GEORGIA INSTITUTE OF TECHNOLOGY
 School of Electrical and Computer Engineering

ECE 6605
Information Theory

Assigned: Thursday, Oct 4, 2018
Due: Thursday, Oct. 18, 2018
Due: Sections Q (Video Student): Thursday,, Oct 25, 2018

Problem Set \#4

This HWK has 8 problems.
Problem 1-2: Solve the questions 5.24, and 5.45 from Chapter 5 of the textbook (the second edition).

Problem 3: Let $\ell_{1}, \ell_{2}, \ldots, \ell_{15}$ be the binary huffman codeword lengths for the probabilities $p_{1} \geq p_{2} \ldots \geq p_{14} \geq p_{15}$. Suppose we get a new distribution by splitting the last probability mass, p_{15}. What can you say about the optimal binary codeword lengths $\overline{\ell_{1}}, \overline{\ell_{2}}, \ldots, \overline{\ell_{15}}, \overline{\ell_{16}}$ for the probabilities $p_{1}, p_{2}, \ldots, p_{14}, \alpha p_{15},(1-\alpha) p_{15}$, where $0 \leq \alpha \leq 1$.

Problem 4: The problem deals with binary prefix codes.
(a) Show that the two distinct binary prefix codes: namely $(00,01,10,11)$ and $(0,10,110,111)$ are both the optimal prefix codes for the source with four symbols having probability distribution $\left[p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 6, p_{4}=1 / 6\right]$.
(b) Characterize the set of all probability vectors $\left[p_{1}, p_{2}, p_{3}, p_{4}\right]$ with $p_{1} \geq p_{2} \geq p_{3} \geq p_{4}$ for which these same two codes, in part (a), are still optimal.
(c) This part is a bonus problem. Show that the set of probability vectors you found in part (b) is the convex hull of three fixed probability vectors; and find these three vectors. Clarification: if $\underline{x_{1}}, \ldots, \underline{x_{n}}$ are n vectors, their convex hull is the set of all vectors \underline{x} of the form:

$$
\underline{x}=a_{1} \underline{x_{1}}+a_{2} \underline{x_{2}}+\cdots+a_{n} \underline{x_{n}}
$$

where $\left(a_{1}, \ldots, a_{n}\right)$ satisfy: $a_{1}+a_{2}+\cdots+a_{n}=1, a_{i} \geq 0$ for all i.
Problem 5: Solve the question 5.19 from Chapter 5 of the textbook (the second edition).
Problem 6: Suppose that $X=\{1,2,3,4\}$ and that the probabilities of the four possible outcomes are $p=\left\{\frac{1}{2}, \frac{1}{8}, \frac{1}{4}, \frac{1}{8}\right\}$
(a) Determine $H(X)$.
(b) Let $q=\left\{\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{1}{8}\right\}$ be probabilities associated with a random variable Y also defined on the set $\{1,2,3,4\}$. Compute $H(Y)$.
(c) Find the relative entropy between p and q, (i.e., $D(p \| q)$. Also find $D(q \| p)$.
(d) Find a Huffman code for X.
(e) Find the expected codeword length for the Huffman code.
(f) Now suppose that q had been the true distribution, but the Huffman code was designed using p as in part d. Find the expected codeword length. What is the cost for not using the true distribution q to design the code?

Problem 7: Suppose that X is a ternary random variable, taking values from $\{0,1,2\}$ with a probability distribution as $p(0)=1 / 16, p(1)=1 / 32$, and $p(2)=1-1 / 16-1 / 32$.
(a) Give a Huffman code for the random variable X. (find the codewords and show your derivation of the code)
(b) Give a Shannon code for the random variable X. (find the codewords and show your derivation of the code)
(c) To represent sequence of length $n=50$, i.i.d random variables $X_{1}, X_{2}, \ldots, X_{50}$, what compression scheme (Huffman, Shannon, or something else) would you use that is practically feasible? State the name of the scheme and justify your choice (non-quantitative explanation suffices). Give good upper and lower bounds on the expected length of your coding scheme?

Problem 8: The problem deals with optimum compression of a Markov source. Consider a 3 -state Markov process X_{1}, X_{2}, \ldots having transition matrix:

$$
\left[p_{i j}\right]=\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right)
$$

where $p_{i j}=\operatorname{Prob}\left\{X_{n+1}=j \mid X_{n}=i\right\}$. Thus the probability that state 1 follows state 2 is equal to zero. Design three codes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ (one for each state, 1,2 , and 3). Each code would map elements of the set of states into sequences of 0 's and 1 's such that this Marlov process can be sent with maximum compression by the following scheme:
(a) Note the present symbol $X_{n}=i$ where $i \in\{1,2,3\}$.
(b) Select code \mathcal{C}_{i}.
(c) Note the next symbol $X_{n+1}=j$ and send the codeword in \mathcal{C}_{i} corresponding to j.
(d) Repeat the above procedure for the next symbol.

Answer the followings:
(Q1) What is the average message length of the next symbol conditioned on the previous state $X_{n}=i$? (Hint: Note that every code \mathcal{C}_{i} has three codewords except the code \mathcal{C}_{2} which has only two codewords. First find those codewords using Huffman coding. Note also that, due to specific scheme we use above, it is fine if a codeword in the code \mathcal{C}_{i} also appear in the code \mathcal{C}_{j}).
(Q2) What is the unconditional average number of bits per source symbol? Show that this is equal to the entropy rate of the Markov chain.

