

Overview of Lecture 8

- · Announcement
- · Properties of the autocorrelation
- The power spectrum
- · LTI systems and the power spectrum
- "White noise"
- Introduction to z-transform
- Examples

CE427

- Finite-length
- Left-sided, Right-sided, Two-sided

Announcement

- Quiz I
- Thursday, Feb. 16, during class hour.
- It will be open book, one page (double sided) formula sheet,
- · Closed HWK solutions.
- · Coverage: Chapters 2 and 3.

Properties of the Autocorrelation

- Definition: $\phi_{xx}[m] = E\left\{\!\!\! x[n+m]x^*[n]\right\}$
- Average power: $\phi_{xx}[0] = E\left\{x[n]\right\}^{2} = \text{mean} - \text{square}$
- Symmetry:

$$\phi_{xx}[-m] = \phi_{xx}^*[m] \quad \phi_{xx}[-m] = \phi_{xx}[m] \quad \text{if } x \text{ is real}$$

· Shape:

$$|\phi_{xx}[m]| \le \phi_{xx}[0] \qquad \lim_{m \to \infty} \phi_{xx}[m] = |m_x|^2$$

ECE4270

$$\Phi(e^{j\omega}) = \sum_{m=-\infty} \phi_{xx}[m]e^{-j\omega m}$$
$$\phi_{xx}[m] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(e^{j\omega})e^{j\omega m}d\omega$$
$$E\left\{x\right\}^{2} = \phi_{xx}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Phi(e^{j\omega})d\omega$$

CF4270

Properties of Power Density		
• Real: $\Phi^*(e^{j\omega}) = \Phi(e^{j\omega})$		
Symmetry:		
$\Phi(e^{j\omega}) = \Phi(e^{-j\omega})$ if $x[n]$ is real		
Positivity:		
$\Phi(e^{j\omega}) \ge 0$		
 Magnitude-squared has same properties: 		
$C_{hh}^{*}(e^{j\omega}) = \left H(e^{-j\omega}) \right ^2 = C_{hh}(e^{j\omega}) \implies \text{real}$		
$C_{hh}(e^{-j\omega}) = H(e^{j\omega}) ^2 = C_{hh}(e^{j\omega})$ if $x[n]$ is real		
ECE4270 Spring 2017		

• Frequency response of filter: $H(e^{j\omega}) = \frac{1}{M+1} \sum_{n=0}^{M} e^{-j\omega n} = \frac{\sin[(M+1)\omega/2]}{(M+1)\sin(\omega/2)} e^{-j\omega M/2}$ • Power spectrum of output when the input is white noise: $\Phi_{yy}(e^{j\omega}) = \sigma_x^2 |H(e^{j\omega})|^2$ $= \sigma_x^2 \left(\frac{\sin[(M+1)\omega/2]}{(M+1)\sin(\omega/2)}\right)^2$

The z-Transform

• The z-Transform of a sequence is defined as

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

- · Since this is generally an infinite sum, we need to be concerned about "convergence"; i.e., is the sum finite? In general convergence will depend upon *z*, e.g., $0 \le r_R < |z| < r_L < \infty$.
- The inverse z-transform is given by the contour integral

CE4270

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

Region of Convergence

$$\begin{aligned} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} \\ |X(z)| &= \left| \sum_{n=-\infty}^{\infty} x[n]z^{-n} \right| \leq \sum_{n=-\infty}^{\infty} |x[n]|z|^{-n} \\ \cdot \text{ The region of convergence is the set of values of } z \quad 0 \leq r_R < |z| < r_L < \infty \text{ such that} \end{aligned}$$

$$\begin{aligned} \sum_{n=-\infty}^{\infty} |x[n]||z|^{-n} < \infty \qquad \left| \begin{array}{c} |z|^{-n} & \text{can} \\ \text{``tame'' a growing sequence} \end{array} \right| \end{aligned}$$

