

Overview of Lectures 6

- Fourier Transform Theorems (Lecture 5)
- The Fourier-domain convolution theorem (Lecture 5)
- Examples of usage of the DTFT (Lecture 5)
- Frequency Response of DE (Lecture 5)
- Random process
- Probability distributions
- Averages: Mean, variance, correlation
- Stationary random processes
- Time averages and ergodic random processes
- The Bernoulli random process

DTFT of Sinusoids

- Recall that

$$
x[n]=1 \Leftrightarrow X\left(e^{j \omega}\right)=\sum_{r=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi r)
$$

- Also note that
- Therefore

$$
x[n] e^{j \omega_{0} n} \Leftrightarrow X\left(e^{j\left(\omega-\omega_{0}\right)}\right)
$$

$$
e^{j \omega_{0} n} \Leftrightarrow \sum_{r=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi r\right)
$$

$\underset{\text { ECE4270 }}{\cos \omega_{0} n \Leftrightarrow} \sum_{r=-\infty}^{\infty} \pi \delta\left(\omega+\omega_{0}+2 \pi r\right)+\pi \delta\left(\omega-\omega_{0}+2 \pi r\right)$
Spring 2017

Convolution Theorem		
$y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \Leftrightarrow Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$		
$\begin{gathered} \frac{x[n]}{\delta[n]} \\ e^{j \omega n} \\ X\left(e^{j \omega}\right) \end{gathered}$	LTI System	$\begin{aligned} & \frac{y[n]}{h[n]} \\ & H\left(e^{j \omega}\right) e^{j \omega n} \\ & X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) \end{aligned}$
ECC4270		Spring 2017

Example 1
$h_{\mathrm{lp}}[n]=\frac{\sin \omega_{c} n}{\pi n} \Leftrightarrow$
- Find the output when the input is
$x[n]=\cos \omega_{0} n \Leftrightarrow$
$X\left(e^{j \omega}\right)=\sum_{r=-\infty}^{\infty} \pi \delta\left(\omega+\omega_{0}+2 \pi r\right)+\pi \delta\left(\omega-\omega_{0}+2 \pi r\right)$
$y[n]=\cos \omega_{0} n \quad$ if $\omega_{0}<\omega_{c}$
ECE4770

Frequency Response of a DE
$\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$
$\sum_{k=0}^{N} a_{k} Y\left(e^{j \omega}\right) e^{-j \omega k}=\sum_{k=0}^{M} b_{k} X\left(e^{j \omega}\right) e^{-j \omega k}$
$\left(\sum_{k=0}^{N} a_{k} e^{-j \omega k}\right) Y\left(e^{j \omega}\right)=\left(\sum_{k=0}^{M} b_{k} e^{-j \omega k}\right) X\left(e^{j \omega}\right)$
$H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{\left(\sum_{k=0}^{M} b_{k} e^{-j \omega k}\right)}{\left(\sum_{k=0}^{N} a_{k} e^{-j \omega k}\right)}$
EGC4270

Example 3

- Suppose that the difference equation is

$$
y[n]=y[n-1]-.9 y[n-2]+x[n]+x[n-1]
$$

- The frequency response is

$$
H\left(e^{j \omega}\right)=\frac{1+e^{-j \omega}}{1-e^{-j \omega}+.9 e^{-j \omega 2}}
$$

- This system is implemented in MATLAB by
>> $\mathrm{y}=$ filter ([1, 1],[1,-1,.9],x)
We can compute its frequency response by
>> omega=(0:500)*pi/500;
>> H=freqz ([1,1],[1,-1,.9],omega);

What is a random signal?

- Many signals vary in complicated patterns that cannot easily be described by simple equations.
- It is often convenient and useful to consider such signals as being created by some sort of random mechanism.
- Many such signals are considered to be "noise", although this is not always the case.
- The mathematical representation of "random signals" involves the concept of a random process.

Random Process

- A random process is an indexed set of random variables $\left\{\mathbf{x}_{n}\right\}$, each of which is characterized by a probability distribution (or density)

$$
\begin{gathered}
P_{\mathbf{x}_{n}}\left(x_{n}, n\right)=\operatorname{Prob}\left\{\mathbf{x}_{n} \leq x_{n}\right\}=\int_{-\infty}^{x_{n}} p_{\mathbf{x}_{n}}(x, n) d x \\
p_{\mathbf{x}_{n}}\left(x_{n}, n\right)=\frac{\partial P_{\mathbf{x}_{n}}\left(x_{n}, n\right)}{\partial x_{n}} \quad-\infty<n<\infty
\end{gathered}
$$

and the collection of random variables is characterized by a set of joint probability distributions such as (for all n and m),
$P_{\mathbf{x}_{n}, \mathbf{x}_{m}}\left(x_{n}, n, x_{m}, m\right)=\operatorname{Prob}\left\{\mathbf{x}_{n} \leq x_{n}\right.$ and $\left.\mathbf{x}_{m} \leq x_{m}\right\}$
ECE4270

Ensemble of Sample Functions

- We imagine that there are an infinite set of possible sequences where the value at n is governed by a probability law. We call this set an ensemble.

