Course Description and Objective:

Introduction to Digital Signal Processing. Sampling Theorem, Discrete-time Fourier transform, power spectrum, discrete Fourier transform and the FFT algorithm, z-Transform, digital filter design and implementation.

OUTLINE

- · Basic Signal and Systems
 - 1-D Signals and Filters
 - Random Signals
 - Multidimensional Signals
- Convolution
 - FIR Filters
 - Correlation
- Discrete-Time Fourier Transform (DTFT)
 - Transform Pairs
 - Properties
 - Relation to Continuous-Time Fourier Transform
 - Sampling Theorem
 - Power Spectrum
- Discrete Fourier Transform (DFT)
 - Transform Pairs and Properties
 - Computation via the FFT Algorithm
 - Circular Convolution
 - High-Speed Convolution
- Bilateral z-Transform
 - Transform Pairs and Properties
 - Relationship to DTFT
 - Partial Fraction Expansion
 - Difference Equations and IIR Filters
 - Structures for FIR and IIR Filters
 - Linear Phase
 - All-pass Filters
 - Minimum Phase
 - Spectral Factorization
- Digital Filter Design
 - Bilinear Transformation
 - Frequency Selective Design
 - Butterworth, Chebyshev, Elliptic Filters
 - Windowing
 - Chebyshev Approximation
 - Least-Squares
 - Wiener Filter (SNR minimization)