

Overview of Lecture 3

- Announcement
- Difference equations (from Last Lecture Slides)
- Initial rest conditions and LTI (from Last Lecture)
- IIR systems
- FIR systems
- Matlab and LTI systems
- Complex exponential inputs to LTI systems
- The frequency response
- Examples
- Delay, First difference, Moving average
- Plotting the frequency response

Announcement

- TA information:
- Yashas Saidutta
- Email: ysaidutta3@gatech.edu
- office hours:
- Thursday 9-10
- MW 4:30 PM-5:30 PM
- Location: VL C449. Fourth floor of Van Leer Building, Central corridor.

Difference Equations

- For all computationally realizable LTI systems, the input and output satisfy a difference equation of the form

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- This leads to the recurrence formula

$$
y[n]=-\sum_{k=1}^{N}\left(\frac{a_{k}}{a_{0}}\right) y[n-k]+\sum_{k=0}^{M}\left(\frac{b_{k}}{a_{0}}\right) x[n-k]
$$

which can be used to compute the "present" output from the present and M past values of the input and N past values of the output
ECE4270
Spring 2017

Recursive Computation of Output			
Let $x[n]=K \delta[n]$ and $y[-1]=c$			
$\cdots n$	$x[n]$	$y[n]=a y[n-1]+x[n]$	
\cdots	\cdots	\cdots	
-1	0	c	
0	K	$a c+K$	
1	0	$a(a c+K)=a^{2} c+K a$	
2	0	$a\left(a^{2} c+K a\right)=a^{3} c+K a^{2}$	
3	0	$a\left(a^{3} c+K a^{2}\right)=a^{4} c+K a^{3}$	
\cdots	\cdots	\ldots	

LTI Recursive Implementation

- We say that an input is suddenly applied at time n_{d} if $x[n]=0$ for all $n<n_{d}$.
- If the input is suddenly applied and we assume that $y[n]=0$ for all $n<n_{d}$, then the iterative computation will be both linear and time-invariant. This assumption provides the required set of auxiliary conditions $\left\{y\left[n_{d}-1\right], y\left[n_{d}-2\right], \ldots, y\left[n_{d}-\mathrm{N}\right]\right\}$ that is required to get the recursion going. Zero auxiliary conditions are called the initial rest conditions.
- For the first-order case of our example, the impulse response of the LTI system is

$$
h[n]=a^{n} u[n]
$$

General Solution

- By induction, we see that if

$$
\begin{aligned}
y[n]= & a y[n-1]+x[n] \\
& \text { with } x[n]=K \delta[n] \text { and } y[-1]=c .
\end{aligned}
$$

then the solution is

$$
y[n]=c a^{n+1}+K a^{n} \text { for } n \geq-1
$$

- If $x[n]=K \delta\left[n-n_{d}\right]$, then the output will be

$$
y[n]=c a^{n+1}+K a^{n-n_{d}} \text { for } n \geq-1 \longleftarrow \begin{array}{|c}
\begin{array}{l}
\text { Implies } \\
\text { Not TI }
\end{array}
\end{array}
$$

- If $x[n]=\delta[n]$, then the output will be

$$
y[n]=c a^{n+1}+a^{n} \text { for } n \geq-1 \longleftarrow \begin{gathered}
\text { Implies } \\
\text { Not linear }
\end{gathered}
$$

ECE4270
Spring 2017

Exponential Impulse Response

- With initial rest conditions, the difference equation

$$
y[n]=a y[n-1]+x[n]
$$

has impulse response

LTI Recursion of First-Order DE

- If we assume initial rest conditions, then the difference equation $y[n]=a y[n-1]+x[n]$
has impulse response $\quad h[n]=a^{n} u[n]$
- In other words, $\mathrm{y}[\mathrm{n}]$ is also given by the convolution

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] a^{n-k} u[n-k]=\sum_{k=-\infty}^{n} x[k] a^{n-k}
$$

FIR Systems

- If there are no feedback terms, then the difference equation becomes

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- This system is LTI and its impulse response is
$h[n]=\sum_{k=0}^{M} b_{k} \delta[n-k]= \begin{cases}b_{n}, & 0 \leq n \leq M \\ 0, & \text { otherwise }\end{cases}$

Finite duration Impulse Response (FIR)

IIR Systems

- Under conditions of initial rest, a system whose input and output satisfy a difference equation of the form

$$
y[n]=\underbrace{\sum_{k=1}^{N} a_{k} y[n-k]}_{\text {feedback }}+\underbrace{\sum_{k=0}^{M} b_{k} x[n-k]}_{\text {feedforward }}
$$

Note the redefinition of the coefficients.
is LTI and its impulse response is of the form

$$
h[n]=\sum_{k=1}^{N} A_{k} \alpha_{k}^{n} u[n]=\left\{\begin{array}{cc}
A_{k} \alpha_{k}^{n}, & n \geq 0 \\
0, & n<0
\end{array}\right.
$$

Infinite duration Impulse Response (IIR)
ECE4270 Spring 2017

Moving Average System
$y[n]=\frac{1}{M_{2}+1} \sum_{k=0}^{M_{2}} x[n-k]$
---:

Inverse Systems

- An inverse system compensates (undoes) the effects of another system.

$$
\Rightarrow h[n] * h_{i}[n]=\delta[n]
$$

- The accumulator and first-difference systems are inverses of each other.
$(\delta[n]-\delta[n-1]) * u[n]=u[n]-u[n-1]=\delta[n]$
- Understanding inverse systems is greatly facilitated by transform methods.

