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Overview of Lectures 6

» Fourier Transform Theorems (Lecture 5)
* The Fourier-domain convolution theorem (Lecture 5)
« Examples of usage of the DTFT (Lecture 5)
* Frequency Response of DE (Lecture 5)
* Random process
— Probability distributions
— Averages: Mean, variance, correlation
« Stationary random processes
« Time averages and ergodic random processes
* The Bernoulli random process
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TABLE2.2  FOURIER TRANSFORM THEOREMS

Sequence
x[n]
vnl

Fourier Transform
X(ely
Y(el®)

DTFT of Sinusoids

ax[n] + by[n)]
x[n = ng]l (ng an integer)
el

x[-n]

R N

w

. nx[n]

o

. x[n] = y[n]

-

- x[alyln]

Parseval's theorem:

x 7
a1 2
0 L oy 2,
8. E |x[u]l? = 2‘1/ | X(e/) 2des
M= a

9, Z ] = — f XY e ) e

2r
ECE427(__ " >

aX(el)+ bY(el™)
e x (el
X(ell@-wa))y

X(e-ie)
X=(ef) if x[n] real.

dX(el®)
dw
X(el”)Y(el)
e
— X(e!"yy (e )do
"

2

* Recall that

dn]=1o X(e®)= 3 278(w+277)

r=—00

« Also note that

x[n]ejwon = X(ej(wfw(’))
* Therefore

I o Y 278(w - wy + 277)

r==00

coswgn < Y, no(@+ @y +27mr) + wo(w — wy +27r)
7 =—00
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Convolution Theorem

Example 1

Mnl= 3 xklh[n—k] < Y(e/”) = X(e/®)H(e!)
k=—o0

xnl LTI yn'

oln] System h[n]

Hlp(ejw)

sinw,.n - 1

Lt

—ar —w, W0y D ©,. T [0}

* Find the output when the input is

hlp [n] =

elon H(e]a) )e’wn x[n] =coswgn <
jo Jjo j@ . ®
X(e™) X(e"")H(e™™) X(@?)= S 78(+wy +27°) + 75(0 — w0y +277)
7=—00
y[n]=coswpn if oy <o,
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Example 2 Frequency Response of a DE
Hig(e) N M
sinw.n - . kgoaky[n —k] =k§0bkx[n — k]

hlp [n]=

‘iil |‘

+ Find the output when the input is

x[n] = sin(wgn)
27n
y[n]=smz(#a£m)) if@»(cé@\;%

N . . M . .
S @ Y(e?)e I =3 b X/ )e IO
k=0 k=0
M
[ S aze J“’kj Y(e/?)= (z bre f“”‘))((ef‘")
k=0

£
e
( w Y(ejw k=0
X(ejw ( g ae ]a)k)
k=0
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Example 3

What is a random signal?

+ Suppose that the difference equation is
y[n]=yn—-1]-.9)[n-2]+x[n]+x[n—-1]
» The frequency response is
I+e/?
1—e/® 1 .9¢7/¥2
* This system is implemented in MATLAB by
>> y=filter([1,1],[1,-1,.9],X)
We can compute its frequency response by

>> omega=(0:500)*pi/500;
>> H=freqz ([1,1],[1,-1,.9],0mega);

H(/®) =

« Many signals vary in complicated patterns that
cannot easily be described by simple equations.

— It is often convenient and useful to consider
such signals as being created by some sort of
random mechanism.

— Many such signals are considered to be
“noise”, although this is not always the case.

» The mathematical representation of “random
signals” involves the concept of a random
process.
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Random Process

Ensemble of Sample Functions

» Arandom process is an indexed set of random
variables {x, }, each of which is characterized by
a probability distribution (or density)

xn
Py (xy,m)= Prob{x, <x,}= | Py, (x,n)dx
aIDX (xn,l’l) s
pxn(xnan)z . —0o<n<ao
X
and the collection of raffdom variables is

characterized by a set of joint probability
distributions such as (for all n and m),

B, x,, (Xns1,Xp,m) = Prob{xn <x,andx,, < xm}

* We imagine that there are an infinite set of possible
sequences where the value at n is governed by a
probability law. We call this set an ensemble.

SampleI 1'11 I !

function l 1 n

ELE 11 |
] | n

l
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Uniform Distribution

Bernoulli Distribution

B, (x,,n)= Prob{x, <x,}

K, (x,,n)= Prob{x, <x,}

1+ Ii

\[ \ i
' } _ : X
X X, 1 1 n
OP, (x,,n)
OFy, (x,,1) Py (x,m) = —2nm
Px, (Xp,n) = —"—— " 0x,,
1 ox,,
- 1-
A f ]ﬂ
A X i ' | %
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Averages of Random Processes

More Averages

* Mean (expected value) (()x]; a random process
my, = E{x,}= | xpy, (x.n)dx
—00
» Expected value of a function of a random process
0
Elg(x,)}= | g)py, (x,m)dx
—a0

* In general such averages will depend upon n.
However, for a stationary random process, all the

* Mean-squared (average power)

E%‘nxz }: E{Xn‘z }: OJ? xszn (xx,m)dx
» Variance -~

var[x,] = E{xn —my )X, —my ) }: 0',2",

var X ]=E<§( x*}‘m ‘2=02
n n-n X, X,

first-order averages are the same; e.g., var[ X, ] = (mean — square) — (mean )2 = 52
n Xn
my =m, for alln
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Joint Averages of Two R.V.s

Correlation Functions

+ Expected value of a function of two random processes.

