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Overview of Lectures 6

• Fourier Transform Theorems (Lecture 5)

• The Fourier-domain convolution theorem (Lecture 5)

• Examples of usage of the DTFT (Lecture 5)

• Frequency Response of DE (Lecture 5)

• Random process

– Probability distributions

– Averages: Mean, variance, correlation

• Stationary random processes

• Time averages and ergodic random processes

• The Bernoulli random process
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DTFT of Sinusoids

• Recall that

• Also note that
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Convolution Theorem

y[n]  x[k]h[n  k] Y(e
j

)
k



  X(e
j

)H(e
j

)

LTI

System

x[n] y[n]

[n] h[n]

e
jn H(e

j
)e

jn

X(e
j

)H(e
j

)X(e
j

)

ECE4270 Spring 2017

Example 1

• Find the output when the input is
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Example 2

• Find the output when the input is

hlp[n]
sincn

n
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Frequency Response of a DE
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Example 3

• Suppose that the difference equation is

• The frequency response is

• This system is implemented in MATLAB by

>> y=filter([1,1],[1,-1,.9],x)

We can compute its frequency response by

>> omega=(0:500)*pi/500;

>> H=freqz ([1,1],[1,-1,.9],omega);
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What is a random signal?

• Many signals vary in complicated patterns that 

cannot easily be described by simple equations.

– It is often convenient and useful to consider 

such signals as being created by some sort of 

random mechanism.

– Many such signals are considered to be 

“noise”, although this is not always the case.

• The mathematical representation of “random 

signals” involves the concept of a random 

process.
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Random Process

• A random process is an indexed set of random 

variables          each of which is characterized by 

a probability distribution (or density)

and the collection of random variables is 

characterized by a set of joint probability 

distributions such as (for all n and m),
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Ensemble of Sample Functions

• We imagine that there are an infinite set of possible 

sequences where the value at n is governed by a 

probability law.  We call this set an ensemble.
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Uniform Distribution
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Bernoulli Distribution
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Averages of Random Processes

• Mean (expected value) of a random process

• Expected value of a function of a random process

• In general such averages will depend upon n.  

However, for a stationary random process, all the 

first-order averages are the same; e.g., 
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More Averages

• Mean-squared (average power)

• Variance
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Joint Averages of Two R.V.s

• Expected value of a function of two random processes.

• Two random processes are uncorrelated if

• Statistical independence  implies

• Independent random processes are also uncorrelated.
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Correlation Functions

• Autocorrelation function

• Autocovariance function

• Crosscorrelation function

• Crosscovariance function
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Stationary Random Processes

• The probability distributions do not change with 

time.

• Thus, mean and variance are constant

• And the autocorrelation is a one-dimensional 

function of the time difference.
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Time Averages

• Time-averages of a random process are random 
variables themselves.

• Time averages of a single sample function
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Ergodic Random Processes

• Time-averages are equal to probability averages

• Estimates from a single sample function
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Histogram

• A histogram shows counts of samples that fall in 

certain “bins”.  If the boundaries of the bins are 

close together and we use a sample function with 

many samples, the histogram provides a good 

estimate of the probability density function of an 

(assumed) stationary random process.

n
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Bernoulli Distribution

 1 

1 1 x

11

1



x

Pxn
(x,n)  u(x 1) (1 )u(x 1)

pxn
(x,n) 

Pxn
(x,n)

x
  (x 1)  (1 ) (x 1)

ECE4270 Spring 2017

Bernoulli Random Process

• Suppose that the signal takes on only two 

different values +1 or -1 with equal probability.  

Furthermore, assume that the outcome at time n 

is independent of all other outcomes.
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Bernoulli Process (cont.)

• Mean:

• Variance:

• Autocorrelation: (        are assumed independent)
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MATLAB Bernoulli Simulation

• MATLAB’s rand( ) function is useful for such simulations.

>> d = rand(1,N); %uniform dist. Between 0 & 1

>> k = find(x>.5); %find +1s

>> x = -ones(1,N); %make vector of all -1s

>> x(k) = ones(1,length(k)); %insert +1s

>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));

>> set(han,’markersize’,3);

>> subplot(212);  hist(x,Nbins); hold on

>> stem([-1,1],N*[.5,.5],'r*'); %add theoretical values
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Bernoulli Random Process


