
1

ECE4270
Fundamentals of DSP

Lecture 19

Fixed-Point Numbers and Arithmetic

School of Electrical and Computer Engineering

Center for Signal and Information Processing

Georgia Institute of Technology

ECE4270 Spring 2017

Overview of Lecture

• Quantization in LTI Implementation

• Two’s-complement arithmetic

– Integers and fractions

– Scaling for fixed-point arithmetic

– Quantizing filter coefficients

– Addition & Multiplications

ECE4270 Spring 2017

Quantization in LTI Implementation - I

A-to-D D-to-A

ECE4270 Spring 2017

Linear Noise Model

• Error is uncorrelated with the input.

• Error is uniformly distributed over the interval

• Error is stationary white noise, (i.e. flat spectrum)

Pe ()   e
2

2

12
, | |  

( / 2)  e[n] ( / 2).

2

ECE4270 Spring 2017

Quantization in LTI Implementation - II

A-to-D D-to-A

ECE4270 Spring 2017

FIR Filter Coefficients

max h[k]  0.5

h[M  n]  h[n]

The condition for

linear phase is

In this case,

ECE4270 Spring 2017

Fixed-Point Arithmetic in DSP Chips

• Numbers in fixed-point DSPs are represented as
two’s complement numbers. (16 bits in TI chips)

• Although the processor deals implicitly with
signed two’s complement integers, filter
coefficients have fractional parts. Representation
of these fractions must be built into the program.

• Proper scaling of the signals and coefficients is
required to maintain precision while avoiding
overflow. Therefore, the programmer must
constantly worry about the following: scaling,
quantization (roundoff noise), and overflow.

ECE4270 Spring 2017

Two’s Complement Numbers

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b14b13 b15

 

Sign

bit B+1=16

B+1=4

3

ECE4270 Spring 2017

Two’s Complement Addition

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



Adding moves clockwise and subtracting moves counter

clockwise around the circle. Overflow wraps around.

overflow overflow

ECE4270 Spring 2017

Fixed-Point Scaling - I

• 16-bit two’s complement integers range in size

from -3276810 to +3276710.

• Q notation is a convenient way for a programmer

to keep track of the binary point when

representing fractional numbers by integers.

Consider a fractional number such that

then we can represent by a Q15 integer such

that The relationship between

and is simply

1 a 1,

32768 A  32767.

a  A 2
15

or A  a 2
15

a
a

a
A

A

ECE4270 Spring 2017

Fixed-Point Scaling - II

• Consider a fractional number such that

then we can represent by a Q15 integer such

that The relationship between

and is

• For example

1 a 1,

32768 A  32767.

a  A 2
15

or A  a 2
15

a  0.75  A  2457610 Q15

0110000000000000
15 bits

Q15 means 15 bits to the right of the binary point.

a
a A

a
A

ECE4270 Spring 2017

Fixed-Point Scaling - III

• Consider a mixed number a such that

Then we can represent a by a Q13 integer A

such that The relationship

between a and A is

• For example

4  a  4

32768 A  32767.

a  A 2
13

or A  a 2
13

a  3.5  A  2867210 Q13

0111000000000000
13 bits

4

ECE4270 Spring 2017

Fixed-Point Scaling - IV

• The smallest number that can be represented by

a Q15 number is

• In general, the smallest number representable as
a QB number will be

• That is, in a QB number, the least significant bit
(LSB) has value

 
range

number of possibilities


2

2
16 

1

2
15

 
1

2
B

 
1

2
B

ECE4270 Spring 2017

Example of Quantizing Coefficients
% Multiply the coefficient by 2^15

»a=-.001359657; A=a*2^(15)

A =

-44.55324057600000

% Round (or truncate) the result

»Ahat=round(A)

