

FIR Filter Coefficients				
Coefficier	nt Unquantized	The condition for		
h[0] = h[2]	7] 1.359657×10^{-3}	linear phase is		
h[1] = h[2] $h[2] = h[2]$	$ \begin{array}{c} 6] & -1.616993 \times 10^{-3} \\ 5] & -7.738032 \times 10^{-3} \end{array} $	$h[M-n] = \pm h[n]$		
h[3] = h[2]	4] -2.686841×10^{-3} 1 255246 $\times 10^{-2}$			
h[4] = h[2] h[5] = h[2]	$\begin{array}{c} 1.233240 \times 10 \\ 2 \\ \end{array}$			
h[6] = h[2] h[7] = h[2]	1] -2.217952×10^{-2} 0] -1.524663×10^{-2}	1.4.1		
h[8] = h[1]	9] 3.720668×10^{-2}	In this case,		
h[9] = h[1] h[10] = h[8] 3.233332×10^{-2} 17] -6.537057×10^{-2}	$\max{h[k]} \le 0.5$		
h[11] = h[16] -7.528754×10^{-2}			
h[12] = h[$h[13] = h[$	15] 1.560970×10^{-1} 14] 4.394094×10^{-1}			
ECE4270	-	Spring 2017		

Fixed-Point Arithmetic in DSP Chips

- Numbers in fixed-point DSPs are represented as two's complement numbers. (16 bits in TI chips)
- Although the processor deals implicitly with signed two's complement integers, filter coefficients have fractional parts. Representation of these fractions must be built into the program.
- Proper scaling of the signals and coefficients is required to maintain precision while avoiding overflow. Therefore, the programmer must constantly worry about the following: scaling, quantization (roundoff noise), and overflow.

Spring 2017

ECE4270

Fixed-Point Scaling - I

- 16-bit two's complement integers range in size from -32768₁₀ to +32767₁₀.
- Q notation is a convenient way for a programmer to keep track of the binary point when representing fractional numbers by integers. Consider a fractional number *a* such that $-1 \le a < 1$, then we can represent *a* by a Q15 integer *A* such that $-32768 \le A \le 32767$. The relationship between *a* and *A* is simply

$$a = A \times 2^{-15}$$
 or $A = a \times 2^{15}$

Spring 2017

CE4270

Fixed-Point Scaling - II

• Consider a fractional number *a* such that $-1 \le a < 1$, then we can represent *a* by a Q15 integer *A* such that $-32768 \le A \le 32767$. The relationship between *a* and *A* is

$$a = A \times 2^{-15} \quad \text{or} \quad A = a \times 2^{15}$$

· For example

ECE427

$$a = 0.75 \iff A = 24576_{10} \text{ Q15}$$

$$0_{\wedge} \underbrace{11000000000000}_{15 \text{ bits}}$$
Q15 means 15 bits to the right of the binary point.

2017

Fixed-Point Scaling - III • Consider a mixed number *a* such that $-4 \le a < 4$ Then we can represent *a* by a Q13 integer *A* such that $-32768 \le A \le 32767$. The relationship between *a* and *A* is $a = A \times 2^{-13}$ or $A = a \times 2^{13}$ • For example $a = 3.5 \Leftrightarrow A = 28672_{10}$ Q13 $011_{\wedge} \underbrace{1000000000000}_{13 \text{ bits}}$

Example of Quantizing Coefficie	ents
% Multiply the coefficient by 2^15	
»a=001359657; A=a*2^(15)	
A =	
-44.55324057600000	
% Round (or truncate) the result	
»Ahat=round(A)	
Ahat =	
-45	
% The equivalent quantized fraction is therefore	
»ahat=Ahat/2^(15)	
ahat =	
-0.00137329101562	
E4270	Spring 201

