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Overview of Lecture

« Circular Convolution via DFT
« Linear Convolution via DFT
* Block Convolution
-Overlap add (OLA)
-Overlap save (OLS)

» DCT (Discrete-Cosine Transform)— Moved to last lecture

* The FFT (Chapter 9)
— Decimation in time
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DFT Theorems and Properties

Circular Convolution - |

Finite-Length Sequence (Length N) N-point DFT (Length N)
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Circular Flipping and Shifting

“Linear Convolution”

[((0-m))y,0=m=N-1
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x3[n] = xq[n] @ x;[n]
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Analysis for Linear Convolution Aliased Convolution -1
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Aliased Convolution - Il

Aliased Convolution - Il
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Block Convolution - Overlap Add Method (OLA)

OLA: Segmenting the Input

il

UI“H]
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. n]:{x[n+rL], 0<n<L-1 x[n] = Ozo:xr[n—rL]
r=0

0, otherwise
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x[n]= §: x,[n—rL]—)y[n] :x[n]*h[n] = § y,.[n—rL] 11111 m
r=0 r=0
x[n+rL], 0<n<L-1 n o L xz[n:
xrln]= {0, otherwise = welnl=xn]*hin] 0 ll“lllﬂ“
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OLA: Putting the Output Pieces Together

OLS Method - Segmenting the Input

Mnl= S yln-rL]  y,[n]=x[n]*hn]
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OLS Method - Extracting the Output

Computation of the DFT

* In order for the DFT to be useful for linear filtering,
spectrum analysis, etc., we need efficient computation
algorithms for

X[k]:Nz_ 1x[n]Wkn k=0,1...N-1
n=0 N
* Using the above directly requires N complex

multiplications and N-1 complex additions for each of the
N DFT values |— ,u(N)=N2 complex multiplications.

For example,

N=1024 = p(N)~100
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Cooley and Tukey, 1965

Jim Cooley at Arden House, 1968

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the ealeulation of the interactions of a 2" factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the ealculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N' X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in & procedure
requiring a number of operations proportional to N log NV rather than N°. These
methods are applied here to the caleulation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in & rather
different form. Attention is given to the choice of N. It is also shown how special
advantage ean be obtained in the use of a binary computer with N = 2™ and how
the entire caleulation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

J. W. Cooley and J. W. Tukey, Mathematics of
Computation, Vol. 19, pp. 297-301, 1965.
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Decimation-in-Time Derivation - |

Decimation-in-Time Derivation - Il

* We want to compute X[k] efficiently. Divide x[n]
into even- and odd-indexed

X[k = > x[aWi 4+ > x[n]wit
n even n odd
+ Substituting n=2r and n=2r+1 into above gives
(assume N is even)

(N/2)-1 (N/2)-1
X[k =3 xrwit+ ST xfar + 1wt
r=0 r=0
(N/2)-1 (N/2)—1
= Y x2A W+ W D x[2r +1)(WR)*
r=0 r=0

+ Using the fact
W2 = =2 @TIN) = o=127/(N12) = Wy »

it follows that

(N/2)-1 (N/2)-1
XK= Y x[2r]Wih, + W D x[2r + WSS,
r=0 r=0

k=0,1,...,N—1.

G[k] + WEHIK],

In other words, G[k] and H[k] are N/2-point DFTs.
= U(N)=N+21(N/2)
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Decimation in Time (First Stage)

Decimation in Time (Second Stage)
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XM= 3 AW+ W S <+ W orr /\/ K
r=0 r=0 x[7] DFT > X XI17]
= Gk + WEH[K],  k=0.1,... N—1. Wy wi
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Decimation in Time (Third Stage)
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Bit-reversed order

.N
Normal order
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