Averages of Random Processes

- Mean (expected value) of a random process

$$
m_{\mathbf{x} n}=E\left\{\mathbf{x}_{n}\right\}=\int_{-\infty}^{\infty} x p_{\mathbf{x}_{n}}(x, n) d x
$$

- Expected value of a function of a random process

$$
E\left\{g\left(\mathbf{x}_{n}\right)\right\}=\int_{-\infty}^{\infty} g(x) p_{\mathbf{x}_{n}}(x, n) d x
$$

- In general such averages will depend upon n. However, for a stationary random process, all the first-order averages are the same; e.g.,

$$
m_{\mathbf{x}_{n}}=m_{x} \text { for all } n
$$

More Averages

- Mean-squared (average power)

$$
E\left\{\mathbf{x}_{n} \mathbf{x}_{n}^{*}\right\}=E\left\{\left.\mathbf{x}_{n}\right|^{2}\right\}=\int_{-\infty}^{\infty} x^{2} p_{\mathbf{x}_{n}}(x, n) d x
$$

- Variance

$$
\begin{aligned}
& \operatorname{var}\left[\mathbf{x}_{n}\right]=E\left\{\left(\mathbf{x}_{n}-m_{\mathbf{x}_{n}}\right)\left(\mathbf{x}_{n}-m_{\mathbf{x}_{n}}\right)^{*}\right\}=\sigma_{\mathbf{x}_{n}}^{2} \\
& \operatorname{var}\left[\mathbf{x}_{n}\right]=E\left\{\mathbf{x}_{n} \mathbf{x}_{n}^{*}\right\}\left|m_{\mathbf{x}_{n}}\right|^{2}=\sigma_{\mathbf{x}_{n}}^{2} \\
& \operatorname{var}\left[\mathbf{x}_{n}\right]=(\text { mean - square })-(\text { mean })^{2}=\sigma_{\mathbf{x}_{n}}^{2}
\end{aligned}
$$

Joint Averages of Two R.V.s

- Expected value of a function of two random processes.

$$
E\left\{g\left(\mathbf{x}_{n}, \mathbf{y}_{m}\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) p_{\mathbf{x}_{n}, \mathbf{y}_{m}}(x, n, y, m) d x d y
$$

- Two random processes are uncorrelated if

$$
E\left\{\mathbf{x}_{n} \mathbf{y}_{m}\right\}=E\left\{\mathbf{x}_{n}\right\} E\left\{\mathbf{y}_{m}\right\}
$$

- Statistical independence implies

$$
p_{\mathbf{x}_{n}, \mathbf{y}_{m}}(x, n, y, m)=p_{\mathbf{x}_{n}}(x, n) p_{\mathbf{y}_{m}}(y, m)
$$

- Independent random processes are also uncorrelated.

Correlation Functions

- Autocorrelation function

$$
\phi_{x x}[n, m]=E\left\{\mathbf{x}_{n} \mathbf{x}_{m}^{*}\right\}
$$

- Autocovariance function

$$
\gamma_{x x}[n, m]=E\left\{\left(\mathbf{x}_{n}-m_{\mathbf{x}_{n}}\right)\left(\mathbf{x}_{m}-m_{\mathbf{x}_{m}}\right)^{*}\right\}
$$

- Crosscorrelation function

$$
\phi_{x y}[n, m]=E\left\{\mathbf{x}_{n} \mathbf{y}_{m}^{*}\right\}
$$

- Crosscovariance function

$$
\gamma_{x y}[n, m]=E\left\{\left(\mathbf{x}_{n}-m_{\mathbf{x}_{n}}\right)\left(\mathbf{y}_{m}-m_{\mathbf{y}_{m}}\right)^{*}\right\}
$$

Stationary Random Processes

- The probability distributions do not change with time.

$$
p_{\mathbf{x}_{n+k}}\left(x_{n}, n\right)=p_{\mathbf{x}_{n}}\left(x_{n}, n\right)
$$

$$
p_{\mathbf{x}_{n+k}, \mathbf{x}_{m+k}}\left(x_{n}, n, x_{m}, m\right)=p_{\mathbf{x}_{n}, \mathbf{x}_{m}}\left(x_{n}, n, x_{m}, m\right)
$$

- Thus, mean and variance are constant

$$
\begin{gathered}
m_{x}=E\left\{\mathbf{x}_{n}\right\} \\
\sigma_{x}^{2}=E\left\{\left(\mathbf{x}_{n}-m_{x}\right)\left(\mathbf{x}_{n}-m_{x}\right)^{*}\right\}
\end{gathered}
$$

- And the autocorrelation is a one-dimensional function of the time difference.

