CSIP Overview of Lectures 7

ECE4270
Fundamentals of DSP * Random process (from Lecture 6)
— Probability distributions
Lectures 7 — Averages: Mean, variance, correlation

Random Processes and LTI Filtering * Stationary random processes
* The Bernoulli and Uniform random process
* Linear systems with random inputs

» Power Density Spectrum
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Random Process Uniform Distribution

» Arandom process is an indexed set of random P, (x,,,n)=Prob {Xn < xn}
variables {x, }, each of which is characterized by !
a probability distribution (or density) 1}[

xn
Py (xy,m)= Prob{x, <x,}= | Py, (x,n)dx
al)X (xn,l’l) e A o
pxn(xnan)z . —0<n<o
X
and the collection of raffdom variables is
characterized by a set of joint probability
distributions such as (for all n and m),

B, x,, (Xns1,Xp,m) = Prob{xn <x,andx,, < xm}
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Bernoulli Distribution

Averages of Random Processes

K, (x,,n)= Prob{x, <x,}

14+ Ii

* Mean (expected value) of a random process

my, =E{x,}= | xpx (x,n)dx

B
!1 1 > » Expected value of a function of a random process
_ n o
0P, (x,,1) Efg(x,)}= | g(x)py, (x,n)dx
Px, (xn ,n) = — )
ox,, * In general such averages will depend upon n.
B 1-8 However, for a stationary random process, all the
I I first-order averages are the same; e.g.,
_1 | | . my =m, for alln
- ] n
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More Averages

Joint Averages of Two R.V.s

* Mean-squared (average power)
Ef i =B = T 2y, (en
» Variance -~
var[x, ] = E{x,, —my )(x, —my )" }= 03,
varlx,1= £ Sy W =2

var[ X,, ] = (mean —square) — (mean )2 = a,%n

» Expected value of a function of two random processes.

o0 o0
E{g(xn:ym)}: J- .[ g(x’y)pxn,ym (X,ﬂ,y,m)dm'y
* Two random procgggg;oare uncorrelated if

E{Xnym } = E{Xn }E{ym}
+ Statistical independence implies
pxn’Ym (x,n,y,m) = pX,, (‘x’n)pym (yam)

* Independent random processes are also uncorrelated.
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Correlation Functions

Stationary Random Processes

» Autocorrelation function

*
P [n,m] = E%&nxm }
» Autocovariance function

}/xx[nsm] = E{Xn - mx,, )(Xm - mxm )* ]

» Crosscorrelation function

¢xy[nam] = E%‘ny*m }

« Crosscovariance function
*
7/xy[n’m] = E{Xn — My, XY m — My ) }

m

+ The probability distributions do not change with
time. _
Py, () =Py (X,01)
Px ot Xk (X571, Xy, 1) = Px, x,, (X1, X, 1)
» Thus, mean and variance are constant
my = E{Xn }
2 _ E *
oy =E{x, —-m,)x, —m,) s

« And the autocorrelation is a one-dimensional
function of the time difference.

¢xx[n +m,n]= ¢xx[m] = E%‘n+mxz }
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Histogram

Bernoulli Distribution

A histogram shows counts of samples that fall in
certain “bins”. If the boundaries of the bins are
close together and we use a sample function with
many samples, the histogram provides a good
estimate of the probability density function of an
(assumed) stationary random process.

F, (x,n) = pu(x +1)+ (1= fu(x -1
ﬂl 1+ Ii

-1 1 x

OF, (x,n)
Py, () =~ —— = fo(x + D+ (1= fo(x —1)
i e e i /f liﬂ
—1 1 X
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Bernoulli Random Process

Bernoulli Process (cont.)

+ Suppose that the signal takes on only two
different values +1 or -1 with equal probability.
B, (x,,n)=0.5u(x, +1)+0.5u(x, —1)

Px,, (x,,n) =0.56(x,, +1)+0.55(x, — 1)

Furthermore, assume that the outcome at time n
is independent of all other outcomes.

Pxn,xm (%571, 1) = PxH (xnen)me (%, m)

WL
el 11 T ] T111

* Mean: m, = [ x[0.56(x +1)+0.55(x — 1) kx

—00

m, = [ 0.5x8(x+Ddx+ [ 0.5x5(x —1)dx

m,=—05+0.5=0|

» Variance:
ol = ojo (x—m)?[0.55(x +1)+0.55(x — 1) Jix

~ le?=05+05=1
* Autocorrelation: ({x, }are assumed independent)
fes[m] = 281m] = S[m]
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MATLAB Bernoulli Simulation

Bernoulli Random Process

* MATLAB’s rand( ) function is useful for such simulations.

2 .
>>d = rand(1,N); %uniform dist. Between 0 & 1 i
> e = find(c-5); 4fnd +1s A 1
>>x=-Ones(LN),  %make veclor of al -1s B 11 TR RN
>> x(k) = ones(1,length(k));  %insert +1s
>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt)); = i Pl & & 100
S>> set(han,'markersize',3); 10000 H\stogram of 1 5000 Slamp\es‘ of a White Noisle Sequ‘ence
>> subplot(212); hist(x,Nbins); hold on
>> stem([-1,1],N*[.5,.5],'r*"); %add theoretical values ool

S T Y- S X< R K-

Bermoulli Distributed White Naoise Sequence with Unit Variance
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Uniform Distribution

Uniform Random Process

B, (x,,n)= Prob{x, <x,}

| —

» Suppose that the signal values are uniformly
distributed between -1 and +1.

