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Overview of Lectures 7

• Random process (from Lecture 6)

– Probability distributions

– Averages: Mean, variance, correlation

• Stationary random processes

• The Bernoulli and Uniform random process

• Linear systems with random inputs

• Power Density Spectrum
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Random Process

• A random process is an indexed set of random 

variables          each of which is characterized by 

a probability distribution (or density)

and the collection of random variables is 

characterized by a set of joint probability 

distributions such as (for all n and m),
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Uniform Distribution
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Bernoulli Distribution
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Averages of Random Processes

• Mean (expected value) of a random process

• Expected value of a function of a random process

• In general such averages will depend upon n.  

However, for a stationary random process, all the 

first-order averages are the same; e.g., 
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More Averages

• Mean-squared (average power)

• Variance
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Joint Averages of Two R.V.s

• Expected value of a function of two random processes.

• Two random processes are uncorrelated if

• Statistical independence  implies

• Independent random processes are also uncorrelated.
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Correlation Functions

• Autocorrelation function

• Autocovariance function

• Crosscorrelation function

• Crosscovariance function
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Stationary Random Processes

• The probability distributions do not change with 

time.

• Thus, mean and variance are constant

• And the autocorrelation is a one-dimensional 

function of the time difference.
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Histogram

• A histogram shows counts of samples that fall in 

certain “bins”.  If the boundaries of the bins are 

close together and we use a sample function with 

many samples, the histogram provides a good 

estimate of the probability density function of an 

(assumed) stationary random process.

n
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Bernoulli Distribution
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Bernoulli Random Process

• Suppose that the signal takes on only two 

different values +1 or -1 with equal probability.  

Furthermore, assume that the outcome at time n 

is independent of all other outcomes.
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Bernoulli Process (cont.)

• Mean:

• Variance:

• Autocorrelation: (        are assumed independent)
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MATLAB Bernoulli Simulation

• MATLAB’s rand( ) function is useful for such simulations.

>> d = rand(1,N); %uniform dist. Between 0 & 1

>> k = find(x>.5); %find +1s

>> x = -ones(1,N); %make vector of all -1s

>> x(k) = ones(1,length(k)); %insert +1s

>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));

>> set(han,’markersize’,3);

>> subplot(212);  hist(x,Nbins); hold on

>> stem([-1,1],N*[.5,.5],'r*'); %add theoretical values
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Bernoulli Random Process



5

ECE4270 Spring 2017

Uniform Distribution
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Uniform Random Process

• Suppose that the signal values are uniformly 

distributed  between -1 and +1.

Furthermore, assume that the outcome at time n 

is independent of all other outcomes.
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Uniform Process (cont.)

• Mean:

• Variance:

• Autocorrelation: (        are assumed independent)
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MATLAB Uniform Simulation

• MATLAB’s rand( ) function is useful for such simulations.

>> % set Nplt and N

>> x = 2*(rand(1,N)-0.5); %uniform dist. -1 to 1

>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));

>> set(han,’markersize’,3);

>> subplot(212);  hist(x,Nbins); hold on

>> % add theoretical values 

>> plot([-1,-1,1,1],N*[0,.5,.5,0]/Nbins,'r'); 
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Uniform Random Process
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Linear System with a Random Input

LTI

System
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Linear System with a Random Input

LTI

System
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Computing Average Power

• Assume a zero mean input whose average power 

is       and autocorrelation function is

• The autocorrelation of the output is

• The average power of the output is easily found 

from this result as
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Computing Average Power

• Assume a zero mean input whose average power 

is       and autocorrelation function is

• The autocorrelation of the output is

• The average power of the output is easily found 

from this result as
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Central Limit Theorem

• The probability density of the sum of a large 

number of independent random variables 

approaches a Gaussian distribution.

• Since filters perform a weighted sum of the 

samples of the input, the output of a digital filter 

for a random input tends to have a Gaussian 

distribution.  
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Properties of the Autocorrelation

• Definition:

• Average power:

• Symmetry:

• Shape:
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Power Density Spectrum

• The DTFT of a random signal does not exist theoretically.  
However, the autocorrelation function of the signal does 
exist,  and the power density spectrum of a random signal 
is the DTFT of the autocorrelation function.
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Linear System with a Random Input

LTI
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Properties of Power Density

• Real:

• Symmetry:

• Positivity:

• Magnitude-squared has same properties:
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