Georgialnæðbuða of Technology

ECE4270 Fundamentals of DSP

CSIP

Lectures 7

Random Processes and LTI Filtering

School of ECE Center for Signal and Information Processing Georgia Institute of Technology

Overview of Lectures 7

- Random process (from Lecture 6)
 - Probability distributions
 - Averages: Mean, variance, correlation
- · Stationary random processes
- The Bernoulli and Uniform random process

Spring 201

- · Linear systems with random inputs
- Power Density Spectrum

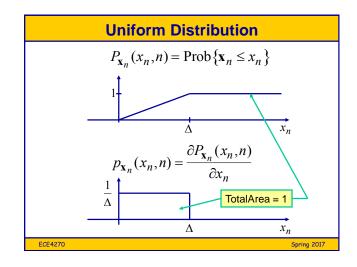
ECE427

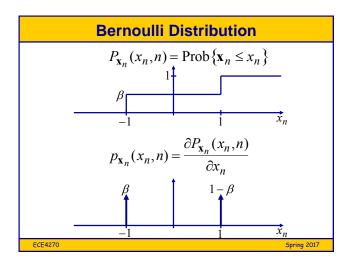
Random Process

A random process is an indexed set of random variables {x_n}, each of which is characterized by a probability distribution (or density)

$$P_{\mathbf{x}_n}(x_n, n) = \operatorname{Prob}\left\{\mathbf{x}_n \le x_n\right\} = \int_{-\infty}^{n} p_{\mathbf{x}_n}(x, n) dx$$

$$p_{\mathbf{x}_n}(x_n, n) = \frac{\partial P_{\mathbf{x}_n}(x_n, n)}{\partial x_n} \qquad -\infty < n < \infty$$
and the collection of random variables is characterized by a set of joint probability distributions such as (for all *n* and *m*),
$$P_{\mathbf{x}_n, \mathbf{x}_m}(x_n, n, x_m, m) = \operatorname{Prob}\left\{\mathbf{x}_n \le x_n \text{ and } \mathbf{x}_m \le x_m\right\}$$





Averages of Random Processes

· Mean (expected value) of a random process

$$m_{\mathbf{x}n} = E\{\mathbf{x}_n\} = \int_{-\infty}^{\infty} x p_{\mathbf{x}_n}(x, n) dx$$

· Expected value of a function of a random process

$$E\{g(\mathbf{x}_n)\} = \int_{-\infty}^{\infty} g(x) p_{\mathbf{x}_n}(x, n) dx$$

• In general such averages will depend upon *n*. However, for a *stationary random process*, all the first-order averages are the same; e.g.,

Spring 2017

Spring 2017

$$m_{\mathbf{x}_n} = m_x$$
 for all n

ECE4270

More Averages
Mean-squared (average power)
$E\left\{\mathbf{x}_{n}\mathbf{x}_{n}^{*}\right\} = E\left\{\mathbf{x}_{n}\right\ ^{2} = \int_{-\infty}^{\infty} x^{2} p_{\mathbf{x}_{n}}(x,n) dx$
• Variance
$\operatorname{var}[\mathbf{x}_n] = E\left\{ (\mathbf{x}_n - m_{\mathbf{x}_n})(\mathbf{x}_n - m_{\mathbf{x}_n})^* \right\} = \sigma_{\mathbf{x}_n}^2$
$\operatorname{var}[\mathbf{x}_n] = E\left\{ \mathbf{x}_n \mathbf{x}_n^* \right\} - \left m_{\mathbf{x}_n} \right ^2 = \sigma_{\mathbf{x}_n}^2$
$\operatorname{var}[\mathbf{x}_n] = (\operatorname{mean} - \operatorname{square}) - (\operatorname{mean})^2 = \sigma_{\mathbf{x}_n}^2$