05 -l1<x,<l
Px, (ins1) = 0 otherwise

A X, Furthermore, assume that the outcome at time n
is independent of all other outcomes.
apxn (x51) P, (x,,,n,x,,,m)=P,_ (x,,n)P, (x,,,m)
pxn(xnan)z 2 Xy, X N mo X, \*n> X, Am>
1 . SR !
K Sample T - 3
M function ! 1 1 1 1 1 "
A Xy
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Uniform Process (cont.)

MATLAB Uniform Simulation

* Mean: 1 2 !
my = [ x(0.5)dx="—
4 4]
Im, =0.25(1—1)= 0|
* Variance: 1 3 1
oy = [ (x=my)*(0.5)dx = 6}
-1 _1
.
T3

« Autocorrelation: ({xn} are assumed independent)

feclm] = o30Tm] = 5 Slm]

* MATLAB’s rand( ) function is useful for such simulations.

>> 0% set Npltand N

>> x = 2*(rand(1,N)-0.5); %uniformdist. -1to 1
>> subplot(211); han=stem(0:Nplt-1,x(1:Nplt));

>> set(han,’'markersize’,3);

>> subplot(212); hist(x,Nbins); hold on

>> 9% add theoretical values

>> plot([-1,-1,1,1],N*[0,.5,.5,0)/Nbins,'r");
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Uniform Random Process

Linear System with a Random Input

Uniform Distributed ¥White Noise Sequence

_?1‘J’xH"l"M”‘MM [ [ J | ﬂ lh Ilm yl Hl [ l]“"]ﬂl lll Irlllll

Histogram of 16000 Samples of 2 White Noise Sequence
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x[n] LTI yin]
— | System

h[n].H(&)

m, = E{ S x[kJh{n - k]} - i E{x[k]Mhn - k]

k=—x0

my=E{x[k]}( s h[n—k]) =mx( s h[k]]

k=—o0 f=—o0

m, = mx( 5 h[k]j =m H(e'?)
k=—x
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Linear System with a Random Input

Computing Average Power

x[n] LTI v [n]
System [
Geclm] | pralpie) By [Mm]= @, [m]*c,,[m]

Autocorrelation
of output

By[m1 = E {ln+mly"[n] }

- E{ S xnem—rfr] Y x'[n —k]h*[k]}

r=—0m k=—00

holml= 2 gulm =l

Deterministic
autocorrelation
of impulse response

ulm= X Hm+ KA

. Assume a zero mean input whose average power
is o} 2 and autocorrelation function is o ml=0 5[m]

» The autocorrelation of the output is
2 2
¢yy[m] = O-x§[’n]>l< Chi [m] = chhh[m]

* The average power of the output is easily found
from this result as

07 = 9, 10]= Gley 0] =07 ih[k]h*[k]
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Computing Average Power

Central Limit Theorem

. Assume a zero mean input whose average power
is o} 2 and autocorrelation function is ¢, [m] = o 5[m]

» The autocorrelation of the output is
2 2
¢yy[m] = Gxg[m] *Cpp [m] = O-xchh[m]

» The average power of the output is easily found
from this result as

oy = $,[01= o501 = 0% S HKTA

k=—c0

+ The probability density of the sum of a large
number of independent random variables
approaches a Gaussian distribution.

1 ~(y-m,)* 1207
Py)= V2zo,

* Since filters perform a weighted sum of the
samples of the input, the output of a digital filter
for a random input tends to have a Gaussian
distribution.
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Properties of the Autocorrelation

Power Density Spectrum

+ Definition:
G m]=E <{x[n +m]x n]}
+ Average power:
P [0]=E {X[H]\2 }= mean — square
* Symmetry:
b [-ml= @ [m]  bol-ml=@[m] ifxis real

* Shape:
[hr ] < B [0] hm 1 Prilm =lm,

* The DTFT of a random signal does not exist theoretically.
However, the autocorrelation function of the signal does
exist, and the power density spectrum of a random signal
is the DTFT of the autocorrelation function.

D(e/?) = § falme "

¢xx Py .[ (D(eja))e/a)mdw

E x\z} 6..[0 j ®(/)dw
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Linear System with a Random Input

Properties of Power Density

x[n]
Pr[m]
D (/)

SL? v [n]
stem
h[n)]/,H(e/“’) P [m]*cpp[m]
@, (/)G (')

|¢yy[m] = glm]*cpy [m]l

chh[m]=k_§ Hm -+ KB (k] = h{—m] "]

D,,(/)= D, (/) (™)

Cun(e'”) = H(e /) H" (/") =|H(e 7 )\2

* Real: . .
D (/)= D(e!”)
* Symmetry:
D(e/?)=D(e/?) ifx[n] is real
 Positivity:

D(’?)>0

» Magnitude-squared has same properties:
* / —7 2 /
G ) =|HE ") =Cp(e®) = real
. ) .
Cun(e /) = |H(e/?) = Cy(¢/”)  if a[n] is real
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