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Overview of Lecture

» Design of FIR filters by the window method (Last
Lecture)

» Design of differentiator
* Multiband design
* Optimum Filter Design
— The Parks-McClellan algorithm

e Chapter 8
» Discrete Fourier Transform (DFT)
* The DFT as a Sampled DTFT
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Kaiser Window Design Method

Digital “Differentiator”
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» Suppose that we want to design an FIR filter such
that ) ] jn
Hegy(JQ) = jQ, Q<7
* The required digital filter must approximate

H(ejw) =J7we_jwM/2, lol < 7

* The desired impulse response is
_ 1 T(jo) —joM2 jon

hd[l’l] = 2”__[”\?)6 e] do
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haln}= (n-M2)T  rln-M2)T °

—0o<n <0
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Kaiser Window Differentiators

General Frequency Selective Filter
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Parks and McClellan, 1972

The Parks McClellan Algorithm

Chebyshev Approximation for Nonrecursive
Digital Filters with Linear Phase

THOMAS W. PARKS, MEMBER, IEEE, AND JAMES H. McCLELLAN, STUDENT MEMBER, [EEE

capable of designing longer filters. The algorithms in [7].
[8] resule in exactly the same filter and will be called an
extraripple design in this paper.

The detailed ion of the new procedure deseribed
here is in terms of low-pass filters. Modifications for the
general bandpass case are included. Linear-phase digital
filters of length 2n+1 have a transfer function

GiZ) = 30 hz m
=

T. W. Parks and J. H. McClellan, IEEE Trans. Circuit Theory,
CT-19, pp. 189-194, March, 1972.

» Uses the Remez exchange algorithm to iteratively
find the impulse response that minimizes the
maximum approximation error over a set of
closed intervals in the frequency-domain.

E(w)=W(@)[H(e'")— H(')]

» Leads to equiripple approximations that are
optimum in sense of smallest approximation error
for a given transition width.
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Optimum FIR Filter

Linear Phase Type | FIR Filter

Alel™)

» Zero-phase impulse response:
h-nl=hJn] —L<n<L
 Frequency response:
. L )
4(?)= X ho[nle” "
n=—L

L . N
= 101+ 3 (olnle /" +h,[-ne/"
n=1

L L

=h,[0]+ X 2h,[n]cosmn = 3. a;(cos a))k
n=1 k=0

+ Causal version:

Wnl=hln—L] < HE?)=A4,'?)e
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Weighted

The Alternation Theorem

A(el)

1+8
1-5,

s

Approximation Error
E(0)=W(@)[Hg(e"*) = 4,
2}
Ww)=1 6, OSa)Sa)p
1 wo<w<r
N~
\‘_‘;# w

-8

* Weighted approximation error:
E(@) = W(@)[Hy(e'”) = 4,(/").

* Minimize the maximum error over a set of frequencies:
F= {w:OSa)Sa}p anda)SSa)Sn}

* The optimum approximation alternates between +& and -5
at least L+2 times in F. The maximum number of
alternations is L+3.

|E] = r;g[‘E(w)‘] 6= }rllel[i%{HEH}
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Initial guess of
(L +2) extremal frequencies

Design Formula

Calculate the optimum
5 on extremal set
Interpolate through (L + 1)
points to obtain A,(¢/”)

Calculate error E(w)
and find local maxima
where |£(w)l 25

More than
(L+2)
extrema?

Retain (L + 2)
largest
extrema

Changed Check whether the
extremal points changed

Unchanged

» Kaiser obtained the following design formula by curve fitting
many examples:

2y = —10log|o(616,)-13
2.324Aw

+ m=(-10*log10(.01*.001)-13) / (2.324*(0.6-0.4)*pi) =25.3388

*+ MATLAB example:
» [M,Fo,Mo,W] = remezord( [.4,.6], [1 0], [0.01 0.001], 2 );
» [h,delta]=remez(M,Fo,Mo,W);
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Comparison of Filter Structures

Parks McClellan Lowpass Design

0

M=27

B

Amplitude

0.005

Amplitude

~0.005

0.010
0

» Complexity is proportional to amount of
computation and storage plus program storage
and computational cycles.

* FIR direct form - (M+1) coefficients
— (M+1) multiplications, M additions
— (M+1) coefficients, M delays (registers)
* |IR cascade form - Ny second-order sections.
— 5N multiplications, 5N, additions
— 5N, coefficients, 5Ng delays
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Lowpass Filter Implementations

Comparison of Lowpass Filters

+ Specifications of lowpass filter 1/T =2000 Hz
0.99 <| H(/)|<1.01 0 <] Q|<27(400)
| H(*T)|<0.01 22(600)<|Q|< 27(1000)
* These specs met by the following approx.
— Butterworth - 12th-order
— Chebyshev - 8th-order
— Elliptic - 6th-order
— Kaiser window - 37 sample impulse response
— Parks-McClellan - 27 sample impulse response

Approx. | Order Total Total Total TMS320
Method | M or N Mults. Adds Storage Cycles
Butter 14 35 28 49 109
Cheby 8 20 16 28 64
elliptic 6 18 12 21 49
Kaiser 37 38 37 74 52
P-Mc 27 28 27 54 42
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The Discrete Fourier
Transform (DFT)

School of Electrical and Computer Engineering

Georgia Institute of Technology

Review of the DTFT

Center for Signal and Image Processing

Definition:  y(e/?y= S x[nle ™ = X} __u

n=—0

Inverse transform: x[n]:i IX(ejw)ejamda)
27,

Periodicity:  X(&/(@*+27))= X(e/®)
Convolution theorems:

Vinl=x{nlxhln] < Y(e/®)=X(e/?)-H(e/”)

Mnl=wlnladn] & Ye®)= Loy x(er)
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The Discrete Fourier Transform (DFT)

A Simple (but important) Example

N-1 n
X[k]= Z x[n]Wy
n=0

1 N-1 o
nl=—"% X[k n=01..N-1
N =0

k=01..N-1

where Wy, = e /@7

» Exact representation of finite-length or periodic
sequences (X[n+N]=x[n]).

» X[k] and x[n] can be computed efficiently by the
FFT. (Gauss knew about it, Cooley and Tukey
rediscovered it at just the right time.)

» Let P[k]=1, for k=0,1,2,...,N-1. Then 27/ NynN
N-1 (27 n
1 : 1 1-¢/
N k=0

N 1—ej(2” Nyn
1 n=0,£N,£2N.,... § s N

= = +
pln] 0 otherwise o0 L+rN]

* DFTs (and inverse DFTs) are inherently periodic
with period N.

N-1 .
pln+ N1 = %IEO A ANk
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The DFT as a Sampled DTFT

* The DTFT of an N-point sequence is
) N-1 .
X('?)= Y x[n]e” "
n=0

+ Sample the DTFT at w;, = (2#/N)k,k=0,1,...,N—1.
* The result is identical to the DFT

N-1
jo _ —j2n/N)kn _
X(e )\wzmm = ,Eo x[n]e = X[k]

 If we compute the inverse DFT, we obtain

1 N-1 . . 0
)E[n] _ N z X(ej(Zﬂ/N)k) ej(27r/N)kn _ Z x[n + FN]
n=0 )
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