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FIR and IIR Filters (part I)
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Overview of Lecture

» Two’s-complement arithmetic
— Overflow

* Issues in FIR implementation:
— Quantizing filter coefficients
— Roundoff noise and Scaling

Introduction to IIR Filter Structures and Quantization
Coefficient Quantization effects in IR filters
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Overflow

» Overflow can occur in two ways:

— Accumulator overflows due to additions

— Taking 16 bits out of the wrong part of a product
* Overflow can be prevented by:

— More precision - use larger accumulator

— Saturation arithmetic - clip accumulator at
largest value

— Shift products to the right to discard low-order
bits. This results in loss of precision.

FIR Digital Filter
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accumulation y[n]
M
> h[k]x[n—k]
k=0
(((A[O]x[n]+ A[1]x[n —1]) +...) + ([ M]x[n — M])

]

To implement this filter, we must do multiply followed by
accumulation (MAC).
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Linear Noise Model

Quantizer

—
x[n] 20) [ = 0[n)
)

N
x[n] \r F[n] = x[n] + e[n]

e[n]
« Error is uncorrelated with the input.
* Error is uniformly distributed over the interval
—(A/2)<e[n]<(A/2).
» Error is stationary white noise, (i.e. flat spectrum)

2

R@)=o; =15, lol<n

Roundoff Noise in FIR Filters

» Using the MAC instruction with quantized coefficients and
guantized input, we can compute

y[n] — ]\24 h[k]x[n _ k] (Assume unquantized

input and coefficients)

k=0
» This sum of products can be computed with 32-bit precision;
i.e., with no quantization of the partial sums.

* The result is usually quantized to 15 bits + sign.

Jn]= 05 {inl} = yln]+eln]

* The resulting noise power in the output is therefore

o =NN12=2712
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FIR Dlgltal Fllter with Quantlzed Output

A[0] h[l] H2] h[M 1Wh[M]
=== Ost—

] yin]

32-bit accumulation

M
Inl= G5 ylnl} = Ors {EO hlk)x[n — k]} = y[n]+eln]

A0] YAl h[2] h[M —1]Yh[M]

yin] yln]

In this case, noise is added directly to the output.

e[n]

Absolute Scaling an FIR Digital Filter

[
x[n]

h[0] h

h[2]

z- Z
(1]
yln]=

pinll= < Z ALk ]lx[n— k]

y[n] < max {x[n]} Z Ii[k]<1 = no overflow
k=0
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Sinusoidal Scaling for an FIR Filter

Conclusions on FIR

» Assume that the input is a sinusoid

x[n] = cos(wyn)
* Then the output is

. . \
V[n]= ‘H (ej @0 )cos(a)on +/ZH (e] @0 )}
» Therefore, if we want [y[n] <1, then we must

guarantee that ‘H (eja’)< | il s

+ This scaling is appropriate for most narrowband
input signals.

» Coefficient quantization can modify the zero
locations and therefore the frequency response.

— This is usually not severe for linear phase filters

» Using the MAC instruction, we can avoid roundoff
(quantization) until the very end of the computation

» Scaling must be used to avoid overflow
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lIR Filter Structures and Quantization

Fixed-Point Implementation Issues

* IR filters are more complicated with regard to the
effects of quantization.

— Many different “equivalent” structures
— Coefficient sensitivity may be high

— Feedback is inherent in lIR structures
— Possibility of instability

— Roundoff noise is shaped by filter

» Some analysis is possible, but given the power of
software tools such as MATLAB, an empirical
approach is often most effective.

* We need to represent coefficient and signal values
by integers in a fixed range.

* Quantization errors in coefficients imply shifts of
poles and zeros (even instability).

* For a given word-length, the quantization error is
fixed in size. Therefore, signal values should be
maintained as large as possible to maximize SNR.

+ If signal values get too large, additions can
overflow (or clip), thereby creating large errors.

* Thus, fixed-point implementations require careful
attention to scaling the signal values.
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Cascade Form

N, -1 -2
H(z)= Tl [bOk + blkfl + bzkf2 j
k=I\ 1—ayz  —ayz
wiln] = aywi[n =11+ aywi [n =21+ y,_4[n]
yk[l’l] = bOka[l’l]+b1ka[ﬂ— 1]+b2ka[n —2]

volnl=x[nl, ylnl=yy,[n]

w[n] »ln] wy[n]

y2[n]

