GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering

ECE 6605
Information Theory

Assigned: Thursday, Sep. 6, 2018
Due: Thursday, Sept. 20, 2018
Due Section Q (Video Student): Thursday, Sept. 27, 2016

Problem Set \#2

Problem 1-4: Solve questions 3.1, 3.7, 3.8, and 3.13 from Chapter 3 of the textbook (the second edition). For the definition of the smallest set in Problem 3.13 refer to page 62 of the textbook)

Problem 5: Suppose that a six sided die is thrown n times; assume that n is large. The faces of the die are numbered 1 through 6 , and each is equally likely. Find a good upper bound on the probability that the average of the numbers computed over the n throws is less than 2.5. Hint: use Chebyshev's inequality.

Problem 6-7: Solve questions 3.9, and 3.10 from Chapter 3 of the textbook (the second edition).

Problem 8: Suppose that X is a random variable with a probability distribution (i.e., probability that $X=k$) given by:

$$
P_{X}(k)=\operatorname{Prob}(X=k)=(1-\lambda) \lambda^{k} \quad \text { for } \quad k \geq 0
$$

where $0<\lambda<1$ and k is a non-negative integer (and hence X can take any nonnegative integer value). To answer this question, note that the AEP theorem we proved for a finite-alphabet random variable also holds with the same formulation for a random variable with infinite but countable alphabet.
(a) Compute $H(X)$.
(b) Describe the typical set for i.i.d sequences of length $n: X_{1}, X_{2}, \ldots, X_{n}$. (Characterize your description of the set clearly by specifying which length n sequences will be in the typical set $A_{\epsilon}^{(n)}$).

Problem 9: Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables taking values in the two-element set $\{0,1\}$, determined as follows. First, flip a fair coin: If the outcome is heads, set $X_{1}=0$; if it is tail, set $X_{1}=1$. Now roll a fair die; if the outcome is a number from
$\{1,2,3,4\}$, set $X_{2}=X_{1}$; if the outcome is 5 or 6 , set $X_{2}=\overline{X_{1}}$ (here $\overline{X_{1}}$ denotes the complement of X_{1}). Similarly, roll the die again to determine X_{3} from X_{2} (changing if the die shows 5 or 6), once again to determine X_{4} from X_{3}, \ldots, and one last time to determine X_{n} from X_{n-1}.
(a) Compute $H\left(X_{1}\right)$.
(b) Compute $H\left(X_{n}\right)$.
(c) Compute $H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(d) Compute $I\left(X_{1} ; X_{2}\right)$.
(e) (6 points) Define n random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ as:

$$
Y_{1}=X_{1} \quad \text { and } \quad Y_{i}=X_{i} \bigoplus Y_{i-1} \quad \text { for } i=2, \ldots, n
$$

Here \oplus is the XOR (logic) operations.
Compute $H\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ and $H\left(Y_{1}, Y_{2}, \ldots, Y_{n} \mid X_{1}, X_{2}, \ldots, X_{n}\right)$.

