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Overview of Lecture 

• A-to-D conversion

• Probabilistic analysis of quantization

– Model

– Signal-to-noise ratio

• Variation of SNR with Signal Level

• Oversampling can be used to reduce quantization 

noise 

• Introduction to Chapter 5

– Use of z-transform in analysis of LTI systems

– Poles and zeros and frequency response
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Representation of A-to-D Converter

Quantization step-size

for (B+1)-bit quantizer

 
2Xm

2
B1 

Xm

2
B

x[n]

ˆ x [n] ˆ x B[n]
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A-to-D and D-to-A Conversion

ˆ x B[n]

ˆ x [n]
x[n]

Quantization error

e[n]  ˆ x [n] x[n]
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Quantization of a Sine Wave

Unquantized

sinewave

3-bit 

quantization

waveform

3-bit

quantization

error

8-bit

quantization

error




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3-Bit Speech Quantization

Input to

quantizer

3-bit 

quantization

waveform
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3-Bit Speech Quantization Error

Input to

quantizer

3-bit

quantization

error
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5-Bit Speech Quantization

Input to

quantizer

5-bit 

quantization

waveform
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5-Bit Speech Quantization Error

Input to

quantizer

5-bit

quantization

error
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Quantization Error

• Each sample is quantized and each sample has a 

quantization error defined as

• Since each sample falls in an interval of length , 

and the quantized sample falls in the middle of 

that interval,

• We call this “quantization noise” because it 

seems to vary randomly.  Clearly, the strength 

(power) of this noise is proportional to ; i.e.,

e[n]  ˆ x [n] x[n]

( / 2)  e[n]  ( / 2).

e
2

 K
2
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Typical Amplitude Distributions

Laplacian

distribution is

often used as

a model for 

speech signals

A 3-bit 

quantized 

signal has only

8 different 

values
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Probabilistic Model for Quantization

• We observed that the quantization error has very 
complicated variations that suggest a random or 
noise-like character.

• Random signals are represented by probability 
distributions and averages such as

– Mean and mean-square (average power)

– Histograms

– Autocorrelation function

– Power spectrum

• This is a good way to think about quantization 
noise.



4

ECE4270 Spring 2017

Histograms of Quantization Noise

3-bit 

quantization

histogram

8-bit 

quantization

histogram

1



/2/2
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Spectra of Quantization Noise

 12 dB
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Linear Noise Model

• Error is uncorrelated with the input.

• Error is uniformly distributed over the interval

• Error is stationary white noise, (i.e. flat spectrum)

Pe ()  e
2


1


e

2
de 

 /2

 /2


2

12
, | |  

( / 2)  e[n]  ( / 2).

x[n] ˆ x [n]  Q x[n] 

ˆ x [n]  x[n] e[n]x[n]

e[n]
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Quantizer Signal-to-Noise Ratio

• Assume           levels and amplitude range         .  

Then using a probabilistic analysis we obtain

• Therefore the quantizer SNR is:

2
(B1) 2Xm

  
2Xm

2
(B1)

step size

 2
 B

Xm   e
2


22B Xm

2

12
noise power

SNR =10 log10
 x

2

 e
2

 

 
 

 

 
 

 6.02B +10.8 - 20log10
Xm

 x

 

 
 

 

 
 

 10log10
12 22 B x

2

Xm
2

 

 
 

 

 
 

(in dB)
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Variation of SNR with Signal Level

5

6

7 bits

6 dB

SNR improves 6 dB/bit,

But it decreases 6 dB 

For each halving of the

Input signal amplitude

Overload
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Oversampling in A-to-D Conversion

Assumptions : xaxa
( j)  0, |  |  N ;

2

T
 2MN  and ee(e

j
)   e

2


2

12
, |  |  
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Oversampling Impoves SNR

 xde

2
 =

1

2
 e

2
d

 / M

 / M

 
1

2

e
2

M
 e

2
d





 
e

2

M

SNR  6.02B 10.8 10log10 (M)  20log10

Xm

 x

 

 
 

 

 
 
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Summary

• Quantization of signal values and results of 

computation is unavoidable in a digital system.

• We can analyze quantization error using a 

random noise model.

• The more bits in the number representation, the 

lower the noise.  A soft stated theorem is that “the 

signal-to-noise ratio increases 6 dB with each 

added bit”; however, remember that if the signal 

level decreases while keeping the quantizer step-

size the same it is like throwing away bits!
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Convolution Theorem

y[n]  x[k]h[n  k]  Y(e
j

)
k



  X(e
j

)H(e
j

)

LTI

System

x[n] y[n]

[n] h[n]

e
jn H(e

j
)e

jn

Y(e
j

)  H(e
j

)X(e
j

)

X(e
j

) Y(e
j

)

Y(e
j

)  H(e
j

) X(e
j

)

Y(e
j

)  H(e
j

)  X(e
j

)
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Linear Phase Means Delay

• Since we can consider the effects of magnitude 
and phase separately, it follows that linear phase 
of the form                             implies delay of nd

samples.

• Thus an ideal lowpass filter with delay has 

H(e
j

)   nd

H(e
j

) e
 jnd

y[n]  w[n  nd ]x[n] w[n]

hlp[n] 
sinc(n  nd )

(n  nd )
 H(e

j
) 

e
 jnd   c

0 c    

 
 
 
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Frequency Response Functions

• Log-magnitude (in dB)

• Phase (in radians)

• Group delay (in samples)

H(e
j

)  H(e
j

)e
jH(e j )

H(e
j

)  arg H(e
j

) 

20log10 H(e
j

)

 ( )  grd H(e
j

)  
d

d
H(e

j
) 
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Rational System Functions

• Consider a general difference equation of the form

• Rational system function of a causal and stable LTI 
system

H(z) 

bkzk

k0

M



ak z
k

k0

N




b0

a0

(1 ck z
1

)
k1

M



(1 dk z
1

)
k1

N



Causal 

z  max
k

dk

aky[n  k]
k0

N

  bkx[n  k]
k0

M



Stable 

max
k

dk  1
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Impulse Response

• We can make a partial fraction expansion of the 

rational system function:

• The inverse z-transform gives the impulse response

H(z)  Brz
r

r0

(MN )


 

 
 

 

 
 

if M N


Ak

1 dkz
1

k1

N



h[n]  Br[n  r]
r0

(M N )


 

 
 

 

 
 

if MN

 Akdk
n
u[n]

k1

N



z  max
k

dk
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Pole-Zero Plot

H(z)  (1 re
j

z
1

)


z  re j

z

H(e j ) 
e j  re j

e
j


v3

v1

H(e
j

) 
e j  re j

e
j


v3

v1

 v3

v2  re
j

v1  e
j

v1  v2  v3  v3  v1  v2
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Example (I)

• System function:

• Difference equation:

• Impulse response:

H(z) 
1

1  re
j

z
1 1  re

 j
z

1 


1

1 2r cosz
1

 r
2
z

2

y[n]  2r cosy[n 1] r
2
y[n  2] x[n]

H(z) 

1

1 e j2

1  re
j

z
1 



1

1  e j2

1 re
 j

z
1 

h[n] 
rn sin  n 1  

sin
u[n]
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Example (II)

H(e
j

) 
v3

2

v1  v2

H(z) 
z2

z  re
j z  re

 j 



8

ECE4270 Spring 2017

Example (III): Magnitude


