

Quantization in LTI Implementation - I

Overview of Lecture

- Quantization in LTI Implementation
- Two's-complement arithmetic
- Integers and fractions
- Scaling for fixed-point arithmetic
- Quantizing filter coefficients
- Addition \& Multiplications

ECE4270	Spring 2017

Linear Noise Model

- Error is uncorrelated with the input.
- Error is uniformly distributed over the interval

$$
-(\Delta / 2)<e[n] \leq(\Delta / 2)
$$

- Error is stationary white noise, (i.e. flat spectrum)

$$
P_{e}(\omega)=\sigma_{e}^{2}=\frac{\Delta^{2}}{12}, \quad|\omega| \leq \pi
$$

ECE4270

Quantization in LTI Implementation - II

Fixed-Point Arithmetic in DSP Chips

- Numbers in fixed-point DSPs are represented as two's complement numbers. (16 bits in TI chips)
- Although the processor deals implicitly with signed two's complement integers, filter coefficients have fractional parts. Representation of these fractions must be built into the program.
- Proper scaling of the signals and coefficients is required to maintain precision while avoiding overflow. Therefore, the programmer must constantly worry about the following: scaling, quantization (roundoff noise), and overflow.

FIR Filter Coefficients

FIR Filter Coefficients		
Coefficient	Unquantized	
$h[0]=h[27]$	1.359657×10^{-3}	The condition for
$h[1]=h[26]$	-1.616993×10^{-3}	
$h[2]=h[25]$	-7.738032×10^{-3}	$h[M-n]= \pm h[n]$
$h[3]=h[24]$	-2.686841×10^{-3}	
$h[4]=h[23]$	1.255246×10^{-2}	
$h[5]=h[22]$	6.591530×10^{-3}	
$h[6]=h[21]$	-2.217952×10^{-2}	
$h[7]=h[20]$	-1.524663×10^{-2}	In this case,
$h[8]=h[19]$	3.720668×10^{-2}	
$h[9]=h[18]$	3.233332×10^{-2}	max $\{h[k]\} \leq 0.5$
$h[10]=h[17]$	-6.537057×10^{-2}	
$h[11]=h[16]$	-7.528754×10^{-2}	
$h[12]=h[15]$	1.560970×10^{-1}	
$h[13]=h[14]$	4.394094×10^{-1}	

Two's Complement Numbers

Two's Complement Addition

Fixed-Point Scaling - II

- Consider a fractional number a such that $-1 \leq a<1$, then we can represent a by a Q15 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is

$$
a=A \times 2^{-15} \quad \text { or } \quad A=a \times 2^{15}
$$

- For example

$$
\begin{aligned}
& a=0.75 \Leftrightarrow A=24576_{10} \text { Q15 } \\
& 0 \wedge \underbrace{110000000000000}_{15 \text { bits }} \\
& \text { Q15 means } 15 \text { bits to the right of the binary point. }
\end{aligned}
$$

ECE4270

Fixed-Point Scaling - I

- 16-bit two's complement integers range in size from -32768_{10} to $+32767_{10}$.
- Q notation is a convenient way for a programmer to keep track of the binary point when representing fractional numbers by integers. Consider a fractional number a such that $-1 \leq a<1$, then we can represent a by a Q15 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is simply

$$
a=A \times 2^{-15} \quad \text { or } \quad A=a \times 2^{15}
$$

Fixed-Point Scaling - III

- Consider a mixed number a such that $-4 \leq a<4$ Then we can represent a by a Q13 integer A such that $-32768 \leq A \leq 32767$. The relationship between a and A is

$$
a=A \times 2^{-13} \quad \text { or } \quad A=a \times 2^{13}
$$

- For example

$$
a=3.5 \Leftrightarrow A=28672_{10} \mathrm{Q} 13
$$

$011 \wedge \underbrace{1000000000000}_{13 \text { bits }}$

ECE4270
Spring 2017

Fixed-Point Scaling - IV

- The smallest number that can be represented by a Q15 number is

$$
\Delta=\frac{\text { range }}{\text { number of possibilities }}=\frac{2}{2^{16}}=\frac{1}{2^{15}}
$$

