Georgialnæðbuða of Technology

ECE4270 Fundamentals of DSP

Lecture 24

Optimal FIR Filter Design & DFT (Chapter 8)

School of ECE Center for Signal and Information Processing Georgia Institute of Technology

Overview of Lecture

Spring

- Design of FIR filters by the window method (Last Lecture)
- · Design of differentiator
- · Multiband design
- Optimum Filter Design
 - The Parks-McClellan algorithm
- Chapter 8

CE427

ECE4270

CSIP

- Discrete Fourier Transform (DFT)
- The DFT as a Sampled DTFT

Kaiser Window Design N	lethod	
$w[n] = \begin{cases} \frac{I_0[\beta(1 - [(n - \alpha) / \alpha]^2)^{1/2}]}{I_0(\beta)}, & 0 \le I \end{cases}$	$n \le M$	
0 othe	erwise	
$\alpha = M/2$		
$\Delta \omega = \omega_s - \omega_p \text{and} A = -201$	$\log_{10}\delta$	
$M = \frac{A-8}{2.285\Delta\omega} \implies$ required to meet specs		
$\int 0.1102(A-8.7),$	<i>A</i> > 50	
$\beta = \left\{ 0.5842(A-21)^{0.4} + 0.07886(A-21), \right.$	21 < <i>A</i> < 50	
0.0	<i>A</i> < 21	
ECE4270	Spring 20	

Digital "Differentiator" • Suppose that we want to design an FIR filter such that $H_{eff}(j\Omega) = j\Omega$, $|\Omega| < \frac{\pi}{T}$ • The required digital filter must approximate $H(e^{j\omega}) = \frac{j\omega}{T}e^{-j\omega M/2}$, $|\omega| < \pi$ • The desired impulse response is $h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{j\omega}{T}\right)e^{-j\omega M/2}e^{j\omega n}d\omega$ $h_d[n] = \frac{\cos[\pi(n-M/2)]}{(n-M/2)T} - \frac{\sin[\pi(n-M/2)]}{\pi(n-M/2)T}$, $-\infty < n < \infty$

Spring 2017

<section-header><section-header><section-header><text><text><text><text><text><equation-block><text>

The Parks McClellan Algorithm

 Uses the Remez exchange algorithm to iteratively find the impulse response that minimizes the maximum approximation error over a set of closed intervals in the frequency-domain.

$$E(\omega) = W(\omega)[H_d(e^{j\omega}) - H(e^{j\omega})]$$

• Leads to equiripple approximations that are optimum in sense of smallest approximation error for a given transition width.

ECE4270

Spring 2017

Linear Phase Type I FIR Filter
• Zero-phase impulse response:

$$h_e[-n] = h_e[n] \quad -L \le n \le L$$
• Frequency response:

$$A_e(e^{j\omega}) = \sum_{n=-L}^{L} h_e[n]e^{-j\omega n}$$

$$= h_e[0] + \sum_{n=1}^{L} (h_e[n]e^{-j\omega n} + h_e[-n]e^{j\omega n})$$

$$= h_e[0] + \sum_{n=1}^{L} 2h_e[n]\cos\omega n = \sum_{k=0}^{L} a_k(\cos\omega)^k$$
• Causal version:

$$h[n] = h_e[n-L] \iff H(e^{j\omega}) = A_e(e^{j\omega})e^{-j\omega L}$$

The Alternation Theorem		
Weighted approximation error:		
$E(\omega) = W(\omega) \left[H_d(e^{j\omega}) - A_e(e^{j\omega}) \right]$		
Minimize the maximum error over a set of frequencies:		
$F = \left\{ \omega: 0 \le \omega \le \omega_p \text{ and } \omega_s \le \omega \le \pi \right\}$		
at least $L+2$ times in F . The maximum number of alternations is $L+3$.		
$ E = \max_{\omega \in F} [E(\omega)] \qquad \qquad \delta = \min_{h_e[n]} \{ E \}$		
CF4270 Spring 2017		

• Kaiser obtained the following design formula by curve fitting many examples: $M = \frac{-10 \log_{10} (\delta_1 \delta_2) - 13}{2.324 \Delta \omega}$ • m=(-10*log10(.01*.001)-13) / (2.324*(0.6-0.4)*pi) =25.3388

