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Overview of Lecture 

• Design of FIR filters by the window method (Last 

Lecture)

• Design of differentiator

• Multiband design

• Optimum Filter Design

– The Parks-McClellan algorithm

• Chapter 8

• Discrete Fourier Transform (DFT)

• The DFT as a Sampled DTFT
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Kaiser Window Design Method

w[n] 

I0[(1 [(n ) / ]2 )1/2 ]

I0()
, 0  n  M

0                                        otherwise








 s  p and A  20log10 

 

0.1102(A  8.7),                                A  50       

0.5842(A  21)
0.4

 0.07886(A  21), 21 A  50

0.0                                                     A  21       









M 
A 8

2.285
 required to meet specs

  M/2

ECE4270 Spring 2017

Digital “Differentiator”

• Suppose that we want to design an FIR filter such 
that

• The required digital filter must approximate

• The desired impulse response is 
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Kaiser Window Differentiators
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General Frequency Selective Filter
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Parks and McClellan, 1972

T. W. Parks and J. H. McClellan, IEEE Trans. Circuit Theory,

CT-19, pp. 189-194, March, 1972.
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The Parks McClellan Algorithm

• Uses the Remez exchange algorithm to iteratively 

find the impulse response that minimizes the 

maximum approximation error over a set of 

closed intervals in the frequency-domain.

• Leads to equiripple approximations that are 

optimum in sense of smallest approximation error 

for a given transition width.
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Optimum FIR Filter
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Linear Phase Type I FIR Filter

• Zero-phase impulse response:

• Frequency response:

• Causal version:
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Weighted Approximation Error
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The Alternation Theorem
• Weighted approximation error:

• Minimize the maximum error over a set of frequencies:

• The optimum approximation alternates between + and -
at least L+2 times in F.  The maximum number of 
alternations is L+3.
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Design Formula
• Kaiser obtained the following design formula by curve fitting 

many examples:

• m=(-10*log10(.01*.001)-13) / (2.324*(0.6-0.4)*pi) =25.3388

• MATLAB example:

» [M,Fo,Mo,W] = remezord( [.4,.6], [1 0], [0.01 0.001], 2 );

» [h,delta]=remez(M,Fo,Mo,W);

M 
10log10 12 13

2.324
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Parks McClellan Lowpass Design

M  27
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Comparison of Filter Structures

• Complexity is proportional to amount of 

computation and storage plus program storage 

and computational cycles.

• FIR direct form - (M+1) coefficients

– (M+1) multiplications, M additions

– (M+1) coefficients, M delays (registers)

• IIR cascade form - Ns  second-order sections.

– 5Ns multiplications, 5Ns additions   

– 5Ns coefficients, 5Ns delays
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Lowpass Filter Implementations

• Specifications of lowpass filter

• These specs met by the following approx.

– Butterworth - 12th-order

– Chebyshev - 8th-order

– Elliptic - 6th-order

– Kaiser window - 37 sample impulse response

– Parks-McClellan - 27 sample impulse response 

1/ T  2000 Hz

0.99 | H(e jT ) |1.01 0 | | 2(400)

| H(e jT ) |0.01 2(600) | | 2(1000)
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Comparison of Lowpass Filters

Approx.

Method

Order

M  or N

Total

Mults.

Total

Adds

Total

Storage

TMS320

Cycles

 Butter 14 35 28 49 109

Cheby 8 20 16 28 64

elliptic 6 18 12 21 49

Kaiser 37 38 37 74 52

P-Mc 27 28 27 54 42

The Discrete Fourier 
Transform (DFT)
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Review of the DTFT

• Definition:

• Inverse transform:

• Periodicity:

• Convolution theorems:
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The Discrete Fourier Transform (DFT)

where 

• Exact representation of finite-length or periodic 
sequences (x[n+N]=x[n]).

• X[k] and x[n] can be computed efficiently by the 
FFT. (Gauss knew about it, Cooley and Tukey 
rediscovered it at just the right time.)
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A Simple (but important) Example

• Let P[k]=1, for k=0,1,2,…,N-1.  Then

• DFTs (and inverse DFTs) are inherently periodic 
with period N.
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The DFT as a Sampled DTFT

• The DTFT of an N-point sequence is

• Sample the DTFT at

• The result is identical to the DFT

• If we compute the inverse DFT, we obtain 
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