GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering

ECE 6280

Cryptography
HWK \#3, Due: Tuesday March 4, 2014

Problems 1 Let p be a prime. Show that $x^{b}=x \bmod p$ has $d=\operatorname{gcd}(p-1, b-1)$ distinct solutions.

Problem 2: Let p be a prime. Prove that if a is not divisible by p and if $n \equiv m \bmod (p-1)$, then $a^{n} \equiv a^{m} \bmod p$.

Problem 3: Let p be a prime and $p \equiv 3 \bmod 4$. Let y be an integer and $x \equiv y^{(p+1) / 4} \bmod p$. Show the following:
(a) If y has a square root $\bmod p$, then the square roots of $y \bmod p$ are $\pm x$.
(b) If y has no square root $\bmod p$, then $-y$ has a square root $\bmod p$, and the square roots of $-y$ are $\pm x$.

Problem 4: Suppose we encipher messages by the rule $C=M^{k} \bmod p$, where p is a large prime, with $1 \leq M \leq p-1$, and k is an integer with $1 \leq K \leq p-1$. Show that, if k is chosen to be coprime with $p-1$, then the decryption algorithm $d(C)=C^{D} \bmod p$ is correct in that, with $D=k^{-1} \bmod (p-1)$, we have $d(C)=M$.

Problem 5: Probabilistic Primality Testing: Let $\operatorname{SQRT}(a, p)$ be a (probabilistic) polynomial time algorithm with the property that on inputs a, p it outputs an integer $x \in\{0, \ldots, p-1\}$, such that if p is a prime and if $a \in Q R_{P}$ then $x^{2} \equiv a \bmod p$. If any of the conditions does not hold then the output value can be anything. Consider the following probabilistic primality test, which takes as input an odd integer p and outputs either "prime" or "composite".
(1) Test if there exist integer $b, c>1$ such that $p=b^{c}$. If so, output "composite".
(2) Choose $r \in\{1, \ldots, p-1\}$ uniformly at random and set $a=r^{2} \bmod p$.
(3) Compute $x=\operatorname{SQRT}(a, p)$.
(4) If $x \equiv r \bmod p$ or $x \equiv-r \bmod p$, then output "prime". Otherwise, output "composite".
(a) Is the above algorithm polynomial time? Explain your answer.
(b) What is the probability that the above algorithm makes an error when p is really a prime? Prove your answer.
(c) What is the probability that the above algorithm makes an error when p is really a product of two distinct primes? Prove your answer.

