

Overview of Lecture

- Repeated Roots in PFE
- z-transform Theorems
- System Function of a DE
- Causality, stability and z-transform
- Chapter 4--Sampling
- Bandlimited signals
- Sampling a sine wave
- Ideal Continuous-to-Discrete conversion (sampling)
- Derivation of frequency-domain formula
- Interpretation of frequency-domain formula
- Oversampling
- Aliasing distortion

Repeated Roots in PFE

Suppose $\boldsymbol{H}(\boldsymbol{z})$ has a pole of order \boldsymbol{s} at $\boldsymbol{z}=\boldsymbol{d}_{\boldsymbol{i}}$ and all the other poles are first order:

$$
H(z)=\underbrace{\left[\sum_{r=0}^{(M-N)} B_{r} z^{-r}\right]}_{\text {only if } M \geq N}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-d_{i} z^{-1}\right)^{m}}
$$

- The coefficients $\boldsymbol{A}_{\boldsymbol{k}}$ and \boldsymbol{B}_{r} are found as before. $\boldsymbol{C}_{\boldsymbol{m}}$ is found by:
$C_{m}=\frac{1}{(s-m)!\left(-d_{i}\right)^{s-m}}\left\{\frac{d^{s-m}}{d w^{s-m}}\left[\left(1-d_{i} w\right)^{s} H\left(w^{-1}\right)\right]\right\}_{w=d_{i}^{-1}}$
for $m=1, \ldots, s$
$(s-m)^{\text {th }}$ order derivative
ECE4270

z-Transform Theorems

- The delay or shift property:

$$
x\left[n-n_{0}\right] \Leftrightarrow z^{-n_{0}} X(z)
$$

- The convolution property:

$$
y[n]=x[n] * h[n] \quad \Leftrightarrow \quad Y(z)=H(z) X(z)
$$

- Example:

$$
y[n]=x[n] * \delta\left[n-n_{0}\right] \quad \Leftrightarrow \quad Y(z)=z^{-n_{0}} X(z)
$$

An IIR System

- Difference equation:
$y[n]=a y[n-1]+x[n] \Leftrightarrow Y(z)=a z^{-1} Y(z)+X(z)$
- System function:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}|z|>|a| \longleftrightarrow \begin{gathered}
\text { ROC if } \\
\text { causal }
\end{gathered}
$$

- Frequency response:

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1}{1-a e^{-j \omega}}
$$

Assumes $|a|<1$

- Impulse response:

$$
h[n]=a^{n} u[n]
$$

IIR Frequency Response

z-plane

ECE4270	Spring 2017

System Function of a DE

$$
\begin{gathered}
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \\
\sum_{k=0}^{N} a_{k} Y(z) z^{-k}=\sum_{k=0}^{M} b_{k} X(z) z^{-k} \\
\left(\sum_{k=0}^{N} a_{k} z^{-k}\right) Y(z)=\left(\sum_{k=0}^{M} b_{k} z^{-k}\right) X(z) \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\left(\sum_{k=0}^{M} b_{k} z^{-k}\right)}{\left(\sum_{k=0}^{N} a_{k} z^{-k}\right)}
\end{gathered}
$$

System Function of a DE
$\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$
$\sum_{k=0}^{N} a_{k} Y(z) z^{-k}=\sum_{k=0}^{M} b_{k} X(z) z^{-k}$
$\left(\sum_{k=0}^{N} a_{k} z^{-k}\right) Y(z)=\left(\sum_{k=0}^{M} b_{k} z^{-k}\right) X(z)$
$H(z)=\frac{Y(z)}{X(z)}=\frac{\left(\sum_{k=0}^{M} b_{k} z^{-k}\right)}{\left(\sum_{k=0}^{N} a_{k} z^{-k}\right)}$

$\left.$| Frequency Response of a DE |
| :---: |
| $\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$ |
| $H\left(e^{j \omega}\right)=\left.H(z)\right\|_{z=e^{j \omega}}=\frac{\left(\sum_{k=0}^{M} b_{k} e^{-j \omega k}\right)}{\left(\sum_{k=0}^{N} a_{k} e^{-j \omega k}\right)}$ | | ROC must |
| :--- |
| Contain the |
| Unit circle | \right\rvert\,

Stability, Causality, ROC

- Not Causal
-Not stable
- Not Causal
-Stable

ROC of Z-Transform and Causality
ECE4270

Digital Processing of Analog Signals

- A-to-D conversion: sampling and quantization
- Numerical algorithm: convolution, difference equations, DFT, LPC
- Implemented on DSP chips, computers or ASICs with finite-precision arithmetic
- D-to-A conversion: quantization and filtering

ECE4270	Spring 2017

Bandlimited Signals

- A bandlimited continuous-time (analog) signal has a Fourier transform that is zero for all frequencies above some highest frequency (called the Nyquist frequency Ω_{N}).

