Georgial nationships to a second s

ECE4270 Fundamentals of DSP

CSIP

Lectures 6

Random Processes

School of ECE Center for Signal and Information Processing Georgia Institute of Technology

Overview of Lectures 6

- Fourier Transform Theorems (Lecture 5)
- The Fourier-domain convolution theorem (Lecture 5)
- Examples of usage of the DTFT (Lecture 5)
- Frequency Response of DE (Lecture 5)
- · Random process
 - Probability distributions
 - Averages: Mean, variance, correlation
- Stationary random processes
- Time averages and ergodic random processes

Spring 201

· The Bernoulli random process

TABLE 2.2 FOURIER TRANSFORM THEOREI	MS
Sequence $x[n]$ y[n]	Fourier Transform $X(e^{j\omega})$ $Y(e^{j\omega})$
1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$
3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$
4. $x[-n]$	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Parseval's theorem:	
$8. \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
$9.\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

Example 3

• Suppose that the difference equation is

$$y[n] = y[n-1] - .9y[n-2] + x[n] + x[n-1]$$

• The frequency response is

ECE4270

$$H(e^{j\omega}) = \frac{1 + e^{-j\omega}}{1 - e^{-j\omega} + .9e^{-j\omega^2}}$$

Spring 2017

ECE4270

This system is implemented in MATLAB by
 y=filter([1,1],[1,-1,.9],x)
 We can compute its frequency response by
 omega=(0:500)*pi/500;
 H=freqz ([1,1],[1,-1,.9],omega);

What is a random signal?

- Many signals vary in complicated patterns that cannot easily be described by simple equations.
 - It is often convenient and useful to consider such signals as being created by some sort of random mechanism.
 - Many such signals are considered to be "noise", although this is not always the case.

Spring 201

• The mathematical representation of "random signals" involves the concept of a *random process*.

Random Process

A random process is an indexed set of random variables {x_n}, each of which is characterized by a probability distribution (or density)

$$P_{\mathbf{x}_n}(x_n, n) = \operatorname{Prob}\left\{\mathbf{x}_n \le x_n\right\} = \int_{-\infty}^{x_n} p_{\mathbf{x}_n}(x, n) dx$$
$$p_{\mathbf{x}_n}(x_n, n) = \frac{\partial P_{\mathbf{x}_n}(x_n, n)}{\partial x_n} -\infty < n < \infty$$
and the collection of random variables is

characterized by a set of joint probability distributions such as (for all n and m),

$$P_{\mathbf{x}_n, \mathbf{x}_m}(x_n, n, x_m, m) = \operatorname{Prob}\left\{\mathbf{x}_n \le x_n \text{ and } \mathbf{x}_m \le x_m\right\}$$

Averages of Random Processes

· Mean (expected value) of a random process

$$m_{\mathbf{x}n} = E\{\mathbf{x}_n\} = \int_{-\infty}^{\infty} x p_{\mathbf{x}_n}(x, n) dx$$

· Expected value of a function of a random process

$$E\{g(\mathbf{x}_n)\} = \int_{-\infty}^{\infty} g(x) p_{\mathbf{x}_n}(x, n) dx$$

• In general such averages will depend upon *n*. However, for a *stationary random process*, all the first-order averages are the same; e.g.,

$$m_{\mathbf{x}_n} = m_x$$
 for all n

Spring 2017

ECE4270

More Averages

• Mean-squared (average power)

$$E \left\{ \mathbf{x}_{n} \mathbf{x}_{n}^{*} \right\} = E \left\{ \mathbf{x}_{n} \right\}^{2} = \int_{-\infty}^{\infty} x^{2} p_{\mathbf{x}_{n}}(x, n) dx$$
• Variance

$$\operatorname{var}[\mathbf{x}_{n}] = E \left\{ (\mathbf{x}_{n} - m_{\mathbf{x}_{n}})(\mathbf{x}_{n} - m_{\mathbf{x}_{n}})^{*} \right\} = \sigma_{\mathbf{x}_{n}}^{2}$$

$$\operatorname{var}[\mathbf{x}_{n}] = E \left\{ \mathbf{x}_{n} \mathbf{x}_{n}^{*} \right\} - \left| m_{\mathbf{x}_{n}} \right|^{2} = \sigma_{\mathbf{x}_{n}}^{2}$$

$$\operatorname{var}[\mathbf{x}_{n}] = (\operatorname{mean} - \operatorname{square}) - (\operatorname{mean})^{2} = \sigma_{\mathbf{x}_{n}}^{2}$$
ECE4270

Joint Averages of Two R.V.s

• Expected value of a function of two random processes.

$$E\{g(\mathbf{x}_n, \mathbf{y}_m)\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) p_{\mathbf{x}_n, \mathbf{y}_m}(x, n, y, m) dx dy$$

• Two random processes are uncorrelated if

$$E\{\mathbf{x}_n\mathbf{y}_m\} = E\{\mathbf{x}_n\}E\{\mathbf{y}_m\}$$

- Statistical independence implies $p_{\mathbf{x}_n,\mathbf{y}_m}(x,n,y,m) = p_{\mathbf{x}_n}(x,n)p_{\mathbf{y}_m}(y,m)$
- Independent random processes are also uncorrelated.