$$
\phi_{x x}[n+m, n]=\phi_{x x}[m]=E\left\{\mathbf{x}_{n+m} \mathbf{x}_{n}^{*}\right\}
$$

Time Averages

- Time-averages of a random process are random variables themselves.

$$
\begin{aligned}
\left\langle\mathbf{x}_{n}\right\rangle & =\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} \mathbf{x}_{n} \\
\left\langle\mathbf{x}_{n+m} \mathbf{x}_{n}^{*}\right\rangle & =\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} \mathbf{x}_{n+m} \mathbf{x}_{n}^{*}
\end{aligned}
$$

- Time averages of a single sample function

$$
\begin{aligned}
\langle x[n]\rangle & =\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} x[n] \\
\left\langle x[n+m] x^{*}[n]\right\rangle & =\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} x[n+m] x^{*}[n]
\end{aligned}
$$

Ergodic Random Processes

- Time-averages are equal to probability averages

$$
\begin{gathered}
\left\langle\mathbf{x}_{n}\right\rangle=\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} \mathbf{x}_{n}=E\left\{\mathbf{x}_{n}\right\}=m_{x} \\
\left\langle\mathbf{x}_{n+m} \mathbf{x}_{n}^{*}\right\rangle=\lim _{L \rightarrow \infty} \frac{1}{2 L+1} \sum_{n=-L}^{L} \mathbf{x}_{n+m} \mathbf{x}_{n}^{*} \\
=E\left\{\mathbf{x}_{n+m} \mathbf{x}_{n}^{*}\right\}=\phi_{x x}[m]
\end{gathered}
$$

- Estimates from a single sample function

$$
\hat{m}_{x}=\frac{1}{L} \sum_{n=0}^{L-1} x[n] \quad \hat{\phi}_{x x}[m]=\frac{1}{L} \sum_{n=0}^{L-1} x[n+m] x^{*}[n]
$$

Histogram

- A histogram shows counts of samples that fall in certain "bins". If the boundaries of the bins are close together and we use a sample function with many samples, the histogram provides a good estimate of the probability density function of an (assumed) stationary random process.

Bernoulli Distribution

$p_{\mathbf{x}_{n}}(x, n)=\frac{\partial P_{\mathbf{x}_{n}}(x, n)}{\partial x}=\beta \delta(x+1)+(1-\beta) \delta(x-1)$

Bernoulli Random Process

- Suppose that the signal takes on only two different values +1 or -1 with equal probability.

$$
\begin{aligned}
& P_{\mathbf{x}_{n}}\left(x_{n}, n\right)=0.5 u\left(x_{n}+1\right)+0.5 u\left(x_{n}-1\right) \\
& p_{\mathbf{x}_{n}}\left(x_{n}, n\right)=0.5 \delta\left(x_{n}+1\right)+0.5 \delta\left(x_{n}-1\right)
\end{aligned}
$$

Furthermore, assume that the outcome at time n is independent of all other outcomes.

$$
P_{\mathbf{x}_{n}, \mathbf{x}_{m}}\left(x_{n}, n, x_{m}, m\right)=P_{\mathbf{x}_{n}}\left(x_{n}, n\right) P_{\mathbf{x}_{m}}\left(x_{m}, m\right)
$$

ECE4270

Bernoulli Process (cont.)

- Mean: $m_{x}=\int x[0.5 \delta(x+1)+0.5 \delta(x-1)] d x$

$$
\begin{gathered}
m_{x}=\int_{-\infty}^{\infty-\infty} 0.5 x \delta(x+1) d x+\int_{-\infty}^{\infty} 0.5 x \delta(x-1) d x \\
m_{x}=-0.5+0.5=0
\end{gathered}
$$

- Variance:

$$
\begin{gathered}
\sigma_{x}^{2}=\int_{-\infty}^{\infty}\left(x-m_{x}\right)^{2}[0.5 \delta(x+1)+0.5 \delta(x-1)] d x \\
\sigma_{x}^{2}=0.5+0.5=1
\end{gathered}
$$

- Autocorrelation: ($\left\{\mathbf{x}_{n}\right\}$ are assumed independent)

$$
\phi_{x x}[m]=\sigma_{x}^{2} \delta[m]=\delta[m]
$$

MATLAB Bernoulli Simulation

- MATLAB's rand() function is useful for such simulations.
$\gg d=\operatorname{rand}(1, N)$; \%uniform dist. Between $0 \& 1$
$\gg k=$ find $(x>.5)$; \%find +1 s
$\gg x=-$ ones $(1, N)$; \quad \%make vector of all $-1 s$
$\gg x(k)=$ ones $(1$,length $(k))$; \%insert +1 s
>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));
>> set(han,'markersize',3);
>> subplot(212); hist(x,Nbins); hold on
\gg stem([-1, 1], $\mathrm{N}^{*}[.5, .5]$, 'r*'); \%add theoretical values

