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Overview of Lecture 2
• Announcement

• Discrete-time systems (from Lecture #1)

– Properties

– Testing for properties

• Linear time-invariant systems (LTI) (from Lecture #1)

– Convolution sum

• Example of evaluation of discrete convolution

• Stability of LTI systems

• Causality of LTI systems

• Cascade and parallel connections of LTI systems

• Difference equations

• Initial rest conditions and LTI
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Announcement

• Homework will be assigned weekly on Thursdays and 

will be due the following Thursdays.

Link to the class web page:

http://fekri.ece.gatech.edu/course_ece4270.html
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More Discrete-Time Systems

• L-point moving average system:

• Accumulator system:

D-T

System

x[n] y[n]   x[n] 

y[n] 
1

L
x[n  k]                                 

k0

L1




1

L
x[n] x[n 1]  x[n  L 1] 

y[n]  x[k]
k

n



http://fekri.ece.gatech.edu/course_ece4270.html
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Properties of D-T Systems
• A system is linear if and only if

• A system is time-invariant if and only if

• A system is causal if and only if

• A system is BIBO stable if every bounded input 

produces a bounded output; i.e.,

 ax1[n]bx2[n]  a x1[n]  b x2[n] 

x1[n]  x[n nd ]  y1[n]  y[n nd ]

y[n] depends only on x[k] for k  n

when x[n]  Bx   for all n,

then y[n]  By   for all n
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Moving Averager:

• Linearity:

• Time-invariance:

• Causality:

• Stability:

1

L
ax1[n  k] bx2[n  k] 

k0

L1

 a
1

L
x1[n  k]

k0

L1










 b

1

L
x2[n  k]

k0

L1












1

L
x[n  k  nd ]

k0

L1

 
1

L
x[(n  nd ) k]

k0

L1

  y[n  nd ]

y[n] 
1

L
x[n] x[n 1]  x[n  L 1] 

y[n] 
1

L
x[n  k]

k0

L1

 
1

L
x[n  k]

k0

L1

  Bx

y[n]  (1 / L) x[n  k]
k0

L1



yes

yes

yes

yes
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Down Sampler:

• Linearity

• Time-invariance

• Causality

• Stability

y[n]  x[Mn]

ax1[Mn] bx2[Mn] ay1[n] by2[n]

y1[n] x1[Mn]  x[Mn  nd ] y[n  nd ] x[M(n  nd )]

y[1] x[M],  but y[1]  y[M]

y[n]  x[Mn]  Bx

yes

no

yes

no
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LTI Discrete-Time Systems

• Linearity (superposition):

• Time-Invariance (shift-invariance):

• LTI implies discrete convolution:

 ax1[n]bx2[n]  a x1[n]  b x2[n] 

x1[n]  x[n nd ]  y1[n]  y[n nd ]

y[n]  x[k]h[n  k]  x[n]h[n] 
k



 h[n] x[n]

LTI

System

x[n] y[n]

[n] h[n]
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Impulse Representation of Sequences

x[n]  x[k][n  k]
k





p[n] a3[n  3] a1[n 1]

 a2[n  2] a7[n  7]

a3[n 3]
a1[n1]

a7[n 7]a2[n 2]
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LTI Discrete-Time Systems

LTI

System

x[n] y[n]

[n] h[n]

x[k][n k] x[k]h[n  k]

x[k][n  k]
k



 x[k]h[n  k]
k





y[n]  x[m]h[n m]  x[n]h[n] 
m



 h[n] x[n]

convolution sum

impulse 

response
“impulse”

 x[n]  y[n]
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Discrete Convolution

• Two ways to look at it:

– As the representation of the output as a sum of 
delayed and scaled impulse responses.

– As a computational formula for computing y[n] (“y
at time n”) from the entire sequences x and h.

•

•

•

y[n]  x[k]h[n  k]
k



  x[0]h[n] x[1]h[n 1]

                                               x[1]h[n 1]  

Form  x[k]h[n k]  for   k    for fixed n.

Sum over all k to produce y[n].