ECE4270
Spring 2017

MATLAB and LTI Systems

- The moving average system
$\gg h=o n e s(1, M+1) /(M+1)$;
$\gg y=\operatorname{conv}(x, h)$;
- The accumulator system:
$\gg b=1 ; a=[1,-1]$;
>> $y=$ filter (b, a, x);

Examples

- Delay: $y[n]=x\left[n-n_{d}\right]$
$h[n]=\delta\left[n-n_{d}\right] \Rightarrow x[n] * \delta\left[n-n_{d}\right]=x\left[n-n_{d}\right]$
- Moving Average: $y[n]=\frac{1}{M+1} \sum_{k=0}^{M} x[n-k]$

$$
h[n]=\frac{1}{M+1} \sum_{k=0}^{M} \delta[n-k]
$$

- First difference: $y[n]=x[n]-x[n-1]$

$$
h[n]=\delta[n]-\delta[n-1]
$$

The Frequency Response

$$
H\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}
$$

- Periodicity of the frequency response

$$
H\left(e^{j(\omega+2 \pi)}\right)=\sum_{k=-\infty}^{\infty} h[k] e^{-j(\omega+2 \pi) k}=\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k} e^{-} 2 \pi k
$$

- Existence of the frequency response

$$
\left|H\left(e^{j \omega}\right)\right|=\left|\sum_{k=-\infty}^{\infty} h[k] e^{-j \omega k}\right| \leq \sum_{k=-\infty}^{\infty}|h[k]| e^{-j} \omega k \mid
$$

$$
\begin{array}{|r|l|}
\hline\left|H\left(e^{j \omega}\right)\right| \leq \sum_{k=-\infty}^{\infty} \mid h[k]<\infty & \begin{array}{l}
\text { Same as condition } \\
\text { for stability! }
\end{array} \\
\hline
\end{array}
$$

- Delay: $y[n]=x\left[n-n_{d}\right] \quad h[n]=\delta\left[n-n_{d}\right]$

$$
\begin{gathered}
x[n]=e^{j \omega n} \mapsto y[n]=e^{j \omega\left(n-n_{d}\right)}=\underbrace{e^{-j \omega n_{d}}}_{H\left(e^{j \omega}\right)} e^{j \omega n} \\
H\left(e^{j \omega}\right)=e^{-j \omega n_{d}}
\end{gathered}
$$

- First difference:

$$
y[n]=x[n]-x[n-1] \quad h[n]=\delta[n]-\delta[n-1]
$$

$$
\begin{gathered}
x[n]=e^{j \omega n} \mapsto y[n]=e^{j \omega n}-e^{j \omega(n-1)}=\underbrace{\left(1-e^{-j \omega}\right)}_{H\left(e^{j \omega}\right)} e^{j \omega n} \\
H\left(e^{j \omega}\right)=1-e^{-j \omega}
\end{gathered}
$$

Moving Average
$y[n]=\frac{1}{M+1} \sum_{k=0}^{M} x[n-k]$
$x[n]=e^{j \omega n} \mapsto y[n]=\frac{1}{M+1} \sum_{k=0}^{M} e^{j \omega(n-k)}$
$=\underbrace{\frac{1}{M+1} \sum_{k=0}^{M} e^{-j \omega k} e^{j \omega n}}_{H\left(e^{j \omega}\right)}$
$H\left(e^{j \omega}\right)=\frac{1}{M+1} \sum_{k=0}^{M} e^{-j \omega k} \underbrace{}_{\text {Spring 2017 }}$

Moving Average Frequency Response

$$
\begin{gathered}
H\left(e^{j \omega}\right)=\frac{1}{M+1} \sum_{k=0}^{M} e^{-j \omega k}=\frac{1}{M+1} \frac{\left(1-e^{-j \omega(M+1)}\right)}{\left(1-e^{-j \omega}\right)} \\
H\left(e^{j \omega}\right)=\frac{1}{M+1} \frac{\left(e^{j \omega(M+1) / 2}-e^{-j \omega(M+1) / 2}\right) e^{-j \omega(M+1) / 2}}{\left(e^{j \omega / 2}-e^{-j \omega / 2}\right) e^{-j \omega / 2}} \\
H\left(e^{j \omega}\right)=\frac{1}{M+1} \frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}
\end{gathered}
$$

Plotting using MATLAB

»help freqz

FREQZ Z-transform digital filter frequency response.
When N is an integer, $[\mathrm{H}, \mathrm{W}]=\operatorname{FREQZ}(\mathrm{B}, \mathrm{A}, \mathrm{N})$ returns the N -point frequency vector W in radians and the N -point complex frequency response vector H given numerator and denominator coefficients in vectors B and A. The frequency response is evaluated at N points equally spaced around the upper half of the unit circle. If N isn't specified, it defaults to 512 .
\gg omega $=(0: 400)^{*} \mathrm{pi} / 400 ; \mathrm{b}=[1,1,1,1,1] / 5 ;$
>> H=freqz(b,1,omega);
>> subplot(211); plot(omega/pi,abs(H))
>> subplot(212); plot(omega/pi,angle(H))

Plotting the Frequency Response

Frequency Selective Filters

