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Overview of Lecture 3

• Announcement

• Difference equations (from Last Lecture Slides)

• Initial rest conditions and LTI (from Last Lecture)

• IIR systems

• FIR systems

• Matlab and LTI systems

• Complex exponential inputs to LTI systems

• The frequency response

• Examples

– Delay, First difference, Moving average

• Plotting the frequency response
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Announcement

• TA information:

– Yashas Saidutta

– Email: <ysaidutta3@gatech.edu>

– office hours:

• Thursday 9-10

• MW 4:30 PM-5:30 PM

• Location: VL C449. Fourth floor of Van Leer 

Building, Central corridor.
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Difference Equations

• For all computationally realizable LTI systems, the input 

and output satisfy a difference equation of the form

• This leads to the recurrence formula

which can be used to compute the “present” output from 

the present and M past values of the input and N past 

values of the output
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Recursive Computation of Output

Let x[n]  K[n] and y[1]  c.
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n x[n] y[n]  ay[n1] x[n]

K
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General Solution

• By induction, we see that if 

then the solution is

• If                               then the output will be        

• If                         then the output will be 

y[n]  ay[n 1] x[n] 

           with x[n]  K[n] and y[1]  c.

y[n]  ca
n1

Ka
n
  for  n  1

x[n]  K[n nd ],

y[n]  ca
n1

Ka
nnd   for  n  1

y[n]  ca
n1

 a
n
  for  n  1

x[n]  [n],

Implies

Not TI

Implies

Not linear
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LTI Recursive Implementation

• We say that an input is suddenly applied at time nd

if x[n]=0 for all n<nd.

• If the input is suddenly applied and we assume that 

y[n]=0 for all n<nd, then the iterative computation 

will be both linear and time-invariant. This 

assumption provides the required set of auxiliary 

conditions {y[nd-1], y[nd-2], , …, y[nd-N]} that is 

required to get the recursion going. Zero auxiliary 

conditions are called the initial rest conditions.

• For the first-order case of our example, the impulse 

response of the LTI system is
h[n]  a

n
u[n]
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Exponential Impulse Response

• With initial rest conditions, the difference equation

has impulse response

y[n]  ay[n1] x[n]

h[n]  a
n
u[n]
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LTI Recursion of First-Order DE

• If we assume initial rest conditions, then the difference 
equation 

has impulse response

• In other words, y[n] is also given by the convolution 

y[n]  ay[n1] x[n] 

h[n]  a
n
u[n]

y[n]  x[k]a
nk
u[n  k]

k



  x[k]a
nk

k

n


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IIR Systems

• Under conditions of initial rest, a system whose 

input and output satisfy a difference equation of 

the form

is LTI and its impulse response is of the form

y[n]  ak y[n  k]
k1

N



feedback

 bk x[n  k]
k0

M



feedforward

h[n]  Ak
k1

N

 k
n
u[n] 

Akk
n
, n  0

0, n  0





 Infinite duration Impulse Response (IIR)

Note the

redefinition

of the 

coefficients.
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FIR Systems

• If there are no feedback terms, then the 

difference equation becomes

• This system is LTI and its impulse response is

y[n]  bk x[n  k]
k0

M



h[n]  bk[n  k]
k0

M


bn, 0  n  M

0, otherwise





 Finite duration Impulse Response (FIR)
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Moving Average System

y[n] 
1

M2 1
x[n  k]

k0

M2



h[n] 
1

M2 1
[n  k]

k0

M2

 
1

M2 1

1 0  n  M2

0 otherwise  





       =
1

M2 1
(u[n] u[n M2 1])

       
1

M2 1
([n][n  M2 1])u[n]



4

ECE4270 Spring 2017

Moving Average System

h[n] 
1

M2 1









 ([n][n M2 1])u[n]
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Inverse Systems

• An inverse system compensates (undoes) the 
effects of another system.

• The accumulator and first-difference systems are 
inverses of each other.

• Understanding inverse systems is greatly 
facilitated by transform methods.

