

Overview of Lecture

- Chapter 6
-Signal flow graphs and block diagrams
- IIR systems
- Direct forms
- Cascade form
- Parallel form
- FIR systems Implementations
- Two's-complement arithmetic
- Integers and fractions
- Scaling for fixed-point arithmetic

ECE4270	Spring 2017

Digital Filters

- General Nth-order difference equation:

$$
y[n]=\sum_{k=1}^{N} a_{k} y[n-k]+\sum_{k=0}^{M} b_{k} x[n-k]
$$

- System function:

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=A \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

- There is a direct correspondence between the difference equation and the system function when the numerator and denominator are written as polynomials in z^{11}.

Direct Form I Implementation

$H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=\underbrace{\left(\frac{1}{1-\sum_{k=1}^{N} a_{k} z^{-k}}\right)}_{\text {poles }} \underbrace{\sum_{k=0}^{M} b_{k} z^{-k}}_{\text {zeros }}$
$Y(z)=H(z) X(z)$
$v[n]=\sum_{k=0}^{M} b_{k} x[n-k] \quad$ (zeros)
$y[n]=\sum_{k=1}^{N} a_{k} y[n-k]+v[n] \quad$ (poles)
Sporing 2017

Direct Form II Implementation

$H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=\underbrace{\sum_{k=0}^{M} b_{k} z^{-k}}_{\text {zeros }} \underbrace{\left(\frac{1}{1-\sum_{k=1}^{N} a_{k} z^{-k}}\right)}_{\text {poles }}$
$Y(z)=H(z) X(z)$
$w[n]=\sum_{k=1}^{N} a_{k} w[n-k]+x[n]$ (poles)
$y[n]=\sum_{k=0}^{M} b_{k} w[n-k] \quad$ (zeros)
Sce\&270

Cascade Form

- Express $\mathrm{H}(\mathrm{z})$ in terms of poles and zeros

$$
H(z)=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1-\sum_{k=1}^{N} a_{k} z^{-k}}=A \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

- Group poles and zeros as second-order factors

$$
H(z)=\prod_{k=1}^{N_{s}} \frac{b_{0 k}+b_{1 k} z^{-1}+b_{2 k} z^{-2}}{1-a_{1 k} z^{-1}+a_{2 k} z^{-2}}
$$

IIR Cascade Form

$y_{0}[n]=x[n]$,
$w_{k}[n]=a_{1 k} w_{k}[n-1]+a_{2 k} w_{k}[n-2]+y_{k-1}[n], \quad k=1,2, \ldots, N_{s}$,
$y_{k}[n]=b_{0 k} w_{k}[n]+b_{1 k} w_{k}[n-1]+b_{2 k} w_{k}[n-2], \quad k=1,2, \ldots, N_{s}$,
$y[n]=y_{N_{s}}[n]$.

Parallel Form

- Make a partial fraction expansion of $\mathrm{H}(\mathrm{z})$

$$
\begin{aligned}
H(z)= & \sum_{k=0}^{N_{p}} C_{k} z^{-k}+\sum_{k=1}^{N_{1}} \frac{B_{k}}{1-c_{k} z^{-1}} \\
& +\sum_{k=1}^{N_{2}}\left(\frac{A_{k}}{1-d_{k} z^{-1}}+\frac{A_{k}^{*}}{1-d_{k}^{*} z^{-1}}\right)
\end{aligned}
$$

- Group terms in second order factors

$$
H(z)=\sum_{k=0}^{N_{p}} C_{k} z^{-k}+\sum_{k=1}^{N_{s}} \frac{e_{0 k}+e_{1 k^{\prime}} z^{-1}}{1-a_{1 k} z^{-1}-a_{2 k^{2}} z^{-2}}
$$

Solve for the System Function (II)

FIR Systems

- FIR system functions have only zeros

$$
H(z)=\sum_{k=0}^{M} b_{k} z^{-k}=\sum_{k=0}^{M} h[k] z^{-k}
$$

- In this case, direct form I is just convolution.

$y[n]=(((h[0] x[n]+h[1] x[n-1])+h[2] x[n-2])+\ldots)$
Multiply-accumulate (MAC)
ECE4270

FIR Transposed Direct Form

- FIR direct form

- FIR transposed direct form

FIR Linear Phase Systems

ECE4270	Spring 2017

Fixed-Point Scaling - I

- 16-bit two's complement integers range in size from -32768_{10} to $+32767_{10}$.
- Q notation is a convenient way for a programmer to keep track of the binary point when representing fractional numbers by integers. Consider a fractional number a such that $-1 \leq a<1$, then we can represent a by a Q15 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is simply

$$
a=A \times 2^{-15} \quad \text { or } \quad A=a \times 2^{15}
$$

Fixed-Point Scaling - III

- Consider a mixed number a such that $-4 \leq a<4$ Then we can represent a by a Q13 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is

$$
a=A \times 2^{-13} \text { or } A=a \times 2^{13}
$$

- For example

$$
a=3.5 \Leftrightarrow A=28672_{10} \mathrm{Q} 13
$$

$$
011 \wedge \underbrace{100000000000}_{13 \text { bits }}
$$

Fixed-Point Scaling - II

- Consider a fractional number a such that $-1 \leq a<1$, then we can represent a by a Q15 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is

$$
a=A \times 2^{-15} \quad \text { or } \quad A=a \times 2^{15}
$$

- For example

$$
a=0.75 \Leftrightarrow A=24576_{10} \mathrm{Q} 15
$$

Q15 means 15 bits to the right of the binary point
ECE4270

Fixed-Point Scaling - IV

- The smallest number that can be represented by a Q15 number is

$$
\Delta=\frac{\text { range }}{\text { number of possibilities }}=\frac{2}{2^{16}}=\frac{1}{2^{15}}
$$

- In general, the smallest number representable as a QB number will be

$$
\Delta=\frac{1}{2^{B}}
$$

- That is, in a QB number, the least significant bit (LSB) has value

$$
\Delta=\frac{1}{2^{B}}
$$

