

Overview of Lecture

- Design of FIR filters by the window method (Last Lecture)
- Design of differentiator
- Multiband design
- Optimum Filter Design
- The Parks-McClellan algorithm
- Chapter 8
- Discrete Fourier Transform (DFT)
- The DFT as a Sampled DTFT

Kaiser Window Design Method

$$
w[n]=\left\{\begin{array}{cc}
\frac{I_{0}\left[\beta\left(1-[(n-\alpha) / \alpha]^{2}\right)^{1 / 2}\right]}{I_{0}(\beta)}, & 0 \leq n \leq M \\
0 & \text { otherwise } \\
\alpha=M / 2 &
\end{array}\right.
$$

$$
\Delta \omega=\omega_{s}-\omega_{p} \quad \text { and } \quad A=-20 \log _{10} \delta
$$

$$
M=\frac{A-8}{2.285 \Delta \omega} \Rightarrow \text { required to meet specs }
$$

$$
\beta= \begin{cases}0.1102(A-8.7), & A>50 \\ 0.5842(A-21)^{0.4}+0.07886(A-21), & 21<A<50 \\ 0.0 & A<21 \\ \hline \text { ECC4270 } & \text { Spring 2017 }\end{cases}
$$

Digital "Differentiator"

- Suppose that we want to design an FIR filter such that

$$
H_{\mathrm{eff}}(j \Omega)=j \Omega, \quad|\Omega|<\frac{\pi}{T}
$$

- The required digital filter must approximate

$$
H\left(e^{j \omega}\right)=\frac{j \omega}{T} e^{-j \omega M / 2}, \quad|\omega|<\pi
$$

- The desired impulse response is

$$
\begin{gathered}
h_{d}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{j \omega}{T}\right) e^{-j \omega M / 2} e^{j \omega n} d \omega \\
h_{d}[n]=\frac{\cos [\pi(n-M / 2)]}{(n-M / 2) T}-\frac{\sin [\pi(n-M / 2)]}{\pi(n-M / 2) T}, \quad-\infty<n<\infty \\
\hline E \in[4270 \\
\hline
\end{gathered}
$$

Parks and McClellan, 1972

Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase
thomas W. Parks, member, ieee, and James h. McCLELLAN, student member, ieee

T. W. Parks and J. H. McClellan, IEEE Trans. Circuit Theory, CT-19, pp. 189-194, March, 1972.

The Parks McClellan Algorithm

- Uses the Remez exchange algorithm to iteratively find the impulse response that minimizes the maximum approximation error over a set of closed intervals in the frequency-domain.

$$
E(\omega)=W(\omega)\left[H_{d}\left(e^{j \omega}\right)-H\left(e^{j \omega}\right)\right]
$$

- Leads to equiripple approximations that are optimum in sense of smallest approximation error for a given transition width.

Linear Phase Type I FIR Filter

- Zero-phase impulse response:

$$
h_{e}[-n]=h_{e}[n] \quad-L \leq n \leq L
$$

- Frequency response:

$$
\begin{aligned}
A_{e}\left(e^{j \omega}\right) & =\sum_{n=-L}^{L} h_{e}[n] e^{-j \omega n} \\
& =h_{e}[0]+\sum_{n=1}^{L}\left(h_{e}[n] e^{-j \omega n}+h_{e}[-n] e^{j \omega n}\right) \\
& =h_{e}[0]+\sum_{n=1}^{L} 2 h_{e}[n] \cos \omega n=\sum_{k=0}^{L} a_{k}(\cos \omega)^{k}
\end{aligned}
$$

- Causal version:
$h[n]=h_{e}[n-L] \quad \Leftrightarrow \quad H\left(e^{j \omega}\right)=A_{e}\left(e^{j \omega}\right) e^{-j \omega L}$
ECE4270

The Alternation Theorem

- Weighted approximation error:

$$
E(\omega)=W(\omega)\left[H_{d}\left(e^{j \omega}\right)-A_{e}\left(e^{j \omega}\right)\right]
$$

- Minimize the maximum error over a set of frequencies:

$$
F=\left\{\omega: 0 \leq \omega \leq \omega_{p} \text { and } \omega_{\mathrm{s}} \leq \omega \leq \pi\right\}
$$

- The optimum approximation alternates between $+\delta$ and $-\delta$ at least $L+2$ times in F. The maximum number of alternations is $L+3$.

$$
\|E\|=\max _{\omega \in F}[|E(\omega)|] \quad \delta=\min _{h_{e}[n]}\{\|E\|\}
$$

ECE4270

Design Formula

- Kaiser obtained the following design formula by curve fitting many examples:

$$
M=\frac{-10 \log _{10}\left(\delta_{1} \delta_{2}\right)-13}{2.324 \Delta \omega}
$$