Ahat =

-45

% The equivalent quantized fraction is therefore

»ahat=Ahat/2^(15)

ahat =

-0.00137329101562

ECE4270 Spring 2017

Quantized FIR Filter Coefficients

Q15 Q12

ECE4270 Spring 2017

Quantized Filter Coefficients

• For fixed-point implementation, the filter

coefficients generally will be computed by a

design algorithm that gives the filter coefficients

as floating-point numbers. Therefore, they must

be quantized to B+1 bits

ˆ h [n] QB h[n]   h[n] h[n]

ˆ H (e
j

)  (h[n] h[n])e
 jn

n0

M



 H(e
j

) h[n]e
 jn

n0

M



5

ECE4270 Spring 2017

Unquantized FIR Filter Response (II)

Note that zeros are in

conjugate reciprocal

groups (1,2, or 4). This

is a basic property of FIR

linear phase filters.

Approximation error

1 H(e
j

)

0  H(e
j

)

20log10 H(e
j

)

ECE4270 Spring 2017

16-Bit Quantization of FIR Filter (III)

ˆ h [M  n]   ˆ h [n]

We preserve the linear phase property since

1 H(e
j

)

0  H(e
j

)

ECE4270 Spring 2017

8-Bit Quantization of FIR Filter (IV)

Zeros stay in reciprocal quads, but shift

significantly due to the quantization.

0  H(e
j

)1 H(e
j

)

ECE4270 Spring 2017

2’s Complement Numbers

• To change the sign of a 2’s complement number,

just complement all the bits, and add 1 to the

least significant bit.

• When accumulating 3 or more 2’s complement

numbers, the intermediate sums can overflow,

but the final sum will be correct if it does not

exceed the word length of the numbers.

6  (0110) 100111010

0110 0100 1010 1010 1010  0100

6 4  (6) 10 (6)  4

Partial sum overflows

Final

Sum

correct

6

ECE4270 Spring 2017

Two’s Complement Addition

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



Adding moves clockwise and subtracting moves counter

clockwise around the circle. Overflow wraps around.

overflow overflow

ECE4270 Spring 2017

Adding

• When adding binary numbers, you must line up

the binary points. This can be done by shifting

one or the other of the numbers either left or right

(multiply by power of 2).

00010000000000000000000000000000  0.25 Q30

 00010010000000000000000000000000 1.125 Q28

00000100000000000000000000000000  0.25 Q28
 00010010000000000000000000000000 1.125 Q28

00010110000000000000000000000000 1.375 Q28



lost in shift

ECE4270 Spring 2017

Multiplication of 2’s Comp. Numbers

• The product A * X of two B+1 bit 2’s complement

numbers is a 2B+1 bit number. TI hardware gives

a 2B+2 bit number with two sign bits. If you retain

all bits, therefore, products cannot overflow.

• Let A and X be Q15 numbers. Then A * X will be a

Q30 number with the binary point moved right by

one position. Example,

 0110000000000000  0.75 Q15

* 0100000000000000  0.5 Q15

0001100000000000

16 most significant

0000000000000000  0.375 Q30

2 sign bits

ECE4270 Spring 2017

Multiplication of 2’s Comp. Numbers

• Let A and X be Q0 numbers (i.e., integers). Then

A * X also will be a Q0 number. Example,

• Let A and X be Q14 numbers. Then A * X will be
a Q28 number. Example,

 0000000000010001 17 Q0

* 1111111111111011  5 Q0

11111111111111111111111110101011
16 least significant

 85 Q0

 0110000000000000  1.5 Q14

* 0011000000000000  0.75 Q14

00010010000000000000000000000000 1.125 Q28

7

ECE4270 Spring 2017

Overflow

• Overflow can occur in two ways:

– Accumulator overflows due to additions

– Taking 16 bits out of the wrong part of a product

• Overflow can be prevented by:

– More precision - use larger accumulator

– Saturation arithmetic - clip accumulator at

largest value

– Shift products to the right to discard low-order

bits. This results in loss of precision.

ECE4270 Spring 2017

Two’s Complement Quantizer

Overflow wraps around

-1 1

B  2

 
1

4

ECE4270 Spring 2017

Two’s Complement Saturation

Overflow clips

-1 1

B  2

 
1

4

