ECE4270 Fundamentals of DSP Lecture 2 Discrete-Time Signals and Systems & Difference Equations School of ECE Center for Signal and Information Processing

Center for Signal and Information Processing Georgia Institute of Technology

Overview of Lecture 2

- Announcement
- Discrete-time systems (from Lecture #1)
 - Properties
 - Testing for properties
- Linear time-invariant systems (LTI) (from Lecture #1)
 Convolution sum
- · Example of evaluation of discrete convolution
- Stability of LTI systems
- · Causality of LTI systems
- Cascade and parallel connections of LTI systems
- Difference equations
- Initial rest conditions and LTI

Announcement

Homework will be assigned weekly on Thursdays and will be due the following Thursdays.

Link to the class web page:

CE4270

http://fekri.ece.gatech.edu/course_ece4270.html

More Discrete-Time Systems

$$x[n] \qquad D-T \qquad y[n] = T\{x[n]\}$$
• L-point moving average system:

$$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$$

$$= \frac{1}{L} (x[n] + x[n-1] + \dots + x[n-L+1])$$
• Accumulator system:

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

Down Sampler: $y[n] = x[Mn]$
• Linearity yes
$ax_1[Mn] + bx_2[Mn] = ay_1[n] + by_2[n]$
• Time-invariance no
$y_1[n] = x_1[Mn] = x[Mn - n_d] \neq y[n - n_d] = x[M(n - n_d)]$
• Causality _{no}
y[-1] = x[-M], but $y[+1] = y[M]$
• Stability yes
$ y[n] = x[Mn] \le B_x$
ECE4270 Spring 2017

LTI Discrete-Time Systems				
$\begin{array}{c c} x[n] & \text{LTI} & y[n] \\ \hline & \delta[n] & \text{System} & h[n] \end{array}$				
Linearity (superposition):				
$T\{ax_{1}[n]+bx_{2}[n]\}=aT\{x_{1}[n]\}+bT\{x_{2}[n]\}$				
Time-Invariance (shift-invariance):				
$x_1[n] = x[n - n_d] \implies y_1[n] = y[n - n_d]$				
 LTI implies discrete convolution: 				
$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n] = h[n] * x[n]$				
ECE4270 Spring 2017				

Examples
• Delay: $y[n] = x[n - n_d]$
$h[n] = \delta[n - n_d] \Longrightarrow x[n] * \delta[n - n_d] = x[n - n_d]$
• Accumulator: $y[n] = \sum_{k=-\infty}^{n} x[k]$
$h[n] = \sum_{k=-\infty}^{n} \delta[k] = \begin{cases} 0 & n < 0\\ 1 & n \ge 0 \end{cases} = u[n]$ • First difference: $y[n] = x[n] - x[n-1]$
$h[n] = \delta[n] - \delta[n-1]$
ECE4270 Spring 2017

Difference Equations

For all computationally realizable LTI systems, the input
 and output satisfy a difference equation of the form

$$\sum_{k=0}^{N} a_{k} y[n-k] = \sum_{k=0}^{M} b_{k} x[n-k]$$

• This leads to the recurrence formula

CE4270

$$y[n] = -\sum_{k=1}^{N} \left(\frac{a_k}{a_0}\right) y[n-k] + \sum_{k=0}^{M} \left(\frac{b_k}{a_0}\right) x[n-k]$$

which can be used to compute the "present" output from the present and M past values of the input and N past values of the output

Spring 201

First-Order Example • Consider the difference equation y[n] = ay[n-1] + x[n]• We can represent this system by the following block diagram: y[n] = y[n-1] + x[n]• We can represent this system by the following block diagram: y[n] = y[n-1] + x[n]

Recursive Computation of Output				
Let $x[n] = K\delta[n]$ and $y[-1] = c$.				
	<u>n</u>	x[n]	y[n] = ay[n-1] + x[n]	
	-1	0	С	
	0	K	ac+K	
	1	0	$a(ac+K) = a^2c + Ka$	
	2	0	$a(a^2c + Ka) = a^3c + Ka^2$	
	3	0	$a(a^3c + Ka^2) = a^4c + Ka^3$	
ECE4270			Spring 2017	

General Solution
 By induction, we see that if
y[n] = ay[n-1] + x[n]
with $x[n] = K\delta[n]$ and $y[-1] = c$.
then the solution is
$y[n] = ca^{n+1} + Ka^n \text{ for } n \ge -1$
• If $x[n] = K\delta[n - n_d]$, then the output will be
$y[n] = ca^{n+1} + Ka^{n-n_d}$ for $n \ge -1$ \longleftarrow Implies Not TI
• If $x[n] = \delta[n]$, then the output will be
$y[n] = ca^{n+1} + a^n$ for $n \ge -1$ \leftarrow Implies Not linear
ECE4270 Spring 2017

LTI Recursive Implementation

- We say that an input is suddenly applied at time n_d if x[n]=0 for all n<n_d.
- If the input is suddenly applied and we assume that y[n]=0 for all $n < n_d$, then the iterative computation will be both linear and time-invariant. This assumption provides the required set of auxiliary conditions { $y[n_d-1]$, $y[n_d-2]$, ..., $y[n_d-N]$ } that is required to get the recursion going. Zero auxiliary conditions are called the *initial rest conditions*.
- For the first-order case of our example, the impulse response of the LTI system is $h[n] = a^n u[n]$

ECE4270

Exponential Impulse Response

LTI Recursion of First-Order DE
• If we assume initial rest conditions, then the difference equation $y[n] = ay[n-1] + x[n]$
has impulse response $h[n] = a^n u[n]$
 In other words, y[n] is also given by the convolution
$y[n] = \sum_{k=-\infty}^{\infty} x[k]a^{n-k}u[n-k] = \sum_{k=-\infty}^{n} x[k]a^{n-k}$
ECE4270 Spring 2017