Repeat for all n.
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“Flipping and Shifting”

h[k]

k

k

k

h[0 k] h[k]

h[n k]  h[(k  n)]

n n 3

6

6

3

3

n 6
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Discrete Convolution - I

• Definition

• Example

y[n]  x[k]h[n  k]
k



  h[k]x[n  k]
k





h[n] 
1, 0  n  5

0, otherwise





y[n]  x[k]
kn5

n

  x[n  k]
k0

5



y[n]  x[n] x[n 1]  x[n 5]
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Discrete Convolution - II

 y[n] 0  for n  0

y[n]  ak

k0

n




1 an1

1 a

n (N 1)  0 and n  0  or  0  n  (N 1)

Case 1

Case 2
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Discrete Convolution - III

Case 3

n (N 1)  0   or  n  (N 1)
y[n]  a

k

kn(N1)

n




anN1  an1

1 a

Case 1 Case 2 Case 3
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Stability of LTI Systems

• Stability: Every bounded input produces a bounded 
output.

• This condition can also be shown to be necessary as well 
as sufficient for BIBO stability.

y[n]  h[k]x[n  k]
k



  h[k] x[n  k]
k





y[n]  h[k]Bx
k





Therefore,  y[n]    if h[k]
k



  
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Causality of LTI Systems

• A system is causal if y[n] depends only on x[k] for 

k less than or equal to n. 

y[n]  x[k]h[n  k]
k



  h[n  k]  0  for  k  n

Causality requires h[n] 0  for  n  0
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Cascade Connection of LTI Systems

[n] h1[n] h[n]  h1[n]h2[n]

[n] h2[n] h[n]  h2[n]h1[n]

Since  h1[n]h2[n] h2[n]h1[n],  it follows that

is equivalent to the cascade in either order.
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Parallel Combination of LTI Systems

[n]

h1[n]

h2[n]

h[n]  h1[n] h2[n]

The following system is equivalent to the parallel combination.
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Examples

• Delay:

• Accumulator:

• First difference:     

y[n]  x[n nd ]

h[n]  [n nd ] x[n][n  nd ] x[n  nd ]

y[n]  x[k]
k

n



h[n]  [k]
k

n

 
0 n  0

1 n  0





 u[n]

y[n]  x[n] x[n 1]

h[n]  [n][n 1]



ECE4270 Spring 2017

Difference Equations

• For all computationally realizable LTI systems, the input 

and output satisfy a difference equation of the form

• This leads to the recurrence formula

which can be used to compute the “present” output from 

the present and M past values of the input and N past 

values of the output

ak y[n  k]
k0

N

 bkx[n  k]
k0

M





























M

k

k
N

k

k knx
a

b
kny

a

a
ny

0 01 0

][][][
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First-Order Example

• Consider the difference equation

• We can represent this system by the following 

block diagram:

y[n]  ay[n1] x[n]

a
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Recursive Computation of Output

Let x[n]  K[n] and y[1]  c.

1

0

3

1

2

c0

0

0

0

ac  K

a(ac  K)  a
2
c  Ka

a(a
2
c  Ka)  a

3
c  Ka

2

a(a
3
c  Ka

2
)  a

4
c  Ka

3

n x[n] y[n]  ay[n1] x[n]

K
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General Solution

• By induction, we see that if 

then the solution is

• If                               then the output will be        

• If                         then the output will be 

y[n]  ay[n 1] x[n] 

           with x[n]  K[n] and y[1]  c.

y[n]  ca
n1

Ka
n
  for  n  1

x[n]  K[n nd ],

y[n]  ca
n1

Ka
nnd   for  n  1

y[n]  ca
n1

 a
n
  for  n  1

x[n]  [n],

Implies

Not TI

Implies

Not linear
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LTI Recursive Implementation

• We say that an input is suddenly applied at time nd

if x[n]=0 for all n<nd.

• If the input is suddenly applied and we assume that 

y[n]=0 for all n<nd, then the iterative computation 

will be both linear and time-invariant. This 

assumption provides the required set of auxiliary 

conditions {y[nd-1], y[nd-2], , …, y[nd-N]} that is 

required to get the recursion going. Zero auxiliary 

conditions are called the initial rest conditions.

• For the first-order case of our example, the impulse 

response of the LTI system is
h[n]  a

n
u[n]
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Exponential Impulse Response

• With initial rest conditions, the difference equation

has impulse response

y[n]  ay[n1] x[n]

h[n]  a
n
u[n]
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LTI Recursion of First-Order DE

• If we assume initial rest conditions, then the difference 
equation 

has impulse response

• In other words, y[n] is also given by the convolution 

y[n]  ay[n1] x[n] 

h[n]  a
n
u[n]

y[n]  x[k]a
nk
u[n  k]

k



  x[k]a
nk

k

n




