bind=| X afn k]
k=0

1 L-1
<= Y x[n—-k]<B,
Li=o
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Down Sampler: y|n] = x[ Mn]

LTI Discrete-Time Systems

* Linearity yes
axi[Mn]+ bx,[Mn]= ay[n]+ by, [n]
* Time-invariance no
nln]=x[Mn] =x[Mn—n;]# y[n—n;]= x[M(n—ny)]
» Causality no
y[-1]= x[-M], but y[+1] = y[ M]
+ Stability yes
Wln]l=Ix[Mn] < B,

x[n] LTI yn]
an] System h[n]

* Linearity (superposition):
Tax [n]+bx; [n]} = aT {xi[n]}+ 6T {xa[n]}
+ Time-Invariance (shift-invariance):
xi[n]=x[n—-n,;] = nnl=yln—n,]

» LTI implies discrete convolution:

yin]= kﬁ x[k]hln — k] = x[n]* h[n] =h{n]* x[n]
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Impulse Representation of Sequences

LTI Discrete-Time Systems

x[n] = kao‘, x[k]o[n—k]

“ ao[n—1
a33ln+ 3N o 1ol

rln]

-4 2 01
aoln—2 )

“Ng,0[n—T]
pln]=a_30[n+3]+a;d[n—1]
+a,o[n—21+a;0ln—17]

x[n] LTI yIn]
System
o) M |
x[k)oln—k] x[k]h[n — k]

k=—0 k=—0

S x[KISTn k] S x[kJn—k]

convolution sum

y[n]= :ix[m]h[n —m]=x[n]*h[n] =h[n]*x[n]
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Discrete Convolution

“Flipping and Shifting”

» Two ways to look at it:
— As the representation of the output as a sum of
delayed and scaled impulse responses.

y[n]= %O: x[k)h[n—k]= x[0]A[n]+ x[1]h[n —1]+...

k=—o0
+x[-1]A[n+1]+...
— As a computational formula for computing y[n] (“y
at time n”) from the entire sequences x and h.

‘Form x[k]h[n—k] for —oo <k <oo for fixed n.
*Sum over all £ to produce y{n].
*Repeat for all 7.

A[k]
1 I [ l I 1+
6
] I '[ l [ 1
h[n—k]=h[-(k-n)]
v 1 ] ] { ‘ [ ] 1
n—-6 " n+3
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Discrete Convolution - |

Discrete Convolution - Il

 Definition

Vinl= Sxlklln—kl= Sh[KJx[n—k]

+ Example . . 0<n<s
[n]= 0, otherwise
n 5
yinl= Zx[k]= 2Zx[n—k]
k=n-5 k=0

yn]=x[n]+x[n—-1]+...+ x[n—15]

Case 1 o h[n-k]
x x x[k]
x
Xxxx =[n]=0 forn<0
X T X x .
[
n 0 k
n-(N-1) (a)
Ik
yinl = XYa
T k=0
Case 2 xT
1
Xxx ~ 1—a™*
N =
TTXXXX l1-a
L1 T ¥xx

n-(N-1)

n—(N-1)<0andn>=0 or 0<n<(N-1)
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Discrete Convolution - 1lI Stability of LTI Systems
Case 3 " + Stability: Every bounded input produces a bounded
. T I ‘[ I ‘ output.
x x x X 1} ) o) o0
[ [1itxxs pinl=| ¥ hlklx[n-k]< X |h[k])x[n—k]
n P 0 ( ) n k =—00 =—0
yn] = z vl ©
ke = (V=D>0 or n>(V-D) binl< X [AK]B,
a" +1 —an+l S
— i . <
l-a ‘ { ‘ { ’ Therefore, |y[n] <o if > k] <o
k=—o0
1] ‘ | s
0 k
N-1 + This condition can also be shown to be necessary as well
Case 1 Case 2 Case 3 as sufficient for BIBO stability.
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Causality of LTI Systems