Comparison of Filter Structures

- Complexity is proportional to amount of computation and storage plus program storage and computational cycles.
- FIR direct form (M+1) coefficients
 - -(M+1) multiplications, M additions
 - (M+1) coefficients, M delays (registers)
- IIR cascade form $N_{\rm s}$ second-order sections.
 - $-5N_s$ multiplications, $5N_s$ additions
 - $-5N_{\rm s}$ coefficients, $5N_{\rm s}$ delays

ECE4270

Spring 2017

Lowpass Filter Implementations

- Specifications of lowpass filter 1/T = 2000 Hz $0.99 \le |H(e^{j\Omega T})| \le 1.01$ $0 \le |\Omega| \le 2\pi (400)$ $|H(e^{j\Omega T})| \le 0.01$ $2\pi (600) \le |\Omega| \le 2\pi (1000)$
- These specs met by the following approx.
 - Butterworth 12th-order
 - Chebyshev 8th-order
 - Elliptic 6th-order
 - Kaiser window 37 sample impulse response
 - Parks-McClellan 27 sample impulse response

Spring 201

CSIP

Comparison of Lowpass Filters						
Approx. Method	Order M or N	Total Mults.	Total Adds	Total Storage	TMS320 Cycles	
Butter	14	35	28	49	109	
Cheby	8	20	16	28	64	
elliptic	6	18	12	21	49	
Kaiser	37	38	37	74	52	
P-Mc	27	28	27	54	42	
ECE4270					Spring 201	7

Georgialnædflude of Technology

ECE4270

The Discrete Fourier Transform (DFT)

School of Electrical and Computer Engineering Center for Signal and Image Processing Georgia Institute of Technology

Review of the DTFT
• Definition: $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = X(z) _{z=e^{j\omega}}$
• Inverse transform: $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$
• Periodicity: $X(e^{j(\omega+2\pi)})=X(e^{j\omega})$
Convolution theorems:
$y[n] = x[n] * h[n] \iff Y(e^{j\omega}) = X(e^{j\omega}) \cdot H(e^{j\omega})$
$y[n] = w[n] \cdot x[n] \Leftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} W(e^{j\omega}) * X(e^{j\omega})$
E4270 Spring 201

The Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \qquad k = 0, 1, ..., N-1$$
$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn} \qquad n = 0, 1, ..., N-1$$

Spring 2017

ECE4270

- where $W_N = e^{-j(2\pi/N)}$. Exact representation of finite-length or periodic sequences (*x*[*n*+*N*]=*x*[*n*]).
- X[k] and x[n] can be computed efficiently by the FFT. (Gauss knew about it, Cooley and Tukey rediscovered it at just the right time.)

A Simple (but important) Example

• Let P[k]=1, for k=0,1,2,...,N-1. Then

$$p[n] = \frac{1}{N} \sum_{k=0}^{N-1} e^{j(2\pi/N)kn} = \frac{1}{N} \frac{1-e^{j(2\pi/N)nN}}{1-e^{j(2\pi/N)n}}$$

$$p[n] = \begin{cases} 1 \quad n=0,\pm N,\pm 2N,...\\ 0 \quad \text{otherwise} \end{cases} = \sum_{r=-\infty}^{\infty} \delta[n+rN]$$
• DFTs (and inverse DFTs) are inherently periodic with period N.

$$p[n+N] = \frac{1}{N} \sum_{k=0}^{N-1} P[k] e^{j(2\pi/N)k(n+N)} = p[n]$$

The DFT as a Sampled DTFT
• The DTFT of an <i>N</i> -point sequence is $X(e^{j\omega}) = \sum_{n=0}^{N-1} x[n]e^{-j\omega n}$
• Sample the DTFT at $\omega_k = (2\pi/N)k, k = 0, 1,, N-1$. • The result is identical to the DFT $X(e^{j\omega})\Big _{\omega=2\pi k/N} = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)kn} = X[k]$
• If we compute the inverse DFT, we obtain $\tilde{x}[n] = \frac{1}{N} \sum_{n=0}^{N-1} X(e^{j(2\pi/N)k}) e^{j(2\pi/N)kn} = \sum_{r=-\infty}^{\infty} x[n+rN]$
ECE4270 Spring 2017