

Overview of Lecture

- · Changing sampling rates
 - Decimation (last Lecture)
 - Interpolation
 - Non-Integer Rate Change
- · Over-sampling to ease filtering
- Representation of A-to-D Converter
- · Probabilistic analysis of quantization
 - Model

CE4270

- Signal-to-noise ratio
- · Variation of SNR with Signal Level

Interpolation - I	
$\begin{array}{c c} x_{c}(nT) \\ \hline x_{[n]} \\ \hline \\ \text{Sampling} \\ \end{array} \begin{array}{c} \text{Lowpass filter} \\ \text{Gain = L} \\ \text{Cutoff = } \pi/L \\ \hline \\ x_{i}[n] \\ \end{array} \begin{array}{c} x_{c}(nT/L) \\ \hline \\ x_{c}(nT/L) \\ \hline x_{c}$	
$x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] = \begin{cases} x[n/L], & n=0,\pm L, \dots \\ 0, & \text{otherwise} \end{cases}$	
$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin[\pi(n-kL)/L]}{[\pi(n-kL)/L]} \text{ or since}$	
$x_c(t) = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin[\pi(t-kT)/T]}{[\pi(t-kT)/T]} \longleftarrow \text{ Sampling Theorem}$	
$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin[\pi(nT/L-kT)/T]}{[\pi(nT/L-kT)/T]} = x_c(nT/L)$	
ECE4270 Spring 2017	

Interpolation - II
$\begin{array}{cccc} \mathbf{x}_{c}(nT) & & & \\ \hline \mathbf{x}_{c}(nT) & & \\ \hline \mathbf{x}_{c}(nT/L) & \\ \hline \mathbf{x}_{c}(nT/L) & \\ \hline \mathbf{x}_{c}(e^{j\omega}) & = & \\ \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{x}[k] \delta[n-kL] e^{-j\omega n} \\ & = & \\ \sum_{n=-\infty}^{\infty} \mathbf{x}[k] e^{-j\omega Lk} = \mathbf{X}(e^{j\omega L}) \\ \hline \mathbf{x}_{e}(e^{j\Omega T/L}) & = & \\ \mathbf{X}(e^{j\Omega T/L}) & = & \\ T & \\ \sum_{k=-\infty}^{\infty} \mathbf{x}_{c}\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right) \\ \hline \mathbf{x}_{i}(e^{j\Omega T/L}) & = & \\ H_{i}(e^{j\Omega T/L}) \mathbf{x}_{c}\left(j\left(\Omega - \frac{2\pi k}{T/L}\right)\right) \\ & \\ \end{array}$
ECE4270 Spring 2017

Spring 201

Digital Processing of Analog Signals		
 x_c(t) A-to-D Converter x[n] Finite-Precision Algorithm Practical considerations in implementations: The input signal cannot be perfectly bandlimited A-to-D and D-to-A converters have finite-precision output and input respectively Only finite-precision arithmetic is available for computations 		
CE4270 Spri	ng 2017	

Quantization Error

• Each sample is quantized and each sample has a quantization error defined as

$e[n] = \hat{x}[n] - x[n]$

 Since each sample falls in an interval of length Δ, and the quantized sample falls in the middle of that interval,

$-(\Delta/2) < e[n] \leq (\Delta/2).$

 We call this "quantization noise" because it seems to vary randomly. Clearly, the strength (power) of this noise is proportional to Δ; i.e.,

Spring 2017

Spring 2017

Probabilistic Model for Quantization

- We observed that the quantization error has very complicated variations that suggest a random or noise-like character.
- Random signals are represented by probability distributions and averages such as
 - Mean and mean-square (average power)
 - Histograms
 - Autocorrelation function
 - Power spectrum
- This is a good way to think about quantization noise.

ECE4270

ECE4270