Spring 20

Correlation Functions

Autocorrelation function

$$\phi_{xx}[n,m] = E\left\{\mathbf{x}_n \mathbf{x}_m^*\right\}$$

$$\mathcal{V}_{xx}[n,m] = E\left\{\left(\mathbf{x}_n - m_{\mathbf{x}_n}\right)\left(\mathbf{x}_m - m_{\mathbf{x}_m}\right)^*\right\}$$

)

Spring 20

$$\phi_{xy}[n,m] = E \left\{ \mathbf{x}_{n} \mathbf{y}_{m} \right\}$$
• Crosscovariance function

$$\gamma_{xy}[n,m] = E\left\{ (\mathbf{x}_n - m_{\mathbf{x}_n})(\mathbf{y}_m - m_{\mathbf{y}_m})^* \right\}$$

Stationary Random Processes • The probability distributions do not change with time. $p_{\mathbf{x}_{n+k}}(x_n, n) = p_{\mathbf{x}_n}(x_n, n)$ $p_{\mathbf{x}_{n+k}, \mathbf{x}_{m+k}}(x_n, n, x_m, m) = p_{\mathbf{x}_n, \mathbf{x}_m}(x_n, n, x_m, m)$ • Thus, mean and variance are constant $m_x = E\{\mathbf{x}_n\}$ $\sigma_x^2 = E\{(\mathbf{x}_n - m_x)(\mathbf{x}_n - m_x)^*\}$ • And the autocorrelation is a one-dimensional function of the time difference. $\phi_{xx}[n+m,n] = \phi_{xx}[m] = E\{\mathbf{x}_{n+m}\mathbf{x}_n^*\}$

Time Averages

• Time-averages of a random process are random variables themselves.

$$\langle \mathbf{x}_n \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{n=-L}^{L} \mathbf{x}_n$$
$$\mathbf{x}_{n+m} \mathbf{x}_n^* \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{n=-L}^{L} \mathbf{x}_{n+m} \mathbf{x}_n^*$$

· Time averages of a single sample function

$$\langle x[n] \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{\substack{n=-L \\ n=-L}}^{L} x[n]$$
$$\langle x[n+m]x^*[n] \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{\substack{n=-L \\ n=-L}}^{L} x[n+m]x^*[n]$$

Ergodic Random Processes

· Time-averages are equal to probability averages

$$\langle \mathbf{x}_n \rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{n=-L}^{L} \mathbf{x}_n = E\{\mathbf{x}_n\} = m_x$$
$$\left\langle \mathbf{x}_{n+m} \mathbf{x}_n^* \right\rangle = \lim_{L \to \infty} \frac{1}{2L+1} \sum_{n=-L}^{L} \mathbf{x}_{n+m} \mathbf{x}_n^*$$
$$= E\{\mathbf{x}_{n+m} \mathbf{x}_n^*\} = \phi_{xx}[m]$$

· Estimates from a single sample function

$$\hat{m}_{x} = \frac{1}{L} \sum_{n=0}^{L-1} x[n] \qquad \hat{\phi}_{xx}[m] = \frac{1}{L} \sum_{n=0}^{L-1} x[n+m] x^{*}[n]$$
ECE4270 Spring 2017

Histogram

 A histogram shows counts of samples that fall in certain "bins". If the boundaries of the bins are close together and we use a sample function with many samples, the histogram provides a good estimate of the probability density function of an (assumed) stationary random process.

Bernoulli Process (cont.)

• Mean: $m_x = \int_{-\infty}^{\infty} x [0.5\delta(x+1) + 0.5\delta(x-1)] dx$
$\infty^{-\infty}$ ∞
$m_x = \int 0.5x\delta(x+1)dx + \int 0.5x\delta(x-1)dx$
$m_x = -0.5 + 0.5 = 0$
Variance:
$\sigma_x^2 = \int_{-\infty}^{\infty} (x - m_x)^2 [0.5\delta(x + 1) + 0.5\delta(x - 1)] dx$
$\sigma_x^2 = 0.5 + 0.5 = 1$

• Autocorrelation: $(\{\mathbf{x}_n\} \text{ are assumed independent})$ $\phi_{xx}[m] = \sigma_x^2 \delta[m] = \delta[m]$

Spring 201

ECE4270

MATLAB Bernoulli Simulation
 MATLAB's rand() function is useful for such simulations. > d = rand(1,N); %uniform dist. Between 0 & 1 > k = find(x>.5); %find +1s > x = -ones(1,N); %make vector of all -1s > x(k) = ones(1,length(k)); %insert +1s > subplot(211); han=stem(0:Nplt-1,x(1:Nplt)); > set(han,'markersize',3); > subplot(212); hist(x,Nbins); hold on > stem([-1,1],N*[.5,.5],'r*'); %add theoretical values
ECE4270 Spring 2017