- Simple example is a sinusoidal signal

$$
x_{c}(t)=A \cos \left(\Omega_{0} t+\phi\right) \quad \Omega_{N}=\Omega_{0}+\varepsilon
$$

The Sampling Theorem			
A bandlimited signal with Nyquist (highest) frequency Ω_{N} can be reconstructed exactly from samples taken with sampling frequency $\frac{2 \pi}{T} \geq 2 \Omega_{N}$			
ECE4270			

Sampling (C-to-D Conversion)

\(\left.$$
\begin{array}{c}x_{c}(t) \\
X_{c}(\overrightarrow{j \Omega)}\end{array}
$$ \begin{array}{c}C-to-D

Converter\end{array}\right) \xrightarrow{x[n]=x_{c}(n T)}\)| $X\left(e^{j \omega}\right), X\left(e^{j \Omega T}\right)$ |
| :---: |

- Discrete-time Fourier transform:

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- Frequency-domain relation:
$X\left(e^{j \Omega T}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega T n}=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\Omega-k \Omega_{s}\right)\right)$
- Sampling frequency: $\Omega_{s}=2 \pi / T$
- Normalized frequency: $\quad \omega=\Omega T$

Derivation of Basic FT Formula - I

$$
s(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T) \Leftrightarrow S(j \Omega)=\sum_{k=-\infty}^{\infty} \frac{2 \pi}{T} \delta\left(\Omega-k \frac{2 \pi}{T}\right)
$$

$$
\begin{aligned}
& x_{s}(t)=x_{c}(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-n T)=\sum_{n=-\infty}^{\infty} x_{c}(t) \delta(t-n T) \\
& x_{s}(t)=\sum_{n=-\infty}^{\infty} x_{c}(n T) \delta(t-n T)=\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T) \\
& \text { Spring 2017 }
\end{aligned}
$$

Derivation of Basic FT Formula - II

$$
x_{s}(t)=x_{c}(t) \cdot s(t)=x_{c}(t) \sum_{n=-\infty}^{\infty} \delta(t-n T)
$$

$$
X_{S}(j \Omega)=\frac{1}{2 \pi} X_{c}(j \Omega) * S(j \Omega)
$$

$$
X_{S}(j \Omega)=\frac{1}{2 \pi} X_{c}(j \Omega) * \sum_{k=-\infty}^{\infty} \frac{2 \pi}{T} \delta\left(\Omega-k \frac{2 \pi}{T}\right)
$$

$$
X_{S}(j \Omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(\Omega-k \frac{2 \pi}{T}\right)
$$

ECE4270 Spring 2017

Derivation of Basic FT Formula - III

$$
\begin{gathered}
x_{s}(t)=x_{c}(t) \sum_{n=-\infty}^{\infty} \delta(t-n T)=\sum_{n=-\infty}^{\infty} x[n] \delta(t-n T) \\
X_{s}(j \Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n T} \\
X_{S}(j \Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j(\Omega T) n}=X\left(e^{j \Omega T}\right) \\
X\left(e^{j \Omega T}\right)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(\Omega-k \frac{2 \pi}{T}\right)
\end{gathered}
$$

Oversampling

"Typical"
bandlimited signal

$$
X\left(e^{j \Omega T}\right)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\Omega-k \Omega_{s}\right)\right) \quad \Omega_{s}=2 \pi / T
$$

Fourier transform

.$X\left(e^{j \Omega T}\right)$

Undersampling (Aliasing Distortion)

- If $\Omega_{\mathrm{s}}<2 \Omega_{\mathrm{N}}$, the copies of $X_{c}(j \Omega)$ overlap, and we have aliasing distortion.
"Typical" bandlimited signal

Sampling Theorem

| $x_{c}(t)$ |
| :---: | :---: |
| $X_{c}(j \Omega)$ | | C-to-D
 Converter |
| :---: |
| $x[n]=x_{c}(n T)$$X\left(e^{j \omega}\right), X\left(e^{j \Omega T}\right)$ |

- Frequency-domain representation

$$
X\left(e^{j \Omega T}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega T n}=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\Omega-k \Omega_{s}\right)\right)
$$

- Sampling theorem justification:

If $X_{c}(j \Omega)=0, \quad|\Omega| \geq \Omega_{N}$ and $\Omega_{s} / 2=\pi / T \geq \Omega_{N}$,

- Therefore we should be able to recover $x_{c}(t)$!
then $X\left(e^{j \Omega T}\right)=\frac{1}{T} X_{c}(j \Omega), \quad|\Omega| \leq \pi / T=\Omega_{s} / 2$
ECE4270
Spring 2017

