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Overview of Lecture 

• Quantization in LTI Implementation 

• Two’s-complement arithmetic

– Integers and fractions

– Scaling for fixed-point arithmetic

– Quantizing filter coefficients

– Addition & Multiplications
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Quantization in LTI Implementation - I

A-to-D D-to-A

ECE4270 Spring 2017

Linear Noise Model

• Error is uncorrelated with the input.

• Error is uniformly distributed over the interval

• Error is stationary white noise, (i.e. flat spectrum)
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( / 2)  e[n] ( / 2).



2

ECE4270 Spring 2017

Quantization in LTI Implementation - II

A-to-D D-to-A
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FIR Filter Coefficients

max h[k]  0.5

h[M  n]  h[n]

The condition for

linear phase is

In this case,
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Fixed-Point Arithmetic in DSP Chips

• Numbers in fixed-point DSPs are represented as 
two’s complement numbers. (16 bits in TI chips)

• Although the processor deals implicitly with 
signed two’s complement integers, filter 
coefficients have fractional parts.  Representation 
of these fractions must be built into the program.

• Proper scaling of the signals and coefficients is 
required to maintain precision while avoiding 
overflow.  Therefore, the programmer must 
constantly worry about the following: scaling, 
quantization (roundoff noise), and overflow.
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Two’s Complement Numbers

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b14b13 b15

 

Sign

bit B+1=16

B+1=4
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Two’s Complement Addition

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



Adding moves clockwise and subtracting moves counter

clockwise around the circle.  Overflow wraps around.

overflow overflow
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Fixed-Point Scaling - I

• 16-bit two’s complement integers range in size 

from -3276810 to +3276710.

• Q notation is a convenient way for a programmer 

to keep track of the binary point when 

representing fractional numbers by integers.  

Consider a fractional number    such that                   

then we can represent     by a Q15 integer such 

that                                The relationship between   

and is simply

1 a 1,

32768 A  32767.

a  A 2
15

or A  a 2
15

a
a

a
A

A
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Fixed-Point Scaling - II

• Consider a fractional number such that                   

then we can represent by a Q15 integer    such 

that                                The relationship between 

and    is 

• For example

1 a 1,

32768 A  32767.

a  A 2
15

or A  a 2
15

a  0.75  A  2457610 Q15

0110000000000000
15 bits

Q15 means 15 bits to the right of the binary point.

a
a A

a
A
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Fixed-Point Scaling - III

• Consider a mixed number a such that                  

Then we can represent a by a Q13 integer A

such that                                  The relationship 

between a and A is

• For example 

4  a  4

32768 A  32767.

a  A 2
13

or A  a 2
13

a  3.5  A  2867210 Q13

0111000000000000
13 bits
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Fixed-Point Scaling - IV

• The smallest number that can be represented by 

a Q15 number is

• In general, the smallest number representable as 
a QB number will be

• That is, in a QB number, the least significant bit 
(LSB) has value 

 
range

number of possibilities


2

2
16 

1

2
15

 
1

2
B

 
1

2
B
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Example of Quantizing Coefficients
% Multiply the coefficient by 2^15

»a=-.001359657;  A=a*2^(15)

A =

-44.55324057600000

% Round (or truncate) the result

»Ahat=round(A)

Ahat =

-45

% The equivalent quantized fraction is therefore

»ahat=Ahat/2^(15)

ahat =

-0.00137329101562
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Quantized FIR Filter Coefficients

Q15 Q12
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Quantized Filter Coefficients

• For fixed-point implementation, the filter 

coefficients generally will be computed by a 

design algorithm that gives the filter coefficients 

as floating-point numbers.  Therefore, they must 

be quantized to B+1 bits

ˆ h [n] QB h[n]   h[n] h[n]

ˆ H (e
j

)  (h[n] h[n])e
 jn

n0

M



 H(e
j

) h[n]e
 jn

n0

M





5

ECE4270 Spring 2017

Unquantized FIR Filter Response (II)

Note that zeros are in 

conjugate reciprocal 

groups (1,2, or 4). This

is a basic property of FIR

linear phase filters.

Approximation error

1 H(e
j

)

0  H(e
j

)

20log10 H(e
j

)
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16-Bit Quantization of FIR Filter (III)

ˆ h [M  n]   ˆ h [n]

We preserve the linear phase property since

1 H(e
j

)

0  H(e
j

)
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8-Bit Quantization of FIR Filter (IV)

Zeros stay in reciprocal quads, but shift

significantly due to the quantization.

0  H(e
j

)1 H(e
j

)
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2’s Complement Numbers

• To change the sign of a 2’s complement number, 

just complement all the bits, and add 1 to the 

least significant bit.

• When accumulating 3 or more 2’s complement 

numbers, the intermediate sums can overflow, 

but the final sum will be correct if it does not 

exceed the word length of the numbers.

6  (0110) 100111010

0110 0100 1010 1010 1010  0100

6 4  (6) 10 (6)  4

Partial sum overflows

Final

Sum

correct
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Two’s Complement Addition

Integer Interp. Fractional Interp.

I  b02
B
 bBk 2

k

k0

B1

 F  b0  bk 2
k

k1

B



Adding moves clockwise and subtracting moves counter

clockwise around the circle.  Overflow wraps around.

overflow overflow
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Adding 

• When adding binary numbers, you must line up 

the binary points. This can be done by shifting 

one or the other of the numbers either left or right 

(multiply by power of 2).

00010000000000000000000000000000  0.25 Q30

 00010010000000000000000000000000 1.125 Q28

00000100000000000000000000000000  0.25 Q28
 00010010000000000000000000000000 1.125 Q28

00010110000000000000000000000000 1.375 Q28



lost in shift
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Multiplication of 2’s Comp. Numbers

• The product A * X of two B+1 bit 2’s complement 

numbers is a 2B+1 bit number.  TI hardware gives 

a 2B+2 bit number with two sign bits. If you retain 

all bits, therefore, products cannot overflow.

• Let A and X be Q15 numbers. Then A * X will be a 

Q30 number with the binary point moved right by 

one position.  Example,

   0110000000000000  0.75 Q15

* 0100000000000000  0.5 Q15

0001100000000000

16 most significant

0000000000000000  0.375 Q30

2 sign bits
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Multiplication of 2’s Comp. Numbers

• Let A and X be Q0 numbers (i.e., integers). Then 

A * X also will be a Q0 number.  Example,

• Let A and X be Q14 numbers.  Then A * X will be 
a Q28 number.  Example,

   0000000000010001 17 Q0

* 1111111111111011  5 Q0

11111111111111111111111110101011
16 least significant

 85 Q0

   0110000000000000  1.5 Q14  

* 0011000000000000  0.75 Q14

00010010000000000000000000000000 1.125 Q28
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Overflow

• Overflow can occur in two ways:

– Accumulator overflows due to additions

– Taking 16 bits out of the wrong part of a product

• Overflow can be prevented by:

– More precision - use larger accumulator

– Saturation arithmetic - clip accumulator at 

largest value

– Shift products to the right to discard low-order 

bits.  This results in loss of precision.
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Two’s Complement Quantizer

Overflow wraps around

-1 1

B  2

 
1

4
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Two’s Complement Saturation

Overflow clips

-1 1

B  2

 
1

4


