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Overview of Lecture 

• Changing sampling rates

– Decimation (last Lecture)

– Interpolation

– Non-Integer Rate Change

• Over-sampling to ease filtering

• Representation of A-to-D Converter

• Probabilistic analysis of quantization

– Model

– Signal-to-noise ratio

• Variation of SNR with Signal Level
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Interpolation - I
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 Sampling Theorem

ECE4270 Spring 2017

Interpolation - II
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Interpolation - III
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Sampling at Ns  2
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Interpolation - IV
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Non-Integer Rate Change - I
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Non-Integer Rate Change - II

Sampling at Ns  2
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Non-Integer Rate Change - III
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Anti-Alias Pre-filtering

• What is the overall effective frequency response?

Yr ( j)  H(e
jT

)Xa( j) if Xa( j)  0  for   N

Xa( j)  Haa ( j)Xc( j)
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Heff ( j)
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Oversampling Eases Filtering - I

  Xa( j)  0  for   MN

Xa( j)  Haa ( j)Xc( j)

Choose  Haa( j)  0  for   MN
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Oversampling Eases Filtering - II 
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Oversampling Eases Filtering - III 
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Digital Processing of Analog Signals

• Practical considerations in implementations:

– The input signal cannot be perfectly bandlimited

– A-to-D and D-to-A converters have finite-precision 

output and input respectively

– Only finite-precision arithmetic is available for 

computations

A-to-D

Converter

D-to-A

Converter

Finite-

Precision

Algorithm

xc (t) x[n] y[n] yc (t)
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Representation of A-to-D Converter

Quantization step-size

for (B+1)-bit quantizer

 
2Xm

2
B1 

Xm

2
B

x[n]

ˆ x [n] ˆ x B[n]
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A-to-D and D-to-A Conversion

ˆ x B[n]

ˆ x [n]
x[n]

Quantization error

e[n]  ˆ x [n] x[n]
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Quantization of a Sine Wave

Unquantized

sinewave

3-bit 

quantization

waveform

3-bit

quantization

error

8-bit

quantization

error
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3-Bit Speech Quantization

Input to

quantizer

3-bit 

quantization

waveform
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3-Bit Speech Quantization Error

Input to

quantizer

3-bit

quantization

error
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5-Bit Speech Quantization

Input to

quantizer

5-bit 

quantization

waveform
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5-Bit Speech Quantization Error

Input to

quantizer

5-bit

quantization

error
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Quantization Error

• Each sample is quantized and each sample has a 

quantization error defined as

• Since each sample falls in an interval of length ,

and the quantized sample falls in the middle of 

that interval,

• We call this “quantization noise” because it 

seems to vary randomly.  Clearly, the strength 

(power) of this noise is proportional to ; i.e.,

e[n]  ˆ x [n] x[n]

( / 2)  e[n] ( / 2).

e
2
 K

2
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Typical Amplitude Distributions

Laplacian

distribution is

often used as

a model for 

speech signals

A 3-bit 

quantized 

signal has only

8 different 

values
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Probabilistic Model for Quantization

• We observed that the quantization error has very 
complicated variations that suggest a random or 
noise-like character.

• Random signals are represented by probability 
distributions and averages such as

– Mean and mean-square (average power)

– Histograms

– Autocorrelation function

– Power spectrum

• This is a good way to think about quantization 
noise.
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Histograms of Quantization Noise

3-bit 

quantization

histogram

8-bit 

quantization

histogram

1
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Spectra of Quantization Noise

12 dB
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Linear Noise Model

• Error is uncorrelated with the input.

• Error is uniformly distributed over the interval

• Error is stationary white noise, (i.e. flat spectrum)
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Quantizer Signal-to-Noise Ratio

• Assume           levels and amplitude range         .  

Then using a probabilistic analysis we obtain

• Therefore the quantizer SNR is:

2
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Variation of SNR with Signal Level

5

6

7 bits

6 dB

SNR improves 6 dB/bit,

But it decreases 6 dB 

For each halving of the

Input signal amplitude

Overload