Inverse
System

x[n]

[n]

x[n]y[n]

[n]h[n]

[n][n1] u[n]  u[n]u[n1]  [n]

 h[n]hi[n] [n]

LTI
System
h[n] hi[n]
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MATLAB and LTI Systems

»help conv

CONV Convolution and polynomial multiplication.

Y = CONV(X, H) convolves vectors X and H.  The resulting

vector is length LENGTH(X)+LENGTH(H)-1.

If X and H are vectors of polynomial coefficients, convolving

them is equivalent to multiplying the two polynomials.

»help filter

FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the

filter described by vectors A and B to create the filtered

data Y.  The filter is a "Direct Form II Transposed"

implementation of the standard difference equation:
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MATLAB and LTI Systems

• The moving average system

>> h=ones(1,M+1)/(M+1);

>> y=conv(x,h);

• The accumulator system:

>> b=1; a=[1,-1];

>> y=filter(b,a,x);
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Complex Exponential Input Signals

LTI

System

x[n] y[n]

[n] h[n]

y[n]  x[k]h[n  k]
k



  h[k]x[n  k]
k





e
jn H(e

j
)e
jn

y[n]  h[k]e
j(nk)

k





H(e
j

)  h[k]e
 jk

k





Frequency response

 = H(e
j

)e
jn

 h[k]e
 jk

e
jn

k




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The Frequency Response

• Periodicity of the frequency response

• Existence of the frequency response

H(e
j

)  h[k]e
 jk

k





H(e
j(2 )

)  h[k]e
 j(2 )k

k



  h[k]e
 jk

e
 j2k

k





H(e
j

)  h[k]e
 jk

k



  h[k]e
 jk

k





H(e
j

)  h[k]
k



  

1

1

Same as condition

for stability!
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Examples

• Delay:

• Moving Average:

• First difference:     

y[n]  x[n nd ]

h[n]  [n nd ] x[n][n  nd ] x[n  nd ]

y[n] 
1

M 1
x[n  k]

k0

M



h[n] 
1

M 1
[n  k]

k0

M



y[n]  x[n] x[n 1]

h[n]  [n][n 1]
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Delay and First Difference

• Delay:

• First difference:     

y[n]  x[n nd ] h[n]  [n nd ]

y[n]  x[n] x[n 1] h[n]  [n][n 1]

x[n]  e
jn

y[n] e
j (nnd )

 e
 jnd

H(e j )

e
jn

H(e
j

)  e
 jnd

x[n]  e
jn

y[n] e
jn

 e
j (n1)

 (1 e
 j

)

H(e j )

e
jn

H(e
j

)  1 e
 j
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Moving Average

y[n] 
1

M 1
x[n  k]

k0

M




1

M 1
e
 jk

k0

M



H(e j )

e
jn

H(e
j

) 
1

M 1
e
 jk

k0

M



x[n]  e
jn

y[n]
1

M 1
e
j(nk)

k0

M


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Moving Average Frequency Response

H(e
j

) 
1

M 1
e
 jk

k0

M

 
1

M 1

(1 e j (M1) )

(1 e
 j

)

H(e
j

) 
1

M 1

(e j(M1)/2  e j (M1)/2 )e j(M1)/2

(e
j /2

 e
 j /2

)e
 j /2

H(e
j

) 
1

M 1

sin[(M 1) / 2]

sin( / 2)
e
 jM/2
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Plotting using MATLAB

>> omega=(0:400)*pi/400; b=[1,1,1,1,1]/5;

>> H=freqz(b,1,omega);

>> subplot(211); plot(omega/pi,abs(H))

>> subplot(212); plot(omega/pi,angle(H))

»help freqz

FREQZ Z-transform digital filter frequency response.

When N is an integer, [H,W] = FREQZ(B,A,N) returns the N-point 

frequency vector W in radians and the N-point complex frequency 

response vector H given numerator and denominator coefficients in 

vectors B and A. The frequency response is evaluated at N points 

equally spaced around the upper half of the unit circle. If N isn't 

specified, it defaults to 512.
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Plotting the Frequency Response

H(e
j

) 
1

5

sin[5 / 2]

sin( / 2)
e
 j2 M  4
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Ideal Lowpass Filter
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Frequency Selective Filters

Hbs(e
j

)p


