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Overview of Lecture 

• Two’s-complement arithmetic

– Overflow

• Issues in FIR implementation:

– Quantizing filter coefficients

– Roundoff noise and Scaling

• Introduction to IIR Filter Structures and Quantization

• Coefficient Quantization effects in IIR filters
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Overflow

• Overflow can occur in two ways:

– Accumulator overflows due to additions

– Taking 16 bits out of the wrong part of a product

• Overflow can be prevented by:

– More precision - use larger accumulator

– Saturation arithmetic - clip accumulator at 

largest value

– Shift products to the right to discard low-order 

bits.  This results in loss of precision.
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FIR Digital Filter

y[n]  h[k]x[n  k]                                           
k0

M



 (((h[0]x[n] h[1]x[n 1])  ) h[M]x[n  M])

To implement this filter, we must do multiply followed by

accumulation (MAC).

                                                   
 accumulation
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• Error is uncorrelated with the input.

• Error is uniformly distributed over the interval

• Error is stationary white noise, (i.e. flat spectrum)

Linear Noise Model

Pe ( )   e
2

2

12
, | |  

( / 2)  e[n] ( / 2).
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Roundoff Noise in FIR Filters

• Using the MAC instruction with quantized coefficients and 

quantized input, we can compute

• This sum of products can be computed with 32-bit precision; 

i.e., with no quantization of the partial sums.

• The result is usually quantized to 15 bits + sign.

• The resulting noise power in the output is therefore

y[n]  h[k]x[n  k]
k0

M



ˆ y [n]  Q15 y[n]  y[n] e[n]

e
2
 

2
/12  2

30
/12

(Assume unquantized

input and coefficients)
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Q15

x[n]
h[M]h[M 1]h[2]h[0] h[1]

y[n] ˆ y [n]
32-bit accumulation

FIR Digital Filter with Quantized Output

ˆ y [n]  Q15 y[n]  Q15 h[k]x[n  k]
k0

M









 y[n] e[n]

In this case, noise is added directly to the output.

x[n]
h[M]h[M 1]h[2]h[0] h[1]

ˆ y [n]

e[n]

y[n]
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Absolute Scaling an FIR Digital Filter

y[n]  h[k]x[n  k]
k0

M



y[n]  h[k]x[n  k]
k0

M

  h[k] x[n  k]
k0

M



y[n]  max x[n]  h[k]
k0

M

  1    no overflow
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Sinusoidal Scaling for an FIR Filter

• Assume that the input is a sinusoid

• Then the output is 

• Therefore, if we want               then we must 
guarantee that

• This scaling is appropriate for most narrowband 
input signals.

x[n]  cos(0n)

y[n]  H e
j0 cos 0n H e

j0  
y[n] 1,

H e
j 1 for all 
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Conclusions on FIR

• Coefficient quantization can modify the zero 

locations and therefore the frequency response.

– This is usually not severe for linear phase filters

• Using the MAC instruction, we can avoid roundoff 

(quantization) until the very end of the computation

• Scaling must be used to avoid overflow
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IIR Filter Structures and Quantization

• IIR filters are more complicated with regard to the 
effects of quantization.

– Many different “equivalent” structures

– Coefficient sensitivity may be high

– Feedback is inherent in IIR structures

– Possibility of instability

– Roundoff noise is shaped by filter

• Some analysis is possible, but given the power of 
software tools such as MATLAB,  an empirical 
approach is often most effective.
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Fixed-Point Implementation Issues

• We need to represent coefficient and signal values 
by integers in  a fixed range.

• Quantization errors in coefficients imply shifts of 
poles and zeros (even instability).

• For a given word-length, the quantization error is 
fixed in size.  Therefore, signal values should be 
maintained as large as possible to maximize SNR.

• If signal values get too large, additions can 
overflow (or clip), thereby creating large errors.

• Thus, fixed-point implementations require careful 
attention to scaling the signal values.
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Cascade Form

H(z) 
b0k  b1k z1  b2k z2

1 a1kz
1
 a2kz

2











k1

Ns



wk[n]  a1kwk[n 1] a2kwk [n  2] yk1[n]

yk [n]  b0kwk[n] b1kwk[n 1] b2kwk[n  2]

y0[n] x[n], y[n]  yNs
[n]
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Cascade Implementation
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Direct Form II (flow graph)

w[n] akw[n  k]
k1

N

  x[n] y[n]  bkw[n  k]
k0

M


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Equivalent Direct Form

• The cascade form groups zeros and poles in 

pairs (second-order factors).

• These can be multiplied out to obtain single 

numerator and denominator polynomials in the 

direct forms I and II.

H(z) 
b0k  b1k z1  b2k z2

1 a1kz
1
 a2k z

2











k1

Ns





bk zk

k0

M



1 akz
k

k1

N


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16-Bit Quantized Coefficients
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Quantized Numerator Coefficients

0.01004671277613   0.01004028320312

-0.04940368759854  -0.04940795898438

0.15047336191420   0.15048217773438

-0.31987136089868  -0.31988525390625

0.53335872862212   0.53335571289062

-0.71133037924498  -0.71133422851562

0.78462412594880   0.78463745117188

-0.71133037924498  -0.71133422851562

0.53335872862212   0.53335571289062

-0.31987136089868  -0.31988525390625

0.15047336191420   0.15048217773438

-0.04940368759854  -0.04940795898438

0.01004671277613   0.01004028320312

bk
ˆ b k
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Quantized Denominator Coefficients

1.00000000000000   1.00000000000000

-5.22295000000000  -5.22265625000000

16.76588243738500  16.76562500000000

-36.82056676783901 -36.82031250000000

62.25444673309200  62.25390625000000

-82.41640461036937 -82.41796875000000

88.36682598383915  88.36718750000000

-76.16156361479057 -76.16015625000000

53.16012384772395  53.16015625000000

-29.04773747211416 -29.04687500000000

12.21807179345019  12.21875000000000

-3.51452513378527  -3.51562500000000

0.62178984772852   0.62109375000000

ak ˆ a k
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No Quantization
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16-Bit Quantized Direct Form
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16-Bit Quantized Cascade Form
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Direct Form I IIR Filter

H(z) 

bkzk

k0

M



1 ak z
k

k1

N




B(z)

A(z)

y[n]  ak y[n  k]
k1

N

  bk x[n  k]
k0

M


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Linear Noise Model

The noise sources are independent so their powers add.

Each noise source

has power e
2
 2

2B
/12
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Linear System with a White Noise Input

LTI

System

h[n],H(ej)

x[n] y [n]

xx[m]  x
2[m] yy[m]   x

2
chh[m]

chh[m] h[m k]
k



 h

[k]  h[m]h


[m]

yy(e
j

)  xx (e
j

)Chh(e
j

)   x
2
Chh(e

j
)

yy[m]  xx[m]chh[m]   x
2[m]chh[m]  x

2
chh[m]

Chh (e
j

)  H(e
 j

)H

(e
 j

)  H(e
 j

)
2

xx (e
j

)   x
2 yy(e

j
)   x

2
Chh(e

j
)