Spring 2017

• Expected value of a function of two random processes. • $E\{g(\mathbf{x}_n, \mathbf{y}_m)\} = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} g(x, y) p_{\mathbf{x}_n, \mathbf{y}_m}(x, n, y, m) dx dy$ • Two random processes are *uncorrelated* if $E\{\mathbf{x}_n \mathbf{y}_m\} = E\{\mathbf{x}_n\} E\{\mathbf{y}_m\}$ • Statistical independence implies $p_{\mathbf{x}_n, \mathbf{y}_m}(x, n, y, m) = p_{\mathbf{x}_n}(x, n) p_{\mathbf{y}_m}(y, m)$ • Independent random processes are also uncorrelated.

ECE4270

ECE4270

2

Correlation Functions

· Autocorrelation function

$$\phi_{xx}[n,m] = E\left\{\mathbf{x}_n \mathbf{x}_m^*\right\}$$

Autocovariance function

$$\gamma_{xx}[n,m] = E\left\{\left(\mathbf{x}_n - m_{\mathbf{x}_n}\right)\left(\mathbf{x}_m - m_{\mathbf{x}_m}\right)^*\right\}$$
• Crosscorrelation function

$$\phi_{xy}[n,m] = E\left\{\mathbf{x}_n \mathbf{y}_m^*\right\}$$

Crosscovariance function

$$\gamma_{xy}[n,m] = E\left\{ (\mathbf{x}_n - m_{\mathbf{x}_n})(\mathbf{y}_m - m_{\mathbf{y}_m})^* \right\}$$

Stationary Random Processes

• The probability distributions do not change with time. $p_{\mathbf{x}_{n+k}}(x_n,n) = p_{\mathbf{x}_n}(x_n,n)$

$$p_{\mathbf{x}_{n+k},\mathbf{x}_{m+k}}(x_n,n,x_m,m) = p_{\mathbf{x}_n,\mathbf{x}_m}(x_n,n,x_m,m)$$

· Thus, mean and variance are constant

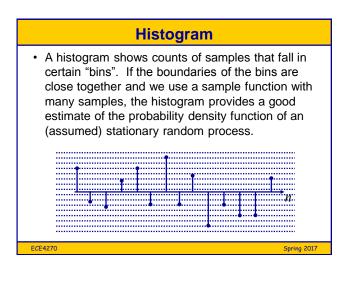
ECE4270

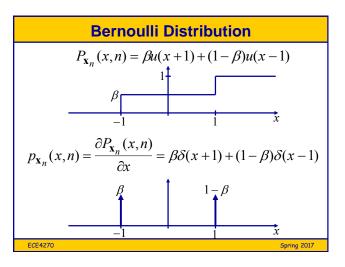
$$m_x = E\{\mathbf{x}_n\}$$
$$= E\{\mathbf{x}_n, \dots, \mathbf{x}_n\}$$

 $\sigma_x^2 = E\left\{ (\mathbf{x}_n - m_x)(\mathbf{x}_n - m_x)^* \right\}$ • And the autocorrelation is a one-dimensional function of the time difference.

$$\phi_{xx}[n+m,n] = \phi_{xx}[m] = E\left\{\mathbf{x}_{n+m}\mathbf{x}_n^*\right\}$$

Spring 201



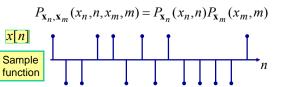


Bernoulli Random Process

• Suppose that the signal takes on only two different values +1 or -1 with equal probability. $P_{\mathbf{x}_n}(x_n,n) = 0.5u(x_n+1) + 0.5u(x_n-1)$

 $p_{\mathbf{x}_n}(x_n, n) = 0.5\delta(x_n + 1) + 0.5\delta(x_n - 1)$

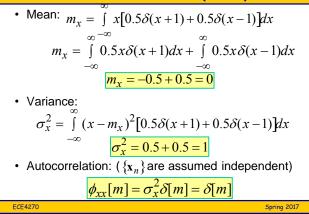
Furthermore, assume that the outcome at time n is independent of all other outcomes.