Cascade Connection of LTI Systems

+ A system is causal if y[n] depends only on x[k] for o[n] h[n] h[n] = hy[n]* h[n]
k less than or equal to n. —>{ y[n] > hy[n] —>
x[n] yln]
vinl= 2 x[klh[n—k]= h[ln—-k]=0 for k>n
k=—0
h[n]l=nh *
o[n] o] hy [ng 1] [n] = hy[n]* h[n]
Bl = k] = h[-(k=m)] x[n] y[n]
. ] I [ { ‘ @ Since hy[n]* hy[n]= hy[n]* h[n], it follows that
- - —» Iy[n]=hy[n] f—
\Causality requires #[n]=0 for n<O0| x[n] y[n]
is equivalent to the cascade in either order.
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Parallel Combination of LTI Systems Examples

[n]

> hy[n]
Jln] h[n]=h[n]+hy[n]
—

*[n] Vil

»{ hi5[1]

y[n]

(a)
The following system is equivalent to the parallel combination.

— hy[n] + hy|n] p—a=
0] vl

(b)

* Delay: |y[n]=x[n—ng]

hn]=oln—ny]= x[n]*d[n—ny]=x[n—ny]

Mnl= 3 x[k]

* Accumulator:

k=—o0
Bl = n e 0 n<0_
[”]‘k:z_ﬂ]‘{l = o=l

* First difference: [y[n] = x[n]— x[n —1]

h[n] = o[n]=oln—1]
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Difference Equations

First-Order Example

» For all computationally realizable LTI systems, the input
and output satisfy a difference equation of the form

N M
Sapin—kl= Shxin—k]
k=0 k=0

« This leads to the recurrence formula

» Consider the difference equation
yin]=ay[n—1]+x[n]
* We can represent this system by the following
block diagram:

¥[n]
N (g M Y
y[n] = _Z[ik] y[n - k] +Z[7ij[n - k] amp[e
1\ k=o\ Qg lay
which can be used to compute the “present” output from y[n-1]
the present and M past values of the input and N past
values of the output
ECE4270 Spring 2017 ECE4270 Spring 2017

Recursive Computation of Output

General Solution

Let x[n] = Kd[n] and y[-1]=c.

» By induction, we see that if

Ml =aln—1]+x[n] y[n]=ay[n—1]+x[n]
with x[n] = Kd[n] and y[-1] =c.
then the solution is
! 0 ¢ y[n]= ca™ +Ka" for n>-1
0 K ac+K * If x[n]=Kd[n—n,], then the output will be
I 0 a(ac+K)=a’c+Ka yn]=ca" +Ka" " for n=—-1 'mg’t"_ens
2 0 a(dc +Ka)=a’c + Ka® * If  x[n]=4n], then the output will be
3 0 a(a3c+Ka2) =d*c+ Kd® y[n]= ca"+1 +4" for n>-1 ~— ngzyl)ilri]zzr
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LTI Recursive Implementation

Exponential Impulse Response

* We say that an input is suddenly applied at time n
if X[n]=0 for all n<ny.

+ If the input is suddenly applied and we assume that
y[n]=0 for all n<n, then the iterative computation
will be both linear and time-invariant. This
assumption provides the required set of auxiliary
conditions {y[ng-1], y[ng-21, , ..., yIng-N]} that is
required to get the recursion going. Zero auxiliary
conditions are called the initial rest conditions.

» For the first-order case of our example, the impulse

response of the LTI system is 7

+ With initial rest conditions, the difference equation
y[n]=ay[n—1]+x[n]

has impulse response

n] au[n]

]H (1114

n
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LTI Recursion of First-Order DE

« If we assume initial rest conditions, then the difference
equation y[n]=ay[n—1]+x[n]

n
hnl=a uln

has impulse response

« In other words, y[n] is also given by the convolution

Mnl= 3 xkd" Fuln-k]= 3

k=—0 k=—0

x[kla"*
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