Quantized FIR Filter Coefficients				
Coefficient	Unquantized	Q15	Q12	
h[0] = h[27] $h[1] = h[26]$ $h[2] = h[25]$ $h[3] = h[24]$ $h[4] = h[23]$ $h[5] = h[22]$ $h[6] = h[21]$ $h[7] = h[20]$ $h[8] = h[19]$ $h[9] = h[18]$ $h[10] = h[17]$ $h[11] = h[16]$	$\begin{array}{c} 1.359657 \times 10^{-3} \\ -1.616993 \times 10^{-3} \\ -7.738032 \times 10^{-3} \\ -2.686841 \times 10^{-3} \\ 1.255246 \times 10^{-2} \\ 6.591530 \times 10^{-3} \\ -2.217952 \times 10^{-2} \\ -1.524663 \times 10^{-2} \\ 3.720668 \times 10^{-2} \\ 3.233332 \times 10^{-2} \\ -6.537057 \times 10^{-2} \\ -7.528754 \times 10^{-2} \end{array}$	$\begin{array}{r} 45 \times 2^{-15} \\ -53 \times 2^{-15} \\ -254 \times 2^{-15} \\ -88 \times 2^{-15} \\ 411 \times 2^{-15} \\ 216 \times 2^{-15} \\ -727 \times 2^{-15} \\ -500 \times 2^{-15} \\ 1219 \times 2^{-15} \\ 1059 \times 2^{-15} \\ -2142 \times 2^{-15} \\ -2467 \times 2^{-15} \end{array}$	$\begin{array}{c} 6 \times 2^{-12} \\ -7 \times 2^{-12} \\ -32 \times 2^{-12} \\ -11 \times 2^{-12} \\ 51 \times 2^{-12} \\ 27 \times 2^{-12} \\ -91 \times 2^{-12} \\ -62 \times 2^{-12} \\ 152 \times 2^{-12} \\ 132 \times 2^{-12} \\ -268 \times 2^{-12} \\ -308 \times 2^{-12} \end{array}$	
h[12] = h[15] h[13] = h[14]	$\begin{array}{c} 1.560970 \times 10^{-1} \\ 4.394094 \times 10^{-1} \end{array}$	5115×2^{-15} 14399×2^{-15}	$639 \times 2^{-12} \\ 1800 \times 2^{-12}$	
ECE4270			Spring 2017	

Quantized Filter Coefficients

• For fixed-point implementation, the filter coefficients generally will be computed by a design algorithm that gives the filter coefficients as floating-point numbers. Therefore, they must be quantized to *B*+1 bits

$$\hat{h}[n] = Q_B \{h[n]\} = h[n] + \Delta h[n]$$
$$\hat{H}(e^{j\omega}) = \sum_{n=0}^{M} (h[n] + \Delta h[n])e^{-j\omega n}$$
$$= H(e^{j\omega}) + \sum_{n=0}^{M} \Delta h[n]e^{-j\omega n}$$

ECE4270

Adding
 When adding binary numbers, you must line up the binary points. This can be done by shifting one or the other of the numbers either left or right (multiply by power of 2).
lost in shift
$\begin{array}{l}00_{0}010000000000000000000000000000000$
\downarrow
$\begin{array}{rl} 0000_{\wedge}0100000000000000000000000000000000000$
$0001_{0}01100000000000000000000000000000$
ECE4270 Spring 2017

Multiplication of 2's Comp. Numbers
 Let A and X be Q0 numbers (i.e., integers). Then A * X also will be a Q0 number. Example,
000000000010001 = 17 Q0
* 111111111111111111111111111111111111
111111111111111111111111111111111111
 Let A and X be Q14 numbers. Then A * X will be a Q28 number. Example,
01100000000000 = 1.5 Q14
* 00110000000000 = 0.75 Q14
$0\overline{001_{0}00100000000000000000000000000000$
ECE4270 Spring 2017

Multiplication of 2's Comp. Numbers

- The product A * X of two B+1 bit 2's complement numbers is a 2B+1 bit number. TI hardware gives a 2B+2 bit number with two sign bits. If you retain all bits, therefore, products cannot overflow.
- Let A and X be Q15 numbers. Then A * X will be a Q30 number with the binary point moved right by one position. Example,

- Overflow can occur in two ways:
 - Accumulator overflows due to additions
 - Taking 16 bits out of the wrong part of a product
- Overflow can be prevented by:

CE4270

- More precision use larger accumulator
- Saturation arithmetic clip accumulator at largest value
- Shift products to the right to discard low-order bits. This results in loss of precision.

Spring 2017

