GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering
ECE 6605
Information Theory
Assigned: Tuesday, Sept. 25, 2018
Due: Thursday, Oct. 4, 2018
Due: Sections Q (Video Student): Thursday,, Oct 11, 2018

Problem Set \#3

Problem 1-2: Solve the questions 4.12 and 4.13 from Chapter 4 of the textbook (the second edition).

Problem 3: For the source indicated below by the diagram, there is an underlying Markov process with states indicated by circles. Each time unit, the source in a given state emits an output symbol " A " or " B " or C and passes to a next state. The number on each transition branch is the probability of emitting that symbol and going to the indicated state in that transition. Assume that at the start (time=0), we are equally likely in either of the states. Note that the source output at each time is the symbols " A " or " B " or " C " in the transition of the Markov to the next state, (and not the state number).

(a) Compute the probability of each source output symbol, i.e., $\operatorname{Prob}\left\{X_{n+1}=A\right\}$, $\operatorname{Prob}\left\{X_{n+1}=B\right\}, \operatorname{Prob}\left\{X_{n+1}=C\right\}$.
(c) Assume that both encoder and decoder knows that the source happens to be at state " 1 " at time zero. Then, the source produces the output symbols one at a time. Find the optimum pre-fix free compression scheme of this source, by designing the binary codewords. Explain clearly how your scheme works.

Problem 4: Solve the questions 4.28 from Chapter 4 of the textbook (the second edition).
Problem 5: For every stationary stochastic process $\left\{Y_{i}\right\} ; i=1,2, \ldots$, prove that we have

$$
\frac{1}{n} H\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \leq \frac{1}{n-1} H\left(Y_{1}, Y_{2}, \ldots, Y_{n-1}\right)
$$

for any n.

