ECE4270 Fundamentals of DSP Lecture 23 IIR and FIR Filter Design School of ECE Center for Signal and Information Processing Georgia Institute of Technology

Overview of Lecture

Spring

- · Butterworth, Chebyshev and Elliptic IIR filters
- Design of FIR filters by the window method.
 - Windowing in time- and frequency-domains
 - Linear phase FIR design using windows
 - The Kaiser window formulas
- · Design of differentiator
- · Multiband design

CE427

Introduction to Optimum Filter Design

A Design Example (I)

- The D-T specifications are:
 - $\begin{array}{ll} 0.99 \leq \mid H(e^{j\omega}) \mid \leq 1.01, & \mid \omega \mid \leq 0.4\pi \\ \mid H(e^{j\omega}) \mid \leq 0.001, & 0.6\pi \leq \mid \omega \mid \leq \pi \end{array}$
 - i.e., $\omega_p = \Omega_p T = 0.4\pi$ and $\omega_s = \Omega_s T = 0.6\pi$.
- The continuous-time prototype filter H_c(jΩ) must satisfy:

$$\begin{array}{ll} 0.99 \leq \mid H_c(j\Omega) \mid \leq 1.01, & \mid \Omega \mid \leq \frac{2}{T_d} \tan(0.4\pi/2) \\ \mid H_c(j\Omega) \mid \leq 0.001, & \frac{2}{T_d} \tan(0.6\pi/2) \leq \mid \Omega \mid < \infty \end{array}$$

Ellij	otic A	pprox	cimati	on in	MATL	.AB (V)
»[N,wp]=e N = 6 wp = 0.4000	ellipord(.4,	.6,-20*log	g10(.99),-2	20*log10(.001))	
b = 0.0208	0.0590	0.1068	0.1265	0.1068	0.0590	0.0208
a = 1.0000	-1.9585	2.8916	-2.5155	1.5627	-0.5906	0.1148
ECE4270						Spring 2016

FIR: Linear Phase in Window Design - II
• $h[n] = w[n]h_d[n] \implies$
$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) W(e^{j(\omega-\theta)}) d\omega$
$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_e(e^{j\theta}) e^{-j\theta M/2} W_e(e^{j(\omega-\theta)}) e^{-j(\omega-\theta)M/2} d\theta$
$= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} H_e(e^{j\theta}) W_e(e^{j(\omega-\theta)}) d\theta\right) e^{-j\omega M/2}$
$H(e^{j\omega}) = A_e(e^{j\omega})e^{-j\omega M/2}$ where,
$A_e(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_e(e^{j\theta}) W_e(e^{j(\omega-\theta)}) d\omega$
ECE4270 Spring 2016

Kaiser Window Design M	lethod
$w[n] = \begin{cases} \frac{I_0[\beta(1 - [(n - \alpha) / \alpha]^2)^{1/2}]}{I_0(\beta)}, & 0 \le n \end{cases}$	$n \leq M$
0 othe	rwise
$\alpha = M/2$	
$\Delta \omega = \omega_s - \omega_p \text{and} A = -201$	$\log_{10} \delta$
$M = \frac{A-8}{2.285\Delta\omega} \implies$ required to me	eet specs
$\int 0.1102(A-8.7),$	<i>A</i> > 50
$\beta = \left\{ 0.5842(A-21)^{0.4} + 0.07886(A-21), \right.$	21 < <i>A</i> < 50
0.0	<i>A</i> < 21
ECE4270	Spring 2016

Lowpass Filter Design Example
• Ideal filter: $H_d(e^{j\omega}) = \begin{cases} e^{-j\omega M/2} & \omega < \omega_c, \\ 0 & \omega_c < \omega \le \pi \\ h_d[n] = \frac{\sin \omega_c (n - M/2)}{\pi (n - M/2)} \end{cases}$
- Specifications: $\omega_p=0.4\pi,\omega_{\rm S}=0.6\pi,\delta_{\rm l}=0.01,\delta_{\rm 2}=0.001$
$\omega_c = \frac{\omega_p + \omega_s}{2}$ since transition is symmetric $A = 20\log_{10}(.001) = 60$ since error is symmetric

Digital "Differentiator" • Suppose that we want to design an FIR filter such that $H_{\text{eff}}(j\Omega) = j\Omega$, $|\Omega| < \frac{\pi}{T}$ • The required digital filter must approximate $H(e^{j\omega}) = \frac{j\omega}{T}e^{-j\omega M/2}$, $|\omega| < \pi$ • The desired impulse response is $h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} (\frac{j\omega}{T})e^{-j\omega M/2}e^{j\omega n}d\omega$ $h_d[n] = \frac{\cos[\pi(n-M/2)]}{(n-M/2)T} - \frac{\sin[\pi(n-M/2)]}{\pi(n-M/2)T}$, $-\infty < n < \infty$

Spring 2016

ECE4270

Parks and McClellan, 1972

Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase

THOMAS W. PARKS, MEMBER, IEEE, AND JAMES H. MCCLELLAN, STUDENT MEMBER, IEEE

capable of designing longer filters. The algorithms in [7], [8] result in exactly the same filter and will be called an extraripple design in this paper. The detailed description of the new procedure described here is in terms of low-pass filters. Modifications for the general bandpass case are included. Linear-phase digital filters of length 2n+1 have a transfer function ry bond-edge d not directly N --- 1)/2 dif-r fixed & and

(1)

 $G(Z) = \sum_{k=1}^{2n} h_k Z^{-k}$

Spring 2016

T. W. Parks and J. H. McClellan, IEEE Trans. Circuit Theory, CT-19, pp. 189-194, March, 1972.

ihs are transi-

ECE4270

