

Lecture 2
Discrete-Time Signals and Systems \&
Difference Equations

School of ECE
Center for Signal and Information Processing

Announcement

Homework will be assigned weekly on Thursdays and will be due the following Thursdays.

Link to the class web page:
http://fekri.ece.gatech.edu/course ece4270.htm|

Overview of Lecture 2

- Announcement
- Discrete-time systems (from Lecture \#1)
- Properties
- Testing for properties
- Linear time-invariant systems (LTI) (from Lecture \#1)
- Convolution sum
- Example of evaluation of discrete convolution
- Stability of LTI systems
- Causality of LTI systems
- Cascade and parallel connections of LTI systems
- Difference equations
- Initial rest conditions and LTI

ECE4270 Spring 2017

Announcement
Homework will be assigned weekly on Thursdays and
will be due the following Thursdays.
Link to the class web page:
http://fekri.ece.gatech.edu/course ece4270.html
ECE4270

More Discrete-Time Systems

$\left.x[n] \xrightarrow{\mathbf{D}-\mathbf{T}} \begin{array}{c}y \\ \text { System }\end{array} \longrightarrow n\right]=\mathrm{T}\{x[n]\}$

- L-point moving average system:

$$
\begin{aligned}
y[n] & =\frac{1}{L} \sum_{k=0}^{L-1} x[n-k] \\
& =\frac{1}{L}(x[n]+x[n-1]+\cdots+x[n-L+1])
\end{aligned}
$$

- Accumulator system:

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

Properties of D-T Systems

- A system is linear if and only if

$$
\mathrm{T}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a \mathrm{~T}\left\{x_{1}[n]\right\}+b \mathrm{~T}\left\{x_{2}[n]\right\}
$$

- A system is time-invariant if and only if

$$
x_{1}[n]=x\left[n-n_{d}\right] \Rightarrow y_{1}[n]=y\left[n-n_{d}\right]
$$

- A system is causal if and only if
$y[n]$ depends only on $x[k]$ for $k \leq n$
- A system is BIBO stable if every bounded input produces a bounded output; i.e.,
when $|x[n]|<B_{x}<\infty$ for all n,
then $|y[n]|<B_{y}<\infty$ for all n

Down Sampler: $\quad y[n]=x[M n]$

- Linearity yes

$$
a x_{1}[M n]+b x_{2}[M n]=a y_{1}[n]+b y_{2}[n]
$$

- Time-invariance no $y_{1}[n]=x_{1}[M n]=x\left[M n-n_{d}\right] \neq y\left[n-n_{d}\right]=x\left[M\left(n-n_{d}\right)\right]$
- Causality no

$$
y[-1]=x[-M], \text { but } y[+1]=y[M]
$$

- Stability

$$
|y[n]|=|x[M n]| \leq B_{x}
$$

Moving Averager: $y[n]=(1 / L) \sum_{k=0}^{L-1} x[n-k]$

- Linearity: yes
$\frac{1}{L} \sum_{k=0}^{L-1}\left(a x_{1}[n-k]+b x_{2}[n-k]\right)=a\left(\frac{1}{L} \sum_{k=0}^{L-1} x_{1}[n-k]\right)+b\left(\frac{1}{L} \sum_{k=0}^{L-1} x_{2}[n-k]\right)$
- Time-invariance: yes
$\frac{1}{L} \sum_{k=0}^{L-1} x\left[n-k-n_{d}\right]=\frac{1}{L} \sum_{k=0}^{L-1} x\left[\left(n-n_{d}\right)-k\right]=y\left[n-n_{d}\right]$
- Causality: yes

$$
y[n]=\frac{1}{L}(x[n]+x[n-1]+\cdots+x[n-L+1])
$$

- Stability: yes

$$
\begin{aligned}
& |y[n]|=\left|\frac{1}{L} \sum_{k=0}^{L-1} x[n-k]\right| \leq \frac{1}{L} \sum_{k=0}^{L-1}|x[n-k]| \leq B_{x} .
\end{aligned}
$$

ECE4270 Spring 2017

LTI Discrete-Time Systems

$x[n]$		
$\delta[n]$	LTI System	$y[n]$

- Linearity (superposition):

$$
\mathrm{T}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a \mathrm{~T}\left\{x_{1}[n]\right\}+b \mathrm{~T}\left\{x_{2}[n]\right\}
$$

- Time-Invariance (shift-invariance):

$$
x_{1}[n]=x\left[n-n_{d}\right] \Rightarrow y_{1}[n]=y\left[n-n_{d}\right]
$$

- LTI implies discrete convolution:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=x[n] * h[n]=h[n] * x[n]
$$

Discrete Convolution

- Two ways to look at it:
- As the representation of the output as a sum of delayed and scaled impulse responses.

$$
\begin{array}{r}
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=x[0] h[n]+x[1] h[n-1]+\ldots \\
+x[-1] h[n+1]+\ldots
\end{array}
$$

- As a computational formula for computing $y[n]$ (" y at time $n "$) from the entire sequences x and h.
-Form $x[k] h[n-k]$ for $-\infty<k<\infty$ for fixed n.
${ }^{\bullet}$ Sum over all k to produce $y[n]$.
- Repeat for all n.