- In general, the smallest number representable as a $Q B$ number will be

$$
\Delta=\frac{1}{2^{B}}
$$

- That is, in a QB number, the least significant bit (LSB) has value

$$
\Delta=\frac{1}{2^{B}}
$$

Example of Quantizing Coefficients

\% Multiply the coefficient by ${ }^{\wedge} 15$

" $a=-.001359657 ; \quad A=a^{*} 2^{\wedge}(15)$

A =
-44.55324057600000
\% Round (or truncate) the result
"Ahat=round(A)
Ahat $=$
-45
\% The equivalent quantized fraction is therefore "ahat=Ahat/ $2^{\wedge}(15)$
ahat =
-0.00137329101562

Quantized Filter Coefficients

- For fixed-point implementation, the filter coefficients generally will be computed by a design algorithm that gives the filter coefficients as floating-point numbers. Therefore, they must be quantized to $B+1$ bits

$$
\begin{aligned}
\hat{h}[n] & =Q_{B}\{h[n]\}=h[n]+\Delta h[n] \\
\hat{H}\left(e^{j \omega}\right) & =\sum_{n=0}^{M}(h[n]+\Delta h[n]) e^{-j \omega n} \\
& =H\left(e^{j \omega}\right)+\sum_{n=0}^{M} \Delta h[n] e^{-j \omega n} \\
&
\end{aligned}
$$

ECE4270

8-Bit Quantization of FIR Filter (IV)

Zeros stay in reciprocal quads, but shift significantly due to the quantization.

16-Bit Quantization of FIR Filter (III)

We preserve the linear phase property since

$$
\hat{h}[M-n]= \pm \hat{h}[n]
$$

ECE4270

2's Complement Numbers

- To change the sign of a 2's complement number, just complement all the bits, and add 1 to the least significant bit.

$$
-6=-(0110)=1001+1=1010
$$

- When accumulating 3 or more 2 's complement numbers, the intermediate sums can overflow, but the final sum will be correct if it does not exceed the word length of the numbers.

$$
\underline{6+4}+(-6)=10+(-6)=4
$$

$$
\frac{0110+0100}{\square}+1010=1010+1010=0100
$$

ECE4270

Two's Complement Addition

Adding moves clockwise and subtracting moves counter clockwise around the circle. Overflow wraps around.

Multiplication of 2's Comp. Numbers

- Let A and X be Q 0 numbers (i.e., integers). Then $A * X$ also will be a Q0 number. Example,

$$
\begin{aligned}
0000000000010001 & =17 \quad \mathrm{Q} 0 \\
* 1111111111111011 & =-5 \quad \mathrm{Q} 0 \\
\frac{1111111111111111 \underbrace{111111110101011}_{16 \text { leact cimificant }}}{} & =-85 \quad \mathrm{Q} 0
\end{aligned}
$$

- Let A and X be Q 14 numbers. Finen $A * X$ will be a Q28 number. Example,

$$
\begin{aligned}
0110000000000000 & =1.5 \quad \mathrm{Q} 14 \\
* 0011000000000000 & =0.75 \quad \text { Q14 } \\
0001_{\wedge} 0010000000000000000000000000 & =1.125 \quad \text { Q28 }
\end{aligned}
$$

ECE4270 Spring 2017

Overflow

- Overflow can occur in two ways:
- Accumulator overflows due to additions
- Taking 16 bits out of the wrong part of a product
- Overflow can be prevented by:
- More precision - use larger accumulator
- Saturation arithmetic - clip accumulator at largest value
- Shift products to the right to discard low-order bits. This results in loss of precision.

ECE4270

Two's Complement Quantizer

Two's Complement Saturation