\‘ boy ,!/

Cascade Implementation

TABLE 6.1  UNQUANTIZED CASCADE-FORM COEFFICIENTS
FOR A 12TH-ORDER ELLIPTIC FILTER

k ag ag bo bk bak

1 0.738409 —0.850835 0.135843 0.026265 0.135843
2 0.960374 —0.860000  0.278901 —0.444500 0.278901
3 0.629449  —0.931460 0.535773  —0.249249  (.535773
4 1.116458  —0.940429  0.697447 —0.891543  0.697447
5 0.605182 —0.983693 0.773093 —0.425920 0.773093
6 1.173078 —0.986166  0.917937 —1.122226 0.917937

w[n] y1ln] wi[n] y3[n]
s o
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Direct Form Il (flow graph)
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wln]= g apwln—k]+ x[n]
k=1

M
Mnl= 3 bpwln—k]
k=0

Equivalent Direct Form

ECE4270

» The cascade form groups zeros and poles in
pairs (second-order factors).

* These can be multiplied out to obtain single
numerator and denominator polynomials in the
direct forms | and II.

Ny (o + bzt +byyz 2
H(Z) = 11 [ 0k lk_l 2k_2
k=I\ l—ayz " —ayz

Mo
z ka
_ k=0
Nk
1- z apz
k=1

Spring 2017

ECE4270 Spring 2017




16-Bit Quantized Coefficients

Quantized Numerator Coefficients

TABLE 6.2  SIXTEEN-BIT QUANTIZED CASCADE-FORM COEFFICIENTS FOR A
12TH-ORDER ELLIPTIC FILTER

k ayg a bok b bak

1 24196 x2715 27880 x 2715 17805 x 2717 3443 x 2717 17805 x 2717
2 31470 x 271 28180 x 271 18278 x 2716 29131 x 2710 18278 x 2716
3020626 x275 30522 x 2715 17556 x 2715 8167 x 2715 17556 x 271
4 18292 x 27 30816 x 2715 22854 x 2715 29214 x 2715 22854 x 2715
50 19831 x 2715 32234 %2715 25333 x 2715 13957 x 2715 25333 x 271
6 19220 x 27 32315 %2715 15039 x 2714 18387 x 271 15039 x 2714

wi[n] yiln] wa[n] yaln]

\‘ by r/ \‘ boy ,!/

o E

by

by

0.01004671277613
-0.04940368759854
0.15047336191420
-0.31987136089868
0.53335872862212
-0.71133037924498
0.78462412594880
-0.71133037924498
0.53335872862212
-0.31987136089868
0.15047336191420
-0.04940368759854
0.01004671277613

0.01004028320312
-0.04940795898438
0.15048217773438
-0.31988525390625
0.53335571289062
-0.71133422851562
0.78463745117188
-0.71133422851562
0.53335571289062
-0.31988525390625
0.15048217773438
-0.04940795898438
0.01004028320312
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Quantized Denominator Coefficients

No Quantization

ay

ay

1.00000000000000
-5.22295000000000
16.76588243738500

-36.82056676783901
62.25444673309200

-82.41640461036937
88.36682598383915

-76.16156361479057
53.16012384772395

-29.04773747211416
12.21807179345019
-3.51452513378527

0.62178984772852

|.00000000000000
-5.22265625000000
16.76562500000000
-36.82031250000000
62.25390625000000
-82.41796875000000
88.36718750000000
-76.16015625000000
53.16015625000000
-29.04687500000000
12.21875000000000
-3.51562500000000
0.62109375000000

Poles and Zeros for Unquantized Coefficients

08 * %

o
)
—]

Imaginary part
__‘——..

=]
Py
T

-08

08~ X

]
Real part

ECE4270

Spring 2017

ECE4270

Spring 2017




16-Bit Quantized Direct Form

Poles and Zeros for 16-Bit Quantized Direct Form

1+ x X

3
08l X

061 X

Imaginary part

16-Bit Quantized Cascade Form

Poles and Zeros for 16-Bit Quantized Cascade Form
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Linear Noise Model

Reafpart
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Direct Form I lIR Filter
by
f‘[n] - - vln]
-
_ B(2)
& A(z)
N M
vnl= X gpn—kl+ 2 byx{n — k]
k=1 k=0
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*l f Sl
h A
ay

7! e[n] es[n] z!

b,y a

Each noise sgurce

e[n] eslnl | has power o, = 272812

|The noise sources are independent so their powers add. |
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Linear System with a White Noise Input

x[n]
Bl =07 8[m]
D, (ej )= 0'%

LTI
System
h[n].H(e')

yn]
B,y [m] = orey,lm]
@, (/)= 02Cp (™)

B, lm] = o Im)* cpylm] = o Slm]* ey lm] = orepym]

ulml= 3 Hm+ K] = -] 4[]

®,,(/”) = Dy (/) Cpy (/) = T2 Cry ()

(&)= H(e TV H* ) = |H(e )
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