LTI Discrete-Time Systems

Discrete Convolution - I

- Definition

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

- Example

$$
\begin{gathered}
\qquad x[n]= \begin{cases}1, & 0 \leq n \leq 5 \\
0, & \text { otherwise }\end{cases} \\
y[n]=\sum_{k=n-5}^{n} x[k]=\sum_{k=0}^{5} x[n-k] \\
y[n]=x[n]+x[n-1]+\ldots+x[n-5]
\end{gathered}
$$

Stability of LTI Systems

- Stability: Every bounded input produces a bounded output.
$|y[n]|=\left|\sum_{k=-\infty}^{\infty} h[k] x[n-k]\right| \leq \sum_{k=-\infty}^{\infty} \mid h[k] \| x[n-k]$
$|y[n]| \leq \sum_{k=-\infty}^{\infty}|h[k]| B_{x}$
Therefore, $|y[n]|<\infty$ if

$$
\sum_{k=-\infty}^{\infty}|h[k]|<\infty
$$

- This condition can also be shown to be necessary as well as sufficient for BIBO stability.

Causality of LTI Systems

- A system is causal if $y[n]$ depends only on $x[k]$ for k less than or equal to n.

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \Rightarrow h[n-k]=0 \text { for } k>n
$$

Causality requires $h[n]=0$ for $n<0$

Cascade Connection of LTI Systems

Since $h_{1}[n] * h_{2}[n]=h_{2}[n] * h_{1}[n]$, it follows that

is equivalent to the cascade in either order.
ECE4270 Spring 2017

Examples

- Delay: $y[n]=x\left[n-n_{d}\right]$
$h[n]=\delta\left[n-n_{d}\right] \Rightarrow x[n] * \delta\left[n-n_{d}\right]=x\left[n-n_{d}\right]$
- Accumulator: $y[n]=\sum_{k=-\infty}^{n} x[k]$

$$
h[n]=\sum_{k=-\infty}^{n} \delta[k]=\left\{\begin{array}{ll}
0 & n<0 \\
1 & n \geq 0
\end{array}=u[n]\right.
$$

- First difference: $y[n]=x[n]-x[n-1]$

$$
h[n]=\delta[n]-\delta[n-1]
$$

Difference Equations

- For all computationally realizable LTI systems, the input and output satisfy a difference equation of the form

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- This leads to the recurrence formula

$$
y[n]=-\sum_{k=1}^{N}\left(\frac{a_{k}}{a_{0}}\right) y[n-k]+\sum_{k=0}^{M}\left(\frac{b_{k}}{a_{0}}\right) x[n-k]
$$

which can be used to compute the "present" output from the present and M past values of the input and N past values of the output

First-Order Example

- Consider the difference equation

$$
y[n]=a y[n-1]+x[n]
$$

- We can represent this system by the following block diagram:

ECE4270
Spring 2017

Recursive Computation of Output
Let $x[n]=K \delta[n]$ and $y[-1]=c$.

n	$x[n]$	$y[n]=a y[n-1]+x[n]$
\ldots	\ldots	\ldots
-1	0	c
0	K	$a c+K$
1	0	$a(a c+K)=a^{2} c+K a$
2	0	$a\left(a^{2} c+K a\right)=a^{3} c+K a^{2}$
3	0	$a\left(a^{3} c+K a^{2}\right)=a^{4} c+K a^{3}$
\cdots	\cdots	\ldots

General Solution

- By induction, we see that if

$$
\begin{aligned}
y[n]= & a y[n-1]+x[n] \\
& \text { with } x[n]=K \delta[n] \text { and } y[-1]=c .
\end{aligned}
$$

then the solution is

$$
y[n]=c a^{n+1}+K a^{n} \text { for } n \geq-1
$$

- If $x[n]=K \delta\left[n-n_{d}\right]$, then the output will be

$$
y[n]=c a^{n+1}+K a^{n-n_{d}} \text { for } n \geq-1
$$

- If $x[n]=\delta[n], \quad$ then the output will be $y[n]=c a^{n+1}+a^{n}$ for $n \geq-1$
\qquad Not TI

LTI Recursive Implementation

- We say that an input is suddenly applied at time n_{d} if $\mathrm{x}[\mathrm{n}]=0$ for all $\mathrm{n}<\mathrm{n}_{\mathrm{d}}$.
- If the input is suddenly applied and we assume that $y[n]=0$ for all $n<n_{d}$, then the iterative computation will be both linear and time-invariant. This assumption provides the required set of auxiliary conditions $\left\{y\left[n_{d}-1\right], y\left[n_{d}-2\right], \ldots, y\left[n_{d}-N\right]\right\}$ that is required to get the recursion going. Zero auxiliary conditions are called the initial rest conditions.
- For the first-order case of our example, the impulse response of the LTI system is

$$
h[n]=a^{n} u[n]
$$

Exponential Impulse Response

- With initial rest conditions, the difference equation

$$
y[n]=a y[n-1]+x[n]
$$

has impulse response

LTI Recursion of First-Order DE

- If we assume initial rest conditions, then the difference equation $y[n]=a y[n-1]+x[n]$
has impulse response $\quad h[n]=a^{n} u[n]$
- In other words, $\mathrm{y}[\mathrm{n}]$ is also given by the convolution
$y[n]=\sum_{k=-\infty}^{\infty} x[k] a^{n-k} u[n-k]=\sum_{k=-\infty}^{n} x[k] a^{n-k}$