Remember These Formulas • A tricky manipulation: $z(a_0 + a_1 z^{-1} + a_0 z^{-2}) = a_0 z + a_1 + a_0 z^{-1}$ $= a_1 + a_0(z + z^{-1})$ • Summing a finite exponential sequence: $\sum_{n=N_{1}}^{N_{2}} \alpha^{n} = \frac{\alpha^{N_{1}} - \alpha^{N_{2}+1}}{1 - \alpha} \qquad N_{2} \ge N_{1}$ • Summing an infinite exponential sequence:

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \qquad \text{if } |\alpha| < 1$$

Examples

• Impulse sequence:
$$x[n] = \delta[n - n_0]$$

 $X(z) = \sum_{n=-\infty}^{\infty} \delta[n - n_0] z^{-n} = z^{-n_0}$
• Pulse sequence: $x[n] = \begin{cases} 1 & 0 \le n \le M - 1\\ 0 & \text{otherwise} \end{cases}$
 $X(z) = \sum_{n=0}^{M-1} z^{-n} = \frac{1 - z^{-M}}{1 - z^{-1}} \quad z \ne 0$

Properties of the z-Transform - I

PROPERTY 1: The ROC is a ring or disk in the *z*-plane centered at the origin; i.e., $0 \le r_R < |z| < r_L \le \infty$.

- **PROPERTY 2:** The Fourier transform of x[n] converges absolutely if and only if the ROC of the z-transform of x[n] includes the unit circle.
- PROPERTY 3: The ROC cannot contain any poles.
- PROPERTY 4: If x[n] is a *finite-duration sequence*, i.e., a sequence that is zero except in a finite interval $-\infty < N_1 \le n \le N_2 < \infty$, then the ROC is the entire z-plane, except possibly z = 0 or $z = \infty$.

Properties of the z-Transform - II

- PROPERTY 5: If x[n] is a right-sided sequence, i.e., a sequence that is zero for $n < N_1 < \infty$, the ROC extends outward from the *outermost* (i.e., largest magnitude) finite pole in X(z) to (and possibly including) $z = \infty$.
- PROPERTY 6: If x[n] is a *left-sided sequence*, i.e., a sequence that is zero for $n > N_2 > -\infty$, the ROC extends inward from the *innermost* (smallest magnitude) nonzero pole in X(z) to (and possibly including) z = 0.
- **PROPERTY 7:** A two-sided sequence is an infinite-duration sequence that is neither right sided nor left sided. If x(h) is a two-sided sequence, the ROC will consist of a ring in the z-plane, bounded on the interior and exterior by a pole and, consistent with property 3, not containing any poles.

Spring 20

PROPERTY 8: The ROC must be a connected region.

ECE4270

Transform Pairs					
Sequence	Transform	ROC			
1. δ[n]	1	All z			
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1			
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1			
 δ[n − m] 	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)			
5. $a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a			
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a			
7. <i>naⁿu</i> [<i>n</i>]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a			
4270		Spring 2			

Transform Pairs						
Sequence	Transform	ROC				
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1				
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1				
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r				
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r				
13. $\begin{cases} a^n, & 0 \le n \le N-1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0				
ECE4270		Spring 2017				

Number	Deference		Property Section						
	Reference	Sequence	Transform	ROC					
		x[n]	X(z)	R_{χ}					
		$x_1[n]$	$X_1(z)$	R_{x_1}					
		x2[n]	$X_{2}(z)$	R_{x_2}					
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$					
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞					
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$					
4	3.4.4	nx[n]	$-z\frac{dX(z)}{dz}$	R_x , except for the possible addition or deletion of the origin or ∞					
5	3.4.5	x*[n]	$X^*(z^*)$	R_{χ}					
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x					
7		$\mathcal{J}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x					
8	3.4.6	$x^{*}[-n]$	$X^{2}(1/z^{*})$	$1/R_{x}$					
9	3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$					
10	3.4.8	Initial-value theorem:							