GEORGIA INSTITUTE OF TECHNOLOGY

School of Electrical and Computer Engineering
ECE 6280
Cryptography
Due: Thursday, 5:00PM, April 24, 2013

Solving Discrete Log in a Cyclic Group using the Index calculus algorithm

In this project, you need to solve the discrete \log problem as followings: given that $b=g^{a} \bmod p$ for some $1<a<q$ find " a " provided that you know " b ", " g " and " p ".

Let q be a prime. Let p also be a prime such that $p=k q+1$ where k is an even number. Define a set $G=\left\{x^{k} \bmod p\right.$ for all $\left.x \in \mathbb{Z}_{p}^{*}\right\}$. You can easily verify that the size of the set is equal to q. You can also verify that the set G is a cyclic group of order q (Note that although the group order is q, the multiplication in the group is $\bmod p$). To find the generator of the group, we pick a random number $x \in \mathbb{Z}_{p}^{*}$ and compute $g=x^{k} \bmod p$. If $g \neq 1$, then you can show that g is the generator of the group G. We study the discrete log problem over this cyclic group G with the generator g.

Below, I provided the primes p (about 31 bits), q (about 23 bits) and the generator of the group G : These are the parameters you will need to use in your final algorithm. Again, $p=k q+1$, Use $p=2382933803$ and $q=10930889$, and $k=218$. According to the above discussion, the elements of the cyclic group G (of order q) is constructed by taking any x in Z_{p}^{*} and computing $y=x^{k} \bmod p$. I have found the generator of the cyclic group G as $g=2084483647$ (by choosing $x=2$). The generator g has order q.

For testing your algorithm, I will be sending you the parameter b and will ask you to report me a, where $g^{a}=b \bmod p$. Note that to avoid overflow in computing $s^{d} \bmod p$, you need to perform s^{d} in iterative way. For example, you can compute $s^{2} \bmod p$ first and then reapply over and over until you get $s^{d} \bmod p$.

EX: $s^{5} \bmod p=\left\{\left[\left(s^{2} \bmod p\right)\left(s^{2} \bmod p\right)\right] \bmod p\right\}(s \bmod p) \bmod p$.
Hint: In matlab, you may use fixed-point arithmetic toolbox, which would allow you to have positive integers as large as 63 bits. There is a "fi" built in matlab function which would represent integers in fixed-point arithmetic. You need to write your own modulo-m operation as the existing matlab mod function would not work with fixed-point representation.