- $\mathrm{m}=\left(-10^{*} \log 10\left(.01^{*} .001\right)-13\right) /\left(2.324^{*}(0.6-0.4)^{*} \mathrm{pi}\right)=25.3388$
- MATLAB example:
» [M,Fo,Mo,W] = remezord([.4,.6], [1 0], [0.01 0.001], 2);
" [h,delta]=remez(M,Fo,Mo,W);

ECE4270

Comparison of Filter Structures

- Complexity is proportional to amount of computation and storage plus program storage and computational cycles.
- FIR direct form - (M+1) coefficients
$-(M+1)$ multiplications, M additions
$-(M+1)$ coefficients, M delays (registers)
- IIR cascade form - N_{s} second-order sections.
$-5 N_{s}$ multiplications, $5 N_{s}$ additions
$-5 N_{s}$ coefficients, $5 N_{s}$ delays

ECE4270

Lowpass Filter Implementations

- Specifications of lowpass filter $1 / T=2000 \mathrm{~Hz}$

$$
\begin{array}{rr}
0.99 \leq\left|H\left(e^{j \Omega T}\right)\right| \leq 1.01 & 0 \leq|\Omega| \leq 2 \pi(400) \\
\left|H\left(e^{j \Omega T}\right)\right| \leq 0.01 & 2 \pi(600) \leq|\Omega| \leq 2 \pi(1000)
\end{array}
$$

- These specs met by the following approx.
- Butterworth - 12th-order
- Chebyshev - 8th-order
- Elliptic - 6th-order
- Kaiser window - 37 sample impulse response
- Parks-McClellan-27 sample impulse response

Comparison of Lowpass Filters

Approx. Method	Order M or N	Total Mults.	Total Adds	Total Storage	TMS320 Cycles
Butter	14	35	28	49	109
Cheby	8	20	16	28	64
elliptic	6	18	12	21	49
Kaiser	37	38	37	74	52
P-Mc	27	28	27	54	42
ECE4270					

Review of the DTFT

- Definition: $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\left.X(z)\right|_{z=e^{j \omega}}$
- Inverse transform: $\quad x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$
- Periodicity: $\quad X\left(e^{j(\omega+2 \pi)}\right)=X\left(e^{j \omega}\right)$
- Convolution theorems:
$y[n]=x[n] * h[n] \Leftrightarrow Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) \cdot H\left(e^{j \omega}\right)$
$y[n]=w[n] \cdot x[n] \Leftrightarrow Y\left(e^{j \omega}\right)=\frac{1}{2 \pi} W\left(e^{j \omega}\right) * X\left(e^{j \omega}\right)$

The Discrete Fourier Transform (DFT)

$$
\begin{array}{ll}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} & k=0,1, \ldots, N-1 \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} & n=0,1, \ldots, N-1
\end{array}
$$

where $W_{N}=e^{-j(2 \pi / N)}$.

- Exact representation of finite-length or periodic sequences $(x[n+N]=x[n])$.
- $X[k]$ and $x[n]$ can be computed efficiently by the FFT. (Gauss knew about it, Cooley and Tukey rediscovered it at just the right time.)

A Simple (but important) Example

- Let $P[k]=1$, for $k=0,1,2, \ldots, \mathrm{~N}-1$. Then

$$
\begin{gathered}
p[n]=\frac{1}{N} \sum_{k=0}^{N-1} e^{j(2 \pi / N) k n}=\frac{1}{N} \frac{1-e^{j(2 \pi / N) n N}}{1-e^{j(2 \pi / N) n}} \\
p[n]=\left\{\begin{array}{ll}
1 & n=0, \pm N, \pm 2 N, \ldots \\
0 & \text { otherwise }
\end{array}=\sum_{r=-\infty}^{\infty} \delta[n+r N]\right.
\end{gathered}
$$

- DFTs (and inverse DFTs) are inherently periodic with period N .

$$
p[n+N]=\frac{1}{N} \sum_{k=0}^{N-1} P[k] e^{j(2 \pi / N) k(n+\not 2)}=p[n]
$$

The DFT as a Sampled DTFT

- The DTFT of an N-point sequence is

$$
X\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

- Sample the DTFT at $\omega_{k}=(2 \pi / N) k, k=0,1, \ldots, N-1$.
- The result is identical to the DFT

$$
\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n}=X[k]
$$

- If we compute the inverse DFT, we obtain
$\underset{\text { ECC4270 }}{\tilde{x}[n]=\frac{1}{N} \sum_{n=0}^{N-1} X\left(e^{j(2 \pi / N) k}\right) e^{j(2 \pi / N) k n}=\sum_{r=-\infty}^{\infty} x[n+r N]} \underset{\text { Spring 2017 }}{\infty}$