E{g(xnﬂym)}: .[ .[g(xay)pxn,ym(xanayam)dxdy

—00 —00
+ Two random processes are uncorrelated if

E{X,Yp = E{x, JE{y, }
. Statisticalindependence implies

(x,n,3,m)= py (x,m)py, (yom)

Autocorrelation function
*
P [n,m] = E%&nxm }
» Autocovariance function
*
yxx[nsm] = E{Xn - mx,, )(Xm - mxm ) J
« Crosscorrelation function

bolnml= E{&,y, |

XpsYm » Crosscovariance function
)
» Independent random processes are also uncorrelated. 7/Xy[n’m] - E{(X'l - an )(ym - mYm) J
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Stationary Random Processes

Time Averages

» The probability distributions do not change with
time.
Px (x,,m) = Px, ()Cn,l’l)
Px i p Xk (X511, X, 1) = Px,.x,, (X1, X, 11)

* Thus, mean and variance are constant

my = E{Xn }
2 E *
oy = X, —m, )X, —m,) s
* And the autocorrelation is a one-dimensional
function of the time difference.

¢xx[”+m’n]:¢xx[ E%‘n+m n {

» Time-averages of a random process are random
variables themselves.

L
(x,)= lim X,
Vil L—>oo2L+1n_z
L
& £
(i) = P L, Y
» Time averages of a single sample function
L
x[n]) = lim x[n
el = L—>002L+1,,_Z L]
L

/ o\
\x[n+m]x [n]/ = L11—r>202L+1n_ziLx[n+m] *[n]
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Ergodic Random Processes

Histogram

» Time-averages are equal to probability averages

X lim X, =Ex,=m

X} = LﬁoozLJrln_Z 0 f=m
* . L *
<Xn+mxn>= lim 2 XpimXp

L—)OOZL + 1n=—L

= E%‘rﬁmxz }: Prx[m]

» Estimates from a single sample function

A

i, %z ] fulml= %2 x{n+ " [n]

A histogram shows counts of samples that fall in
certain “bins”. If the boundaries of the bins are
close together and we use a sample function with
many samples, the histogram provides a good
estimate of the probability density function of an
(assumed) stationary random process.
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Bernoulli Distribution

Bernoulli Random Process

F, (x,n) = pu(x +1)+ (1= fu(x -1)
1+ Ii

» Suppose that the signal takes on only two
different values +1 or -1 with equal probability.
B, (x,,n)= 0.5u(x, +1)+0.5u(x, —1)

B
I : Px, (ins) = 0.58(x, + 1)+ 0.55(x,, ~ 1)
-1 1 * Furthermore, assume that the outcome at time n
0P, (x,n) is independent of all other outcomes.
pxn(x,n)ziax :ﬁé‘(x+1)+(l—,3)5(x—1) Pxn,xm(xnﬂn7xm7m):Pxn(xmn)me(xmﬂm)
{ Y oL 11 I
Sample
1 | e T T LI
—1 1 X
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Bernoulli Process (cont.)

MATLAB Bernoulli Simulation

* Mean: m, = [ x[0.56(x +1)+0.55(x — 1) kx

—00

m, = [ 0.5x8(x+Ddx+ [ 0.5x5(x —1)dx

my =—05+0.5=0)

» Variance:
ol = ojo (x—m)?[0.55(x +1)+0.55(x — 1) Jix

~ le?=05+05=1
* Autocorrelation: ({x, }are assumed independent)
Bes[m] = 28Tm] = S[m]

* MATLAB’s rand( ) function is useful for such simulations.

>>d = rand(1,N); %uniform dist. Between 0 & 1

>> k = find(x>.5); %find +1s

>> x = -ones(1,N); %make vector of all -1s

>> x(k) = ones(1,length(k));  %insert +1s

>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));

>> set(han, markersize’,3);

>> subplot(212); hist(x,Nbins); hold on

>> stem([-1,1],N*[.5,.5],'r*"); %add theoretical values
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Bernoulli Random Process

Bermoulli Distributed White Naoise Sequence with Unit Variance

l\wWJlHlWMHHHHWMWHMW\mMHW

0 20 40 &0 80 100

Histogram of 16000 Samples of a White Noise Sequence
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