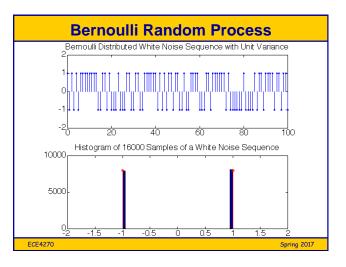


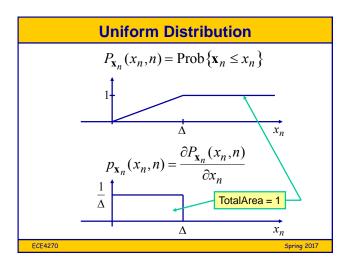
Spring 201

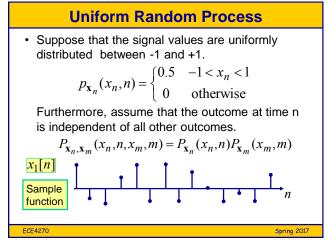
ECE427

Bernoulli Process (cont.)

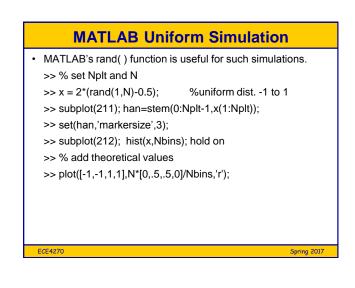


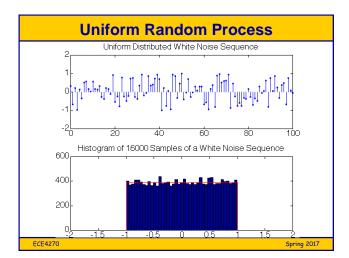






Uniform Process (cont.)
• Mean: $m_x = \int_{-1}^{1} x(0.5) dx = \frac{x^2}{4} \Big]_{-1}^{1}$ $m_x = 0.25(1-1) = 0$
• Variance: $\sigma_x^2 = \int_{-1}^{1} (x - m_x)^2 (0.5) dx = \frac{x^3}{6} \Big]_{-1}^{1}$ $\sigma_x^2 = \frac{1}{3}$
• Autocorrelation: $({\mathbf{x}}_n)$ are assumed independent) $\phi_{xx}[m] = \sigma_x^2 \delta[m] = \frac{1}{3} \delta[m]$
ECE4270 Spring 2017





Linear System with a Random Ir	nput
$x[n] \qquad LTI \qquad y[n]$ System $h[n], H(e^{j\omega})$	
$m_y = E\left\{\sum_{k=-\infty}^{\infty} x[k]h[n-k]\right\} = \sum_{k=-\infty}^{\infty} E\{x[k]\}h[n-k]$;]
$m_y = E\{x[k]\} \left(\sum_{k=-\infty}^{\infty} h[n-k]\right) = m_x \left(\sum_{k=-\infty}^{\infty} h[k]\right)$	
$m_y = m_x \left(\sum_{k=-\infty}^{\infty} h[k]\right) = m_x H(e^{j0})$	
ECE4270	Spring 2017

Linear System with a	Random Input
System	$\phi_{yy}[m] = \phi_{xx}[m] * c_{hh}[m]$
$\phi_{yy}[m] = E\left\{y[n+m]y^*[n]\right\}$ $= E\left\{\sum_{r=-\infty}^{\infty} x[n+m-r]h[r]\right\}$	$\frac{\text{Autocorrelation}}{\int_{k=-\infty}^{\infty} x^*[n-k]h^*[k]}$
$\phi_{yy}[m] = \sum_{\ell=-\infty}^{\infty} \phi_{xx}[m-\ell]c_{hh}[\ell]$ $c_{hh}[m] = \sum_{k=-\infty}^{\infty} h[m+k]h^*[k]$	Deterministic autocorrelation of impulse response
ECE4270	Spring 2017

Computing Average Power

- Assume a zero mean input whose average power is σ_x^2 and autocorrelation function is $\phi_{xx}[m] = \sigma_x^2 \delta[m]$.
- The autocorrelation of the output is

$$\phi_{yy}[m] = \sigma_x^2 \delta[m] * c_{hh}[m] = \sigma_x^2 c_{hh}[m]$$

• The average power of the output is easily found from this result as

$$\sigma_y^2 = \phi_{yy}[0] = \sigma_x^2 c_{hh}[0] = \sigma_x^2 \sum_{k=-\infty}^{\infty} h[k] h^*[k]$$

ECE4270

Spring 2017

Computing Average Power

- Assume a zero mean input whose average power is σ_x^2 and autocorrelation function is $\phi_{xx}[m] = \sigma_x^2 \delta[m]$.
- · The autocorrelation of the output is

$$\phi_{yy}[m] = \sigma_x^2 \delta[m] * c_{hh}[m] = \sigma_x^2 c_{hh}[m]$$

• The average power of the output is easily found from this result as

$$\sigma_y^2 = \phi_{yy}[0] = \sigma_x^2 c_{hh}[0] = \sigma_x^2 \sum_{k=-\infty}^{\infty} h[k] h^*[k]$$

Spring 201

ECE4270

ECE4270

Central Limit Theorem

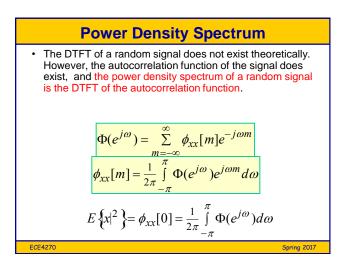
• The probability density of the sum of a large number of independent random variables approaches a Gaussian distribution.

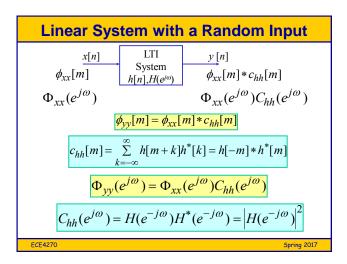
$$p_{\mathbf{y}}(y) = \frac{1}{\sqrt{2\pi}\sigma_{y}} e^{-(y-m_{y})^{2}/2\sigma_{y}^{2}}$$

• Since filters perform a weighted sum of the samples of the input, the output of a digital filter for a random input tends to have a Gaussian distribution.

Spring 201

Properties of the Autocorrelation
Definition:
$\phi_{xx}[m] = E\left\{x[n+m]x^*[n]\right\}$
Average power:
$\phi_{xx}[0] = E\left\{x[n]^2\right\} = \text{mean} - \text{square}$
Symmetry:
$\phi_{xx}[-m] = \phi_{xx}^*[m] \phi_{xx}[-m] = \phi_{xx}[m] \text{if } x \text{ is real}$
Shape:
$ \phi_{xx}[m] \le \phi_{xx}[0]$ $\lim_{m \to \infty} \phi_{xx}[m] = m_x ^2$
E/E4270 Spring 2017





Properties of Power Density

Real:

$$\Phi^*(e^{j\omega}) = \Phi(e^{j\omega})$$

• Symmetry:

$$\Phi(e^{j\omega}) = \Phi(e^{-j\omega})$$
 if $x[n]$ is real

Positivity:

$$\Phi(e^{j\omega}) \ge 0$$

• Magnitude-squared has same properties: $C_{hh}^{*}(e^{j\omega}) = |H(e^{-j\omega})|^{2} = C_{hh}(e^{j\omega}) \implies \text{real}$ $C_{hh}(e^{-j\omega}) = |H(e^{j\omega})|^{2} = C_{hh}(e^{j\omega}) \quad \text{if } x[n] \text{